
Joseph Albahari

C# 12  
in a Nutshell
The Definitive Reference



C#

C# 12 in a Nutshell
When you have questions about C# 12 or .NET 8, 
this best-selling guide has the answers you need.  
C# is a language of unusual flexibility and breadth, 
and with its continual growth, there’s always so 
much more to learn. In the tradition of O’Reilly’s 
Nutshell guides, this thoroughly updated edition  
is simply the best one-volume reference to the  
C# language available today. 

Aimed at intermediate and advanced programmers, 
this is a book whose explanations get straight to 
the point, covering C#, the CLR, and the core  
.NET libraries in depth without long intros or 
bloated samples. 

• Get up to speed on C# from syntax  
and variables to advanced topics such  
as pointers, closures, and patterns

• Dig deep into LINQ, with three chapters 
dedicated to the topic

• Explore concurrency and asynchrony, 
advanced threading, and parallel 
programming 

• Work with .NET features including regular 
expressions, networking, assemblies,  
spans, cryptography, and reflection.emit

Joe Albahari, inventor of LINQPad, 
is the author of C# 10 in a Nutshell 
and C# 12 Pocket Reference. 

“C# 12 in a Nutshell is
one of the few books
I keep on my desk as
a quick reference.”

—Scott Guthrie
Microsoft

“Novices and experts
alike will find the
latest techniques 
in C# programming
here.”

—Eric Lippert
C# Standards Committee

Twitter: @oreillymedia
linkedin.com/company/oreilly-media
youtube.com/oreillymedia 

9 7 8 1 0 9 8 1 4 7 4 4 0

5 6 9 9 9

US $69.99  CAN $87.99
ISBN: 978-1-098-14744-0



C# 12 IN A
NUTSHELL

The Definitive Reference

Joseph Albahari



978-1-098-14744-0

[LSI]

C# 12 in a Nutshell
by Joseph Albahari

Copyright © 2024 Joseph Albahari. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (http://oreilly.com). For more information, contact
our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Brian Guerin
Development Editor: Corbin Collins
Production Editor: Kristen Brown
Copyeditor: Charles Roumeliotis
Proofreader: Piper Editorial Consulting, LLC

Indexer: WordCo Indexing Services, Inc.
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

December 2023:  First Edition

Revision History for the First Edition
2023-11-14: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098147440 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. C# 12 in a Nutshell, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publish‐
er’s views. While the publisher and the author have used good faith efforts to ensure that
the information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limitation
responsibility for damages resulting from the use of or reliance on this work. Use of the
information and instructions contained in this work is at your own risk. If any code samples
or other technology this work contains or describes is subject to open source licenses or the
intellectual property rights of others, it is your responsibility to ensure that your use thereof
complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098147440


Table of Contents

Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xi

1. Introducing C# and .NET. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1
Object Orientation                                                                                            1
Type Safety                                                                                                         2
Memory Management                                                                                      3
Platform Support                                                                                               3
CLRs, BCLs, and Runtimes                                                                              3
A Brief History of C#                                                                                        8

2. C# Language Basics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31
A First C# Program                                                                                         31
Syntax                                                                                                                34
Type Basics                                                                                                       36
Numeric Types                                                                                                 47
Boolean Type and Operators                                                                         55
Strings and Characters                                                                                   57
Arrays                                                                                                                61
Variables and Parameters                                                                               67
Expressions and Operators                                                                            78
Null Operators                                                                                                 82
Statements                                                                                                        84
Namespaces                                                                                                      95

3. Creating Types in C#. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  103
Classes                                                                                                             103
Inheritance                                                                                                     126
The object Type                                                                                             138
Structs                                                                                                             142

iii



Access Modifiers                                                                                           145
Interfaces                                                                                                        147
Enums                                                                                                             154
Nested Types                                                                                                  157
Generics                                                                                                          159

4. Advanced C#. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  173
Delegates                                                                                                        173
Events                                                                                                              181
Lambda Expressions                                                                                     188
Anonymous Methods                                                                                   194
try Statements and Exceptions                                                                    195
Enumeration and Iterators                                                                          203
Nullable Value Types                                                                                    210
Nullable Reference Types                                                                             215
Extension Methods                                                                                       217
Anonymous Types                                                                                        220
Tuples                                                                                                              222
Records                                                                                                           227
Patterns                                                                                                           238
Attributes                                                                                                        243
Caller Info Attributes                                                                                    246
Dynamic Binding                                                                                          248
Operator Overloading                                                                                  256
Static Polymorphism                                                                                    260
Unsafe Code and Pointers                                                                            263
Preprocessor Directives                                                                               270
XML Documentation                                                                                   272

5. .NET Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  277
Runtime Targets and TFMs                                                                         279
.NET Standard                                                                                               279
Reference Assemblies                                                                                   281
Runtime and C# Language Versions                                                          281
The CLR and BCL                                                                                         281
Application Layers                                                                                        286

6. .NET Fundamentals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  291
String and Text Handling                                                                             291
Dates and Times                                                                                            304

iv | Table of Contents



Dates and Time Zones                                                                                  312
Formatting and Parsing                                                                                317
Standard Format Strings and Parsing Flags                                              323
Other Conversion Mechanisms                                                                  330
Globalization                                                                                                 334
Working with Numbers                                                                               335
Enums                                                                                                             340
The Guid Struct                                                                                             344
Equality Comparison                                                                                    344
Order Comparison                                                                                        355
Utility Classes                                                                                                358

7. Collections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  365
Enumeration                                                                                                  366
The ICollection and IList Interfaces                                                           373
The Array Class                                                                                             377
Lists, Queues, Stacks, and Sets                                                                    385
Dictionaries                                                                                                    394
Customizable Collections and Proxies                                                      401
Immutable Collections                                                                                 406
Frozen Collections                                                                                        410
Plugging in Equality and Order                                                                  411

8. LINQ Queries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  419
Getting Started                                                                                              419
Fluent Syntax                                                                                                 421
Query Expressions                                                                                        427
Deferred Execution                                                                                       432
Subqueries                                                                                                      438
Composition Strategies                                                                                442
Projection Strategies                                                                                     445
Interpreted Queries                                                                                       448
EF Core                                                                                                           454
Building Query Expressions                                                                        466

9. LINQ Operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  471
Overview                                                                                                        472
Filtering                                                                                                          475
Projecting                                                                                                       480
Joining                                                                                                            492

Table of Contents | v



Ordering                                                                                                         500
Grouping                                                                                                        503
Set Operators                                                                                                 507
Conversion Methods                                                                                    509
Element Operators                                                                                        512
Aggregation Methods                                                                                   514
Quantifiers                                                                                                     519
Generation Methods                                                                                     520

10. LINQ to XML. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  521
Architectural Overview                                                                                521
X-DOM Overview                                                                                        522
Instantiating an X-DOM                                                                              526
Navigating and Querying                                                                             528
Updating an X-DOM                                                                                   534
Working with Values                                                                                    537
Documents and Declarations                                                                      539
Names and Namespaces                                                                               543
Annotations                                                                                                   548
Projecting into an X-DOM                                                                          549

11. Other XML and JSON Technologies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  553
XmlReader                                                                                                     553
XmlWriter                                                                                                      561
Patterns for Using XmlReader/XmlWriter                                                563
Working with JSON                                                                                      568

12. Disposal and Garbage Collection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  581
IDisposable, Dispose, and Close                                                                 581
Automatic Garbage Collection                                                                    587
Finalizers                                                                                                        589
How the GC Works                                                                                       593
Managed Memory Leaks                                                                              600
Weak References                                                                                           603

13. Diagnostics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  607
Conditional Compilation                                                                             607
Debug and Trace Classes                                                                              611
Debugger Integration                                                                                   614
Processes and Process Threads                                                                   615

vi | Table of Contents



StackTrace and StackFrame                                                                         616
Windows Event Logs                                                                                    618
Performance Counters                                                                                 620
The Stopwatch Class                                                                                     624
Cross-Platform Diagnostic Tools                                                                625

14. Concurrency and Asynchrony. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  631
Introduction                                                                                                   631
Threading                                                                                                       632
Tasks                                                                                                                648
Principles of Asynchrony                                                                             656
Asynchronous Functions in C#                                                                  661
Asynchronous Patterns                                                                                681
Obsolete Patterns                                                                                          689

15. Streams and I/O. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  693
Stream Architecture                                                                                      693
Using Streams                                                                                                695
Stream Adapters                                                                                            709
Compression Streams                                                                                   718
Working with ZIP Files                                                                                721
Working with Tar Files                                                                                 722
File and Directory Operations                                                                    723
OS Security                                                                                                     733
Memory-Mapped Files                                                                                 736

16. Networking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  741
Network Architecture                                                                                   741
Addresses and Ports                                                                                      743
URIs                                                                                                                744
HttpClient                                                                                                      746
Writing an HTTP Server                                                                              755
Using DNS                                                                                                     758
Sending Mail with SmtpClient                                                                    758
Using TCP                                                                                                      759
Receiving POP3 Mail with TCP                                                                  763

17. Assemblies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  765
What’s in an Assembly                                                                                 765
Strong Names and Assembly Signing                                                        770

Table of Contents | vii



Assembly Names                                                                                           771
Authenticode Signing                                                                                   773
Resources and Satellite Assemblies                                                            776
Loading, Resolving, and Isolating Assemblies                                          783

18. Reflection and Metadata. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  805
Reflecting and Activating Types                                                                 806
Reflecting and Invoking Members                                                             813
Reflecting Assemblies                                                                                   827
Working with Attributes                                                                              828
Dynamic Code Generation                                                                          834
Emitting Assemblies and Types                                                                  841
Emitting Type Members                                                                              844
Emitting Generic Methods and Types                                                       849
Awkward Emission Targets                                                                         851
Parsing IL                                                                                                       855

19. Dynamic Programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  861
The Dynamic Language Runtime                                                               861
Dynamic Member Overload Resolution                                                   863
Implementing Dynamic Objects                                                                 869
Interoperating with Dynamic Languages                                                  872

20. Cryptography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  875
Overview                                                                                                        875
Windows Data Protection                                                                           876
Hashing                                                                                                           877
Symmetric Encryption                                                                                 879
Public-Key Encryption and Signing                                                           884

21. Advanced Threading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  889
Synchronization Overview                                                                          890
Exclusive Locking                                                                                         890
Locking and Thread Safety                                                                          898
Nonexclusive Locking                                                                                  904
Signaling with Event Wait Handles                                                            911
The Barrier Class                                                                                           919
Lazy Initialization                                                                                         920
Thread-Local Storage                                                                                   923
Timers                                                                                                             926

viii | Table of Contents



22. Parallel Programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  931
Why PFX?                                                                                                      932
PLINQ                                                                                                            935
The Parallel Class                                                                                          948
Task Parallelism                                                                                             954
Working with AggregateException                                                            964
Concurrent Collections                                                                                966
BlockingCollection<T>                                                                                969

23. Span<T> and Memory<T>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  973
Spans and Slicing                                                                                          974
Memory<T>                                                                                                  978
Forward-Only Enumerators                                                                        980
Working with Stack-Allocated and Unmanaged Memory                      982

24. Native and COM Interoperability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  985
Calling into Native DLLs                                                                             985
Type and Parameter Marshaling                                                                 986
Callbacks from Unmanaged Code                                                              991
Simulating a C Union                                                                                   994
Shared Memory                                                                                             995
Mapping a Struct to Unmanaged Memory                                               997
COM Interoperability                                                                                1001
Calling a COM Component from C#                                                      1003
Embedding Interop Types                                                                         1006
Exposing C# Objects to COM                                                                   1007

25. Regular Expressions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1011
Regular Expression Basics                                                                         1011
Quantifiers                                                                                                   1016
Zero-Width Assertions                                                                              1017
Groups                                                                                                          1020
Replacing and Splitting Text                                                                     1022
Cookbook Regular Expressions                                                                1023
Regular Expressions Language Reference                                               1027

Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1031

Table of Contents | ix





Preface

C# 12 represents the ninth major update to Microsoft’s flagship programming
language, positioning C# as a language with unusual flexibility and breadth. At one
end, it offers high-level abstractions such as query expressions and asynchronous
continuations, whereas at the other end, it allows low-level efficiency through con‐
structs such as custom value types and optional pointers.

The price of this growth is that there’s more than ever to learn. Although tools such
as Microsoft’s IntelliSense—and online references—are excellent in helping you on
the job, they presume an existing map of conceptual knowledge. This book provides
exactly that map of knowledge in a concise and unified style—free of clutter and
long introductions.

Like the past seven editions, C# 12 in a Nutshell is organized around concepts and
use cases, making it friendly both to sequential reading and to random browsing.
It also plumbs significant depths while assuming only basic background knowledge,
making it accessible to intermediate as well as advanced readers.

This book covers C#, the Common Language Runtime (CLR), and the .NET 8
Base Class Library (BCL). We’ve chosen this focus to allow space for difficult
and advanced topics without compromising depth or readability. Features recently
added to C# are flagged so that you can also use this book as a reference for C# 11
and C# 10.

Intended Audience
This book targets intermediate to advanced audiences. No prior knowledge of
C# is required, but some general programming experience is necessary. For the
beginner, this book complements, rather than replaces, a tutorial-style introduction
to programming.

xi



This book is an ideal companion to any of the vast array of books that focus on
an applied technology such as ASP.NET Core or Windows Presentation Foundation
(WPF). C# 12 in a Nutshell covers the areas of the language and .NET that such
books omit, and vice versa.

If you’re looking for a book that skims every .NET technology, this is not for you.
This book is also unsuitable if you want to learn about APIs specific to mobile
device development.

How This Book Is Organized
Chapter 2 through Chapter 4 concentrate purely on C#, starting with the basics of
syntax, types, and variables, and finishing with advanced topics such as unsafe code
and preprocessor directives. If you’re new to the language, you should read these
chapters sequentially.

The remaining chapters focus on .NET 8’s Base Class Libraries, covering such topics
as Language-Integrated Query (LINQ), XML, collections, concurrency, I/O and
networking, memory management, reflection, dynamic programming, attributes,
cryptography, and native interoperability. You can read most of these chapters ran‐
domly, except for Chapters 5 and 6, which lay a foundation for subsequent topics.
You’re also best off reading the three chapters on LINQ in sequence, and some
chapters assume some knowledge of concurrency, which we cover in Chapter 14.

What You Need to Use This Book
The examples in this book require .NET 8. You will also find Microsoft’s .NET
documentation useful to look up individual types and members (which is available
online).

Although it’s possible to write source code in a simple text editor and build your
program from the command line, you’ll be much more productive with a code
scratchpad for instantly testing code snippets, plus an integrated development envi‐
ronment (IDE) for producing executables and libraries.

For a Windows code scratchpad, download LINQPad 8 from www.linqpad.net
(free). LINQPad fully supports C# 12 and is maintained by the author.

For a Windows IDE, download Visual Studio 2022: any edition is suitable for what’s
taught in this book. For a cross-platform IDE, download Visual Studio Code.

All code listings for all chapters are available as interactive
(editable) LINQPad samples. You can download the entire
lot in a single click: at the bottom left, click the LINQPad’s
Samples tab, click “Download more samples,” and then choose
“C# 12 in a Nutshell.”

xii | Preface
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Conventions Used in This Book
The book uses basic UML notation to illustrate relationships between types, as
shown in Figure P-1. A slanted rectangle means an abstract class; a circle means
an interface. A line with a hollow triangle denotes inheritance, with the triangle
pointing to the base type. A line with an arrow denotes a one-way association; a line
without an arrow denotes a two-way association.

Figure P-1. Sample diagram

The following typographical conventions are used in this book:

Italic
Indicates new terms, URIs, filenames, and directories

Constant width

Indicates C# code, keywords and identifiers, and program output

Constant width bold

Shows a highlighted section of code

Constant width italic

Shows text that should be replaced with user-supplied values
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Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
http://www.albahari.com/nutshell.

This book is here to help you get your job done. In general, you may use the code
in this book in your programs and documentation. You do not need to contact
us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book
does not require permission. Selling or distributing examples from O’Reilly books
does require permission. Answering a question by citing this book and quoting
example code does not require permission (although we appreciate attribution).
Incorporating a significant amount of example code from this book into your
product’s documentation does require permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “C# 12 in a Nutshell by
Joseph Albahari (O’Reilly). Copyright 2024 Joseph Albahari, 978-1-098-14744-0.”

If you feel your use of code examples falls outside fair use or the permission given
here, feel free to contact us at permissions@oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-889-8969 (in the United States or Canada)
707-829-7019 (international or local)
707-829-0104 (fax)
support@oreilly.com
https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/c-sharp-nutshell-12.

Code listings and additional resources are provided at:

http://www.albahari.com/nutshell/

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media

Follow us on Twitter: https://twitter.com/oreillymedia

Watch us on YouTube: https://youtube.com/oreillymedia
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1
Introducing C# and .NET

C# is a general-purpose, type-safe, object-oriented programming language. The goal
of the language is programmer productivity. To this end, C# balances simplicity,
expressiveness, and performance. The chief architect of the language since its first
version is Anders Hejlsberg (creator of Turbo Pascal and architect of Delphi).
The C# language is platform neutral and works with a range of platform-specific
runtimes.

Object Orientation
C# is a rich implementation of the object-orientation paradigm, which includes
encapsulation, inheritance, and polymorphism. Encapsulation means creating a
boundary around an object to separate its external (public) behavior from its inter‐
nal (private) implementation details. Following are the distinctive features of C#
from an object-oriented perspective:

Unified type system
The fundamental building block in C# is an encapsulated unit of data and func‐
tions called a type. C# has a unified type system in which all types ultimately
share a common base type. This means that all types, whether they represent
business objects or are primitive types such as numbers, share the same basic
functionality. For example, an instance of any type can be converted to a string
by calling its ToString method.

Classes and interfaces
In a traditional object-oriented paradigm, the only kind of type is a class. In C#,
there are several other kinds of types, one of which is an interface. An interface
is like a class that cannot hold data. This means that it can define only behavior
(and not state), which allows for multiple inheritance as well as a separation
between specification and implementation.

1



Properties, methods, and events
In the pure object-oriented paradigm, all functions are methods. In C#, meth‐
ods are only one kind of function member, which also includes properties and
events (there are others, too). Properties are function members that encapsulate
a piece of an object’s state such as a button’s color or a label’s text. Events are
function members that simplify acting on object state changes.

Although C# is primarily an object-oriented language, it also borrows from the
functional programming paradigm, specifically:

Functions can be treated as values
Using delegates, C# allows functions to be passed as values to and from other
functions.

C# supports patterns for purity
Core to functional programming is avoiding the use of variables whose values
change, in favor of declarative patterns. C# has key features to help with
those patterns, including the ability to write unnamed functions on the fly
that “capture” variables (lambda expressions), and the ability to perform list or
reactive programming via query expressions. C# also provides records, which
make it easy to write immutable (read-only) types.

Type Safety
C# is primarily a type-safe language, meaning that instances of types can interact
only through protocols they define, thereby ensuring each type’s internal consis‐
tency. For instance, C# prevents you from interacting with a string type as though it
were an integer type.

More specifically, C# supports static typing, meaning that the language enforces type
safety at compile time. This is in addition to type safety being enforced at runtime.

Static typing eliminates a large class of errors before a program is even run. It shifts
the burden away from runtime unit tests onto the compiler to verify that all the
types in a program fit together correctly. This makes large programs much easier to
manage, more predictable, and more robust. Furthermore, static typing allows tools
such as IntelliSense in Visual Studio to help you write a program because it knows
for a given variable what type it is, and hence what methods you can call on that
variable. Such tools can also identify everywhere in your program that a variable,
type, or method is used, allowing for reliable refactoring.

C# also allows parts of your code to be dynamically typed via
the dynamic keyword. However, C# remains a predominantly
statically typed language.

2 | Chapter 1: Introducing C# and .NET



C# is also called a strongly typed language because its type rules are strictly enforced
(whether statically or at runtime). For instance, you cannot call a function that’s
designed to accept an integer with a floating-point number, unless you first explicitly
convert the floating-point number to an integer. This helps prevent mistakes.

Memory Management
C# relies on the runtime to perform automatic memory management. The Com‐
mon Language Runtime has a garbage collector that executes as part of your
program, reclaiming memory for objects that are no longer referenced. This frees
programmers from explicitly deallocating the memory for an object, eliminating the
problem of incorrect pointers encountered in languages such as C++.

C# does not eliminate pointers: it merely makes them unnecessary for most pro‐
gramming tasks. For performance-critical hotspots and interoperability, pointers
and explicit memory allocation is permitted in blocks that are marked unsafe.

Platform Support
C# has runtimes that support the following platforms:

• Windows 7+ Desktop (for rich-client, web, server, and command-line•
applications)

• macOS (for web and command-line applications—and rich-client applications•
via Mac Catalyst)

• Linux (for web and command-line applications)•
• Android and iOS (for mobile applications)•
• Windows 10 devices (Xbox, Surface Hub, and HoloLens) via UWP•

There is also a technology called Blazor that can compile C# to web assembly that
runs in a browser.

CLRs, BCLs, and Runtimes
Runtime support for C# programs consists of a Common Language Runtime and
a Base Class Library. A runtime can also include a higher-level application layer
that contains libraries for developing rich-client, mobile, or web applications (see
Figure 1-1). Different runtimes exist to allow for different kinds of applications, as
well as different platforms.
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Figure 1-1. Runtime architecture

Common Language Runtime
A Common Language Runtime (CLR) provides essential runtime services such as
automatic memory management and exception handling. (The word “common”
refers to the fact that the same runtime can be shared by other managed program‐
ming languages, such as F#, Visual Basic, and Managed C++.)

C# is called a managed language because it compiles source code into managed
code, which is represented in Intermediate Language (IL). The CLR converts the
IL into the native code of the machine, such as X64 or X86, usually just prior
to execution. This is referred to as Just-In-Time (JIT) compilation. Ahead-of-time
compilation is also available to improve startup time with large assemblies or
resource-constrained devices (and to satisfy iOS app store rules when developing
mobile apps).

The container for managed code is called an assembly. An assembly contains not
only IL but also type information (metadata). The presence of metadata allows
assemblies to reference types in other assemblies without needing additional files.

You can examine and disassemble the contents of an assembly
with Microsoft’s ildasm tool. And with tools such as ILSpy or
JetBrain’s dotPeek, you can go further and decompile the IL
to C#. Because IL is higher level than native machine code,
the decompiler can do quite a good job of reconstructing the
original C#.

A program can query its own metadata (reflection) and even generate new IL at
runtime (reflection.emit).
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Base Class Library
A CLR always ships with a set of assemblies called a Base Class Library (BCL).
A BCL provides core functionality to programmers, such as collections, input/out‐
put, text processing, XML/JSON handling, networking, encryption, interop, con‐
currency, and parallel programming.

A BCL also implements types that the C# language itself requires (for features such
as enumeration, querying, and asynchrony) and lets you explicitly access features of
the CLR, such as Reflection and memory management.

Runtimes
A runtime (also called a framework) is a deployable unit that you download and
install. A runtime consists of a CLR (with its BCL), plus an optional application
layer specific to the kind of application that you’re writing—web, mobile, rich client,
etc. (If you’re writing a command-line console application or a non-UI library, you
don’t need an application layer.)

When writing an application, you target a particular runtime, which means that
your application uses and depends on the functionality that the runtime provides.
Your choice of runtime also determines which platforms your application will
support.

The following table lists the major runtime options:

Application layer CLR/BCL Program type Runs on...

ASP.NET .NET 8 Web Windows, Linux, macOS

Windows Desktop .NET 8 Windows Windows 10+

WinUI 3 .NET 8 Windows Windows 10+

MAUI .NET 8 Mobile, desktop iOS, Android, macOS, Windows 10+

.NET Framework .NET Framework Web, Windows Windows 7+

Figure 1-2 shows this information graphically and also serves as a guide to what’s
covered in the book.
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Figure 1-2. Runtimes for C#

.NET 8

.NET 8 is Microsoft’s flagship open-source runtime. You can write web and console
applications that run on Windows, Linux, and macOS; rich-client applications that
run on Windows 10+ and macOS; and mobile apps that run on iOS and Android.
This book focuses on the .NET 8 CLR and BCL.

Unlike .NET Framework, .NET 8 is not preinstalled on Windows machines. If you
try to run a .NET 8 application without the correct runtime being present, a mes‐
sage will appear directing you to a web page where you can download the runtime.
You can avoid this by creating a self-contained deployment, which includes the parts
of the runtime required by the application.

.NET’s update history runs as follows: .NET Core 1.x →
NET Core 2.x → .NET Core 3.x → .NET 5 → .NET 6 → .NET
7 → .NET 8. After .NET Core 3, Microsoft removed “Core”
from the name and skipped version 4 to avoid confusion
with .NET Framework 4.x, which precedes all of the preceding
runtimes but is still supported and in popular use.
This means that assemblies compiled under .NET Core
1.x → .NET 7 will, in most cases, run without modifica‐
tion under .NET 8. In contrast, assemblies compiled under
(any version of) .NET Framework are usually incompatible
with .NET 8.
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Windows Desktop and WinUI 3
For writing rich-client applications that run on Windows 10 and above, you can
choose between the classic Windows Desktop APIs (Windows Forms and WPF)
and WinUI 3. The Windows Desktop APIs are part of the .NET Desktop runtime,
whereas WinUI 3 is part of the Windows App SDK (a separate download).

The classic Windows Desktop APIs have existed since 2006 and enjoy terrific third-
party library support, as well as offering a wealth of answered questions on sites
such as StackOverflow. WinUI 3 was released in 2022 and is intended for writing
modern immersive applications that feature the latest Windows 10+ controls. It is a
successor to the Universal Windows Platform (UWP).

MAUI
MAUI (Multi-platform App UI) is designed primarily for creating mobile apps for
iOS and Android, although it can also be used for desktop apps that run on macOS
and Windows via Mac Catalyst and WinUI 3. MAUI is an evolution of Xamarin and
allows a single project to target multiple platforms.

For cross-platform desktop applications, a third-party library
called Avalonia offers an alternative to MAUI. Avalonia also
runs on Linux and is architecturally simpler than MAUI (as it
operates without the Catalyst/WinUI indirection layer). Ava‐
lonia has an API similar to WPF, and it also offers a commer‐
cial add-on called XPF that provides almost complete WPF
compatibility.

.NET Framework

.NET Framework is Microsoft’s original Windows-only runtime for writing web and
rich-client applications that run (only) on Windows desktop/server. No major new
releases are planned, although Microsoft will continue to support and maintain the
current 4.8 release due to the wealth of existing applications.

With the .NET Framework, the CLR/BCL is integrated with the application
layer. Applications written in .NET Framework can be recompiled under .NET 8,
although they usually require some modification. Some features of .NET Frame‐
work are not present in .NET 8 (and vice versa).

.NET Framework is preinstalled with Windows and is automatically patched via
Windows Update. When you target .NET Framework 4.8, you can use the features
of C# 7.3 and earlier. (You can override this by specifying a newer language version
in the project file—this unlocks all of the latest language features except for those
that require support from a newer runtime.)
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The word “.NET” has long been used as an umbrella term for
any technology that includes the word “.NET” (.NET Frame‐
work, .NET Core, .NET Standard, and so on).
This means that Microsoft’s renaming of .NET Core to .NET
has created an unfortunate ambiguity. In this book, we’ll refer
to the new .NET as .NET 5+ when an ambiguity arises. And
to refer to .NET Core and its successors, we’ll use the phrase
“.NET Core and .NET 5+.”
To add to the confusion, .NET (5+) is a framework, yet it’s
very different from the .NET Framework. Hence, we’ll use the
term runtime in preference to framework, where possible.

Niche Runtimes
There are also the following niche runtimes:

• Unity is a game development platform that allows game logic to be scripted•
with C#.

• Universal Windows Platform (UWP) was designed for writing touch-first appli‐•
cations that run on Windows 10+ desktop and devices, including Xbox, Surface
Hub, and HoloLens. UWP apps are sandboxed and ship via the Windows Store.
UWP uses a version of the .NET Core 2.2 CLR/BCL, and it’s unlikely that
this dependency will be updated; instead, Microsoft has recommended that
users switch to its modern replacement, WinUI 3. But because WinUI 3 only
supports Windows desktop, UWP still has a niche application for targeting
Xbox, Surface Hub, and HoloLens.

• The .NET Micro Framework is for running .NET code on highly resource-•
constrained embedded devices (under one megabyte).

It’s also possible to run managed code within SQL Server. With SQL Server CLR
integration, you can write custom functions, stored procedures, and aggregations in
C# and then call them from SQL. This works in conjunction with .NET Framework
and a special “hosted” CLR that enforces a sandbox to protect the integrity of the
SQL Server process.

A Brief History of C#
The following is a reverse chronology of the new features in each C# version, for the
benefit of readers who are already familiar with an older version of the language.

What’s New in C# 12
C# 12 ships with Visual Studio 2022, and is used when you target .NET 8.
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Collection expressions
Rather than initializing an array as follows:

char[] vowels = {'a','e','i','o','u'};

you can now use square brackets (a collection expression):

char[] vowels = ['a','e','i','o','u'];

Collection expressions have two major advantages. First, the same syntax also works
with other collection types, such as lists and sets (and even the low-level span types):

List<char> list         = ['a','e','i','o','u'];
HashSet<char> set       = ['a','e','i','o','u'];
ReadOnlySpan<char> span = ['a','e','i','o','u'];

Second, they are target-typed, which means that you can omit the type in other
scenarios where the compiler can infer it, such as when calling methods:

Foo (['a','e','i','o','u']);

void Foo (char[] letters) { ... }

See “Collection Initializers and Collection Expressions” on page 205 for more
details.

Primary constructors in classes and structs
From C# 12, you can include a parameter list directly after a class (or struct)
declaration:

class Person (string firstName, string lastName)
{
  public void Print() => Console.WriteLine (firstName + " " + lastName);
}

This instructs the compiler to automatically build a primary constructor, allowing
the following:

Person p = new Person ("Alice", "Jones");
p.Print();    // Alice Jones

This feature has existed since C# 9 with records—where they behave slightly differ‐
ently. With records, the compiler generates (by default) a public init-only property
for each primary constructor parameter. This is not the case with classes and
structs; to achieve the same result, you must define those properties explicitly:

class Person (string firstName, string lastName)
{
  public string FirstName { get; set; } = firstName;
  public string LastName { get; set; } = lastName;
}

Primary constructors work well in simple scenarios. We describe their nuances and
limitations in “Primary Constructors (C# 12)” on page 119.
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Default lambda parameters
Just as ordinary methods can define parameters with default values:

void Print (string message = "") => Console.WriteLine (message);

so, too, can lambda expressions:

var print = (string message = "") => Console.WriteLine (message);

print ("Hello");
print ();

This feature is useful with libraries such as ASP.NET Minimal API.

Alias any type
C# has always allowed you to alias a simple or generic type via the using directive:

using ListOfInt = System.Collections.Generic.List<int>;

var list = new ListOfInt();

From C# 12, this approach works with other kinds of types, too, such as arrays and
tuples:

using NumberList = double[];
using Point = (int X, int Y);

NumberList numbers = { 2.5, 3.5 };
Point p = (3, 4);

Other new features
C# 12 also supports inline arrays, via the [System.Runtime.CompilerServi

ces.InlineArray] attribute. This allows for the creation of fixed-size arrays in a
struct without requiring an unsafe context, and is intended for use primarily within
the runtime APIs. 

What’s New in C# 11
C# 11 shipped with Visual Studio 2022, and is used by default when you target .NET
7.

Raw string literals
Wrapping a string in three or more quote characters creates a raw string literal,
which can contain almost any character sequence without escaping or doubling up.
This makes it easy to represent JSON, XML, and HTML literals, as well as regular
expressions and source code:

string raw = """<file path="c:\temp\test.txt"></file>""";

Raw string literals can be multiline and permit interpolation via the $ prefix:
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string multiLineRaw = $"""
  Line 1
  Line 2
  The date and time is {DateTime.Now}
  """;

Using two (or more) $ characters in a raw string literal prefix changes the interpo‐
lation sequence from one brace to two (or more) braces, allowing you to include
braces in the string itself:

Console.WriteLine ($$"""{ "TimeStamp": "{{DateTime.Now}}" }""");
// Output: { "TimeStamp": "01/01/2024 12:13:25 PM" }

We cover the nuances of this feature in “Raw string literals (C# 11)” on page 59
and “String interpolation” on page 60.

UTF-8 strings
With the u8 suffix, you create string literals encoded in UTF-8 rather than UTF-16.
This feature is intended for advanced scenarios such as the low-level handling of
JSON text in performance hotspots:

ReadOnlySpan<byte> utf8 = "ab→cd"u8;  // Arrow symbol consumes 3 bytes
Console.WriteLine (utf8.Length);      // 7

The underlying type is ReadOnlySpan<byte> (Chapter 23), which you can convert to
a byte array by calling its ToArray() method.

List patterns
List patterns match a series of elements in square brackets, and work with any
collection type that is countable (with a Count or Length property) and indexable
(with an indexer of type int or System.Index):

int[] numbers = { 0, 1, 2, 3, 4 };
Console.WriteLine (numbers is [0, 1, 2, 3, 4]);   // True

An underscore matches a single element of any value, and two dots match zero or
more elements (a slice):

Console.WriteLine (numbers is [_, 1, .., 4]);     // True

A slice can be followed by the var pattern—see “List Patterns” on page 243 for
details.

Required members
Applying the required modifier to a field or property forces consumers of that class
or struct to populate that member via an object initializer when constructing it:

Asset a1 = new Asset { Name = "House" };  // OK
Asset a2 = new Asset();                   // Error: will not compile!

class Asset { public required string Name; }
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With this feature, you can avoid writing constructors with long parameter lists,
which can simplify subclassing. Should you also wish to write a constructor, you
can apply the [SetsRequiredMembers] attribute to bypass the required member
restriction for that constructor—see “Required members (C# 11)” on page 136 for
details.

Static virtual/abstract interface members
From C# 11, interfaces can declare members as static virtual or static
abstract:

public interface IParsable<TSelf>
{
   static abstract TSelf Parse (string s);
}

These members are implemented as static functions in classes or structs, and can be
called polymorphically via a constrained type parameter:

T ParseAny<T> (string s) where T : IParsable<T> => T.Parse (s);

Operator functions can also be declared as static virtual or static abstract.

For details, see “Static virtual/abstract interface members” on page 153 and “Static
Polymorphism” on page 260. We also describe how to call static abstract members
via reflection in “Calling Static Virtual/Abstract Interface Members” on page 826.

Generic math
The System.Numerics.INumber<TSelf> interface (new to .NET 7) unifies arith‐
metic operations across all numeric types, allowing generic methods such as the
following to be written:

T Sum<T> (T[] numbers) where T : INumber<T>
{
  T total = T.Zero;
  foreach (T n in numbers)
    total += n;      // Invokes addition operator for any numeric type
  return total;
}

int intSum = Sum (3, 5, 7);
double doubleSum = Sum (3.2, 5.3, 7.1);
decimal decimalSum = Sum (3.2m, 5.3m, 7.1m);

INumber<TSelf> is implemented by all real and integral numeric types in .NET (as
well as char), and comprises several interfaces that include static abstract operator
definitions such as the following:

static abstract TResult operator + (TSelf left, TOther right);

We cover this in “Polymorphic Operators” on page 261 and “Generic Math” on page
262.
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Other new features
A type with the file accessibility modifier can be accessed only from within the
same file, and is intended for use within source generators:

file class Foo { ... }

C# 11 also introduced checked operators (see “Checked operators” on page 258), for
defining operator functions to be called inside checked blocks (this was required
for a full implementation of generic math). C# 11 also relaxed the requirement to
populate every field in a struct’s constructor (see “Struct Construction Semantics”
on page 142).

Finally, the nint and nuint native-sized integers types that were introduced in C# 9
to match the address space of the process at runtime (32 or 64 bits) were enhanced
in C# 11 when targeting .NET 7 or later. Specifically, the compile-time distinction
between these types and their underlying runtime types (IntPtr and UIntPtr) has
melted away when targeting .NET 7+. See “Native-Sized Integers” on page 266 for a
full discussion.

What’s New in C# 10
C# 10 shipped with Visual Studio 2022, and is used when you target .NET 6.

File-scoped namespaces
In the common case that all types in a file are defined in a single namespace,
a file-scoped namespace declaration in C# 10 reduces clutter and eliminates an
unnecessary level of indentation:

namespace MyNamespace;  // Applies to everything that follows in the file.

class Class1 {}         // inside MyNamespace
class Class2 {}         // inside MyNamespace

The global using directive
When you prefix a using directive with the global keyword, it applies the directive
to all files in the project:

global using System;
global using System.Collection.Generic;

This lets you avoid repeating the same directives in every file. global using direc‐
tives work with using static.

Additionally, .NET 6 projects now support implicit global using directives: if the
ImplicitUsings element is set to true in the project file, the most commonly used
namespaces are automatically imported (based on the SDK project type). See “The
global using Directive” on page 96 for more detail.
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Nondestructive mutation for anonymous types
C# 9 introduced the with keyword, to perform nondestructive mutation on records.
In C# 10, the with keyword also works with anonymous types:

var a1 = new { A = 1, B = 2, C = 3, D = 4, E = 5 };
var a2 = a1 with { E = 10 }; 
Console.WriteLine (a2);      // { A = 1, B = 2, C = 3, D = 4, E = 10 }

New deconstruction syntax
C# 7 introduced the deconstruction syntax for tuples (or any type with a
Deconstruct method). C# 10 takes this syntax further, letting you mix assignment
and declaration in the same deconstruction:

var point = (3, 4);
double x = 0;
(x, double y) = point;

Field initializers and parameterless constructors in structs
From C# 10, you can include field initializers and parameterless constructors in
structs (see “Structs” on page 142). These execute only when the constructor is
called explicitly, and so can easily be bypassed—for instance, via the default key‐
word. This feature was introduced primarily for the benefit of struct records.

Record structs
Records were first introduced in C# 9, where they acted as a compiled-enhanced
class. In C# 10, records can also be structs:

record struct Point (int X, int Y);

The rules are otherwise similar: record structs have much the same features as class
structs (see “Records” on page 227). An exception is that the compiler-generated
properties on record structs are writable, unless you prefix the record declaration
with the readonly keyword.

Lambda expression enhancements
The syntax around lambda expressions has been enhanced in a number of ways.
First, implicit typing (var) is permitted:

var greeter = () => "Hello, world";

The implicit type for a lambda expression is an Action or Func delegate, so greeter,
in this case, is of type Func<string>. You must explicitly state any parameter types:

var square = (int x) => x * x;

Second, a lambda expression can specify a return type:

var sqr = int (int x) => x;
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This is primarily to improve compiler performance with complex nested lambdas.

Third, you can pass a lambda expression into a method parameter of type object,
Delegate, or Expression:

M1 (() => "test");   // Implicitly typed to Func<string>
M2 (() => "test");   // Implicitly typed to Func<string>
M3 (() => "test");   // Implicitly typed to Expression<Func<string>>

void M1 (object x) {}
void M2 (Delegate x) {}
void M3 (Expression x) {}

Finally, you can apply attributes to a lambda expression’s compile-generated target
method (as well as its parameters and return value):

Action a = [Description("test")] () => { };

See “Applying Attributes to Lambda Expressions” on page 245 for more detail.

Nested property patterns
The following simplified syntax is legal in C# 10 for nested property pattern match‐
ing (see “Property Patterns” on page 241):

var obj = new Uri ("https://www.linqpad.net");
if (obj is Uri { Scheme.Length: 5 }) ...

This is equivalent to:

if (obj is Uri { Scheme: { Length: 5 }}) ...

CallerArgumentExpression
A method parameter to which you apply the [CallerArgumentExpression]
attribute captures an argument expression from the call site:

Print (Math.PI * 2);

void Print (double number,
           [CallerArgumentExpression("number")] string expr = null)
  => Console.WriteLine (expr);

// Output: Math.PI * 2

This feature is intended primarily for validation and assertion libraries (see “Caller‐
ArgumentExpression” on page 247).

Other new features
The #line directive has been enhanced in C# 10 to allow a column and range to be
specified.

Interpolated strings in C# 10 can be constants, as long as the interpolated values are
constants.
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Records can seal the ToString() method in C# 10.

C#’s definite assignment analysis has been improved so that expressions such as the
following work:

if (foo?.TryParse ("123", out var number) ?? false)
  Console.WriteLine (number);

(Prior to C# 10, the compiler would generate an error: “Use of unassigned local
variable ‘number’.”) 

What’s New in C# 9.0
C# 9.0 shipped with Visual Studio 2019, and is used when you target .NET 5.

Top-level statements
With top-level statements (see “Top-Level Statements” on page 41), you can write a
program without the baggage of a Main method and Program class:

using System;
Console.WriteLine ("Hello, world");

Top-level statements can include methods (which act as local methods). You can
also access command-line arguments via the “magic” args variable, and return a
value to the caller. Top-level statements can be followed by type and namespace
declarations.

Init-only setters
An init-only setter (see “Init-only setters” on page 116) in a property declaration
uses the init keyword instead of the set keyword:

class Foo { public int ID { get; init; } }

This behaves like a read-only property, except that it can also be set via an object
initializer:

var foo = new Foo { ID = 123 };

This makes it possible to create immutable (read-only) types that can be populated
via an object initializer instead of a constructor, and helps to avoid the antipattern
of constructors that accept a large number of optional parameters. Init-only setters
also allow for nondestructive mutation when used in records.

Records
A record (see “Records” on page 227) is a special kind of class that’s designed to
work well with immutable data. Its most special feature is that it supports nondes‐
tructive mutation via a new keyword (with):

Point p1 = new Point (2, 3);
Point p2 = p1 with { Y = 4 };   // p2 is a copy of p1, but with Y set to 4
Console.WriteLine (p2);         // Point { X = 2, Y = 4 }
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record Point
{
  public Point (double x, double y) => (X, Y) = (x, y);

  public double X { get; init; }
  public double Y { get; init; }    
}

In simple cases, a record can also eliminate the boilerplate code of defining proper‐
ties and writing a constructor and deconstructor. We can replace our Point record
definition with the following, without loss of functionality:

record Point (double X, double Y);

Like tuples, records exhibit structural equality by default. Records can subclass
other records, and can include the same constructs that classes can include. The
compiler implements records as classes at runtime.

Pattern-matching improvements
The relational pattern (see “Patterns” on page 238) allows the <, >, <=, and >=
operators to appear in patterns:

string GetWeightCategory (decimal bmi) => bmi switch {
  < 18.5m => "underweight",
  < 25m => "normal",
  < 30m => "overweight",
  _ => "obese" };

With pattern combinators, you can combine patterns via three new keywords (and,
or, and not):

bool IsVowel (char c) => c is 'a' or 'e' or 'i' or 'o' or 'u';

bool IsLetter (char c) => c is >= 'a' and <= 'z'
                            or >= 'A' and <= 'Z';

As with the && and || operators, and has higher precedence than or. You can
override this with parentheses.

The not combinator can be used with the type pattern to test whether an object is
(not) a type:

if (obj is not string) ...

Target-typed new expressions
When constructing an object, C# 9 lets you omit the type name when the compiler
can infer it unambiguously:

System.Text.StringBuilder sb1 = new();
System.Text.StringBuilder sb2 = new ("Test");
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This is particularly useful when the variable declaration and initialization are in
different parts of your code:

class Foo
{
  System.Text.StringBuilder sb;
  public Foo (string initialValue) => sb = new (initialValue);
}

And in the following scenario:

MyMethod (new ("test"));
void MyMethod (System.Text.StringBuilder sb) { ... }

See “Target-Typed new Expressions” on page 77 for more information.

Interop improvements
C# 9 introduces function pointers (see “Function Pointers” on page 268 and “Call‐
backs with Function Pointers” on page 991). Their main purpose is to allow unman‐
aged code to call static methods in C# without the overhead of a delegate instance,
with the ability to bypass the P/Invoke layer when the arguments and return types
are blittable (represented identically on each side).

C# 9 also introduces the nint and nuint native-sized integer types (see “Native-
Sized Integers” on page 266), which map at runtime to System.IntPtr and Sys
tem.UIntPtr. At compile time, they behave like numeric types with support for
arithmetic operations.

Other new features
Additionally, C# 9 now lets you:

• Override a method or read-only property such that it returns a more derived•
type (see “Covariant return types” on page 131).

• Apply attributes to local functions (see “Attributes” on page 243).•

• Apply the static keyword to lambda expressions or local functions to ensure•
that you don’t accidentally capture local or instance variables (see “Static lamb‐
das” on page 192).

• Make any type work with the foreach statement, by writing a GetEnumerator•
extension method.

• Define a module initializer method that executes once when an assembly is•
first loaded, by applying the [ModuleInitializer] attribute to a (static void
parameterless) method.

• Use a “discard” (underscore symbol) as a lambda expression argument.•
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• Write extended partial methods that are mandatory to implement—enabling•
scenarios such as Roslyn’s new source generators (see “Extended partial meth‐
ods” on page 125).

• Apply an attribute to methods, types, or modules to prevent local variables•
from being initialized by the runtime (see “[SkipLocalsInit]” on page 269).

What’s New in C# 8.0
C# 8.0 first shipped with Visual Studio 2019, and is still used today when you
target .NET Core 3 or .NET Standard 2.1.

Indices and ranges
Indices and ranges simplify working with elements or portions of an array (or the
low-level types Span<T> and ReadOnlySpan<T>).

Indices let you refer to elements relative to the end of an array by using the ^
operator. ^1 refers to the last element, ^2 refers to the second-to-last element, and so
on:

char[] vowels = new char[] {'a','e','i','o','u'};
char lastElement  = vowels [^1];   // 'u'
char secondToLast = vowels [^2];   // 'o'

Ranges let you “slice” an array by using the .. operator:

char[] firstTwo =  vowels [..2];    // 'a', 'e'
char[] lastThree = vowels [2..];    // 'i', 'o', 'u'
char[] middleOne = vowels [2..3]    // 'i'
char[] lastTwo =   vowels [^2..];   // 'o', 'u'

C# implements indexes and ranges with the help of the Index and Range types:

Index last = ^1;
Range firstTwoRange = 0..2;
char[] firstTwo = vowels [firstTwoRange];   // 'a', 'e'

You can support indices and ranges in your own classes by defining an indexer with
a parameter type of Index or Range:

class Sentence
{
  string[] words = "The quick brown fox".Split();

  public string this   [Index index] => words [index];
  public string[] this [Range range] => words [range];
}

For more information, see “Indices and Ranges” on page 63.
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Null-coalescing assignment
The ??= operator assigns a variable only if it’s null. Instead of

if (s == null) s = "Hello, world";

you can now write this:

s ??= "Hello, world";

Using declarations
If you omit the brackets and statement block following a using statement, it
becomes a using declaration. The resource is then disposed when execution falls
outside the enclosing statement block:

if (File.Exists ("file.txt"))
{
  using var reader = File.OpenText ("file.txt");
  Console.WriteLine (reader.ReadLine());
  ...
}

In this case, reader will be disposed when execution falls outside the if statement
block.

Read-only members
C# 8 lets you apply the readonly modifier to a struct’s functions, ensuring that if the
function attempts to modify any field, a compile-time error is generated:

struct Point
{
  public int X, Y;
  public readonly void ResetX() => X = 0;  // Error!
}

If a readonly function calls a non-readonly function, the compiler generates a
warning (and defensively copies the struct to avoid the possibility of a mutation).

Static local methods
Adding the static modifier to a local method prevents it from seeing the local
variables and parameters of the enclosing method. This helps to reduce coupling
and enables the local method to declare variables as it pleases, without risk of
colliding with those in the containing method.

Default interface members
C# 8 lets you add a default implementation to an interface member, making it
optional to implement:
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interface ILogger
{
  void Log (string text) => Console.WriteLine (text);
}

This means that you can add a member to an interface without breaking implemen‐
tations. Default implementations must be called explicitly through the interface:

((ILogger)new Logger()).Log ("message");

Interfaces can also define static members (including fields), which can be accessed
from code inside default implementations:

interface ILogger
{
  void Log (string text) => Console.WriteLine (Prefix + text);
  static string Prefix = ""; 
}

Or from outside the interface unless restricted via an accessibility modifier on the
static interface member (such as private, protected, or internal):

ILogger.Prefix = "File log: ";

Instance fields are prohibited. For more details, see “Default Interface Members” on
page 151.

Switch expressions
From C# 8, you can use switch in the context of an expression:

string cardName = cardNumber switch    // assuming cardNumber is an int
{
  13 => "King",
  12 => "Queen",
  11 => "Jack",
  _ => "Pip card"   // equivalent to 'default'
};

For more examples, see “Switch expressions” on page 90.

Tuple, positional, and property patterns
C# 8 supports three new patterns, mostly for the benefit of switch state‐
ments/expressions (see “Patterns” on page 238). Tuple patterns let you switch on
multiple values:

int cardNumber = 12; string suite = "spades";
string cardName = (cardNumber, suite) switch
{
  (13, "spades") => "King of spades",
  (13, "clubs") => "King of clubs",
  ...
};
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Positional patterns allow a similar syntax for objects that expose a deconstructor,
and property patterns let you match on an object’s properties. You can use all of the
patterns both in switches and with the is operator. The following example uses a
property pattern to test whether obj is a string with a length of 4:

if (obj is string { Length:4 }) ...

Nullable reference types
Whereas nullable value types bring nullability to value types, nullable reference types
do the opposite and bring (a degree of) non-nullability to reference types, with the
purpose of helping to avoid NullReferenceExceptions. Nullable reference types
introduce a level of safety that’s enforced purely by the compiler in the form of
warnings or errors when it detects code that’s at risk of generating a NullReferen
ceException.

Nullable reference types can be enabled either at the project level (via the Nullable
element in the .csproj project file) or in code (via the #nullable directive). After it’s
enabled, the compiler makes non-nullability the default: if you want a reference type
to accept nulls, you must apply the ? suffix to indicate a nullable reference type:

#nullable enable    // Enable nullable reference types from this point on

string s1 = null;   // Generates a compiler warning! (s1 is non-nullable)
string? s2 = null;  // OK: s2 is nullable reference type

Uninitialized fields also generate a warning (if the type is not marked as nullable),
as does dereferencing a nullable reference type, if the compiler thinks a NullRefer
enceException might occur:

void Foo (string? s) => Console.Write (s.Length);  // Warning (.Length)

To remove the warning, you can use the null-forgiving operator (!):

void Foo (string? s) => Console.Write (s!.Length);

For a full discussion, see “Nullable Reference Types” on page 215.

Asynchronous streams
Prior to C# 8, you could use yield return to write an iterator, or await to write
an asynchronous function. But you couldn’t do both and write an iterator that
awaits, yielding elements asynchronously. C# 8 fixes this through the introduction
of asynchronous streams:

async IAsyncEnumerable<int> RangeAsync (
  int start, int count, int delay)
{
  for (int i = start; i < start + count; i++)
  {
    await Task.Delay (delay);
    yield return i;
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  }
}

The await foreach statement consumes an asynchronous stream:

await foreach (var number in RangeAsync (0, 10, 100))
  Console.WriteLine (number);

For more information, see “Asynchronous Streams” on page 672.

What’s New in C# 7.x
C# 7.x was first shipped with Visual Studio 2017. C# 7.3 is still used today by Visual
Studio 2019 when you target .NET Core 2, .NET Framework 4.6 to 4.8, or .NET
Standard 2.0.

C# 7.3
C# 7.3 made minor improvements to existing features, such as enabling the use of
the equality operators with tuples, improved overload resolution, and the ability to
apply attributes to the backing fields of automatic properties:

[field:NonSerialized]
public int MyProperty { get; set; }

C# 7.3 also built on C# 7.2’s advanced low-allocation programming features, with
the ability to reassign ref locals, no requirement to pin when indexing fixed fields,
and field initializer support with stackalloc:

int* pointer  = stackalloc int[] {1, 2, 3};
Span<int> arr = stackalloc []    {1, 2, 3};

Notice that stack-allocated memory can be assigned directly to a Span<T>. We
describe spans—and why you would use them—in Chapter 23.

C# 7.2
C# 7.2 added a new private protected modifier (the intersection of internal
and protected), the ability to follow named arguments with positional ones when
calling methods, and readonly structs. A readonly struct enforces that all fields are
readonly, to aid in declaring intent and to allow the compiler more optimization
freedom:

readonly struct Point
{
  public readonly int X, Y;   // X and Y must be readonly
}

C# 7.2 also added specialized features to help with micro-optimization and low-
allocation programming: see “The in modifier” on page 72, “Ref Locals” on page
75, “Ref Returns” on page 76, and “Ref Structs” on page 144.
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C# 7.1
From C# 7.1, you can omit the type when using the default keyword, if the type
can be inferred:

decimal number = default;   // number is decimal

C# 7.1 also relaxed the rules for switch statements (so that you can pattern-match
on generic type parameters), allowed a program’s Main method to be asynchronous,
and allowed tuple element names to be inferred:

var now = DateTime.Now;
var tuple = (now.Hour, now.Minute, now.Second);

Numeric literal improvements
Numeric literals in C# 7 can include underscores to improve readability. These are
called digit separators and are ignored by the compiler:

int million = 1_000_000;

Binary literals can be specified with the 0b prefix:

var b = 0b1010_1011_1100_1101_1110_1111;

Out variables and discards
C# 7 makes it easier to call methods that contain out parameters. First, you can now
declare out variables on the fly (see “Out variables and discards” on page 72):

bool successful = int.TryParse ("123", out int result);
Console.WriteLine (result);

And when calling a method with multiple out parameters, you can discard ones
you’re uninterested in with the underscore character:

SomeBigMethod (out _, out _, out _, out int x, out _, out _, out _);
Console.WriteLine (x);

Type patterns and pattern variables
You can also introduce variables on the fly with the is operator. These are called
pattern variables (see “Introducing a pattern variable” on page 130):

void Foo (object x)
{
  if (x is string s)
    Console.WriteLine (s.Length);
}

The switch statement also supports type patterns, so you can switch on type as well
as constants (see “Switching on types” on page 89). You can specify conditions
with a when clause and also switch on the null value:
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switch (x)
{
  case int i:
    Console.WriteLine ("It's an int!");
    break;
  case string s:
    Console.WriteLine (s.Length);    // We can use the s variable
    break;
  case bool b when b == true:        // Matches only when b is true
    Console.WriteLine ("True");
    break;
  case null:
    Console.WriteLine ("Nothing");
    break;
}

Local methods
A local method is a method declared within another function (see “Local methods”
on page 106):

void WriteCubes()
{
  Console.WriteLine (Cube (3));
  Console.WriteLine (Cube (4));
  Console.WriteLine (Cube (5));

  int Cube (int value) => value * value * value;
}

Local methods are visible only to the containing function and can capture local
variables in the same way that lambda expressions do.

More expression-bodied members
C# 6 introduced the expression-bodied “fat-arrow” syntax for methods, read-only
properties, operators, and indexers. C# 7 extends this to constructors, read/write
properties, and finalizers:

public class Person
{
  string name;

  public Person (string name) => Name = name;

  public string Name
  {
    get => name;
    set => name = value ?? "";
  }

  ~Person () => Console.WriteLine ("finalize");
}
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Deconstructors
C# 7 introduces the deconstructor pattern (see “Deconstructors” on page 110).
Whereas a constructor typically takes a set of values (as parameters) and assigns
them to fields, a deconstructor does the reverse and assigns fields back to a set of
variables. We could write a deconstructor for the Person class in the preceding
example as follows (exception handling aside):

public void Deconstruct (out string firstName, out string lastName)
{
  int spacePos = name.IndexOf (' ');
  firstName = name.Substring (0, spacePos);
  lastName = name.Substring (spacePos + 1);
}

Deconstructors are called with the following special syntax:

var joe = new Person ("Joe Bloggs");
var (first, last) = joe;          // Deconstruction
Console.WriteLine (first);        // Joe
Console.WriteLine (last);         // Bloggs

Tuples
Perhaps the most notable improvement to C# 7 is explicit tuple support (see
“Tuples” on page 222). Tuples provide a simple way to store a set of related values:

var bob = ("Bob", 23);
Console.WriteLine (bob.Item1);   // Bob
Console.WriteLine (bob.Item2);   // 23

C#’s new tuples are syntactic sugar for using the System.ValueTuple<…> generic
structs. But thanks to compiler magic, tuple elements can be named:

var tuple = (name:"Bob", age:23);
Console.WriteLine (tuple.name);     // Bob
Console.WriteLine (tuple.age);      // 23

With tuples, functions can return multiple values without resorting to out parame‐
ters or extra type baggage:

static (int row, int column) GetFilePosition() => (3, 10);

static void Main()
{
  var pos = GetFilePosition();
  Console.WriteLine (pos.row);      // 3
  Console.WriteLine (pos.column);   // 10
}

Tuples implicitly support the deconstruction pattern, so you can easily deconstruct
them into individual variables:
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static void Main()
{
  (int row, int column) = GetFilePosition();   // Creates 2 local variables
  Console.WriteLine (row);      // 3 
  Console.WriteLine (column);   // 10
}

throw expressions
Prior to C# 7, throw was always a statement. Now it can also appear as an expression
in expression-bodied functions:

public string Foo() => throw new NotImplementedException();

A throw expression can also appear in a ternary conditional expression:

string Capitalize (string value) =>
  value == null ? throw new ArgumentException ("value") :
  value == "" ? "" :
  char.ToUpper (value[0]) + value.Substring (1);

What’s New in C# 6.0
C# 6.0, which shipped with Visual Studio 2015, features a new-generation compiler,
completely written in C#. Known as project “Roslyn,” the new compiler exposes the
entire compilation pipeline via libraries, allowing you to perform code analysis on
arbitrary source code. The compiler itself is open source, and the source code is
available at https://github.com/dotnet/roslyn.

In addition, C# 6.0 features several minor but significant enhancements, aimed
primarily at reducing code clutter.

The null-conditional (“Elvis”) operator (see “Null Operators” on page 82) avoids
having to explicitly check for null before calling a method or accessing a type
member. In the following example, result evaluates to null instead of throwing a
NullReferenceException:

System.Text.StringBuilder sb = null;
string result = sb?.ToString();      // result is null

Expression-bodied functions (see “Methods” on page 106) allow methods, properties,
operators, and indexers that comprise a single expression to be written more tersely,
in the style of a lambda expression:

public int TimesTwo (int x) => x * 2;
public string SomeProperty => "Property value";

Property initializers (Chapter 3) let you assign an initial value to an automatic
property:

public DateTime TimeCreated { get; set; } = DateTime.Now;

Initialized properties can also be read-only:

public DateTime TimeCreated { get; } = DateTime.Now;
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Read-only properties can also be set in the constructor, making it easier to create
immutable (read-only) types.

Index initializers (Chapter 4) allow single-step initialization of any type that exposes
an indexer:

var dict = new Dictionary<int,string>()
{
  [3] = "three",
  [10] = "ten"
};

String interpolation (see “String Type” on page 58) offers a succinct alternative to
string.Format:

string s = $"It is {DateTime.Now.DayOfWeek} today";

Exception filters (see “try Statements and Exceptions” on page 195) let you apply a
condition to a catch block:

string html;
try
{
  html = await new HttpClient().GetStringAsync ("http://asef");
}
catch (WebException ex) when (ex.Status == WebExceptionStatus.Timeout)
{
  ...
}

The using static (see “Namespaces” on page 95) directive lets you import all the
static members of a type so that you can use those members unqualified:

using static System.Console;
...
WriteLine ("Hello, world");  // WriteLine instead of Console.WriteLine

The nameof (Chapter 3) operator returns the name of a variable, type, or other
symbol as a string. This avoids breaking code when you rename a symbol in Visual
Studio:

int capacity = 123;
string x = nameof (capacity);   // x is "capacity"
string y = nameof (Uri.Host);   // y is "Host"

And finally, you’re now allowed to await inside catch and finally blocks.

What’s New in C# 5.0
C# 5.0’s big new feature was support for asynchronous functions via two new
keywords, async and await. Asynchronous functions enable asynchronous continu‐
ations, which make it easier to write responsive and thread-safe rich-client applica‐
tions. They also make it easy to write highly concurrent and efficient I/O-bound
applications that don’t tie up a thread resource per operation. We cover asynchro‐
nous functions in detail in Chapter 14.
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What’s New in C# 4.0
C# 4.0 introduced four major enhancements:

Dynamic binding (Chapters 4 and 19) defers binding—the process of resolving types
and members—from compile time to runtime and is useful in scenarios that would
otherwise require complicated reflection code. Dynamic binding is also useful when
interoperating with dynamic languages and COM components.

Optional parameters (Chapter 2) allow functions to specify default parameter values
so that callers can omit arguments, and named arguments allow a function caller to
identify an argument by name rather than position.

Type variance rules were relaxed in C# 4.0 (Chapters 3 and 4), such that type
parameters in generic interfaces and generic delegates can be marked as covariant or
contravariant, allowing more natural type conversions.

COM interoperability (Chapter 24) was enhanced in C# 4.0 in three ways. First,
arguments can be passed by reference without the ref keyword (particularly useful
in conjunction with optional parameters). Second, assemblies that contain COM
interop types can be linked rather than referenced. Linked interop types support
type equivalence, avoiding the need for Primary Interop Assemblies and putting an
end to versioning and deployment headaches. Third, functions that return COM
Variant types from linked interop types are mapped to dynamic rather than object,
eliminating the need for casting.

What’s New in C# 3.0
The features added to C# 3.0 were mostly centered on Language-Integrated Query
(LINQ) capabilities. LINQ enables queries to be written directly within a C# pro‐
gram and checked statically for correctness, and query both local collections (such
as lists or XML documents) or remote data sources (such as a database). The C#
3.0 features added to support LINQ comprised implicitly typed local variables,
anonymous types, object initializers, lambda expressions, extension methods, query
expressions, and expression trees.

Implicitly typed local variables (var keyword, Chapter 2) let you omit the variable
type in a declaration statement, allowing the compiler to infer it. This reduces
clutter as well as allowing anonymous types (Chapter 4), which are simple classes
created on the fly that are commonly used in the final output of LINQ queries. You
can also implicitly type arrays (Chapter 2).

Object initializers (Chapter 3) simplify object construction by allowing you to set
properties inline after the constructor call. Object initializers work with both named
and anonymous types.

Lambda expressions (Chapter 4) are miniature functions created by the compiler on
the fly; they are particularly useful in “fluent” LINQ queries (Chapter 8).
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Extension methods (Chapter 4) extend an existing type with new methods (without
altering the type’s definition), making static methods feel like instance methods.
LINQ’s query operators are implemented as extension methods.

Query expressions (Chapter 8) provide a higher-level syntax for writing LINQ quer‐
ies that can be substantially simpler when working with multiple sequences or range
variables.

Expression trees (Chapter 8) are miniature code Document Object Models (DOMs)
that describe lambda expressions assigned to the special type Expression<TDele
gate>. Expression trees make it possible for LINQ queries to execute remotely (e.g.,
on a database server) because they can be introspected and translated at runtime
(e.g., into an SQL statement).

C# 3.0 also added automatic properties and partial methods.

Automatic properties (Chapter 3) cut the work in writing properties that simply
get/set a private backing field by having the compiler do that work automatically.
Partial methods (Chapter 3) let an autogenerated partial class provide customizable
hooks for manual authoring that “melt away” if unused.

What’s New in C# 2.0
The big new features in C# 2 were generics (Chapter 3), nullable value types (Chap‐
ter 4), iterators (Chapter 4), and anonymous methods (the predecessor to lambda
expressions). These features paved the way for the introduction of LINQ in C# 3.

C# 2 also added support for partial classes, static classes, and a host of minor and
miscellaneous features such as the namespace alias qualifier, friend assemblies, and
fixed-size buffers.

The introduction of generics required a new CLR (CLR 2.0), because generics
maintain full type fidelity at runtime. 
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2
C# Language Basics

In this chapter, we introduce the basics of the C# language.

Almost all of the code listings in this book are available as
interactive samples in LINQPad. Working through these sam‐
ples in conjunction with the book accelerates learning in that
you can edit the samples and instantly see the results without
needing to set up projects and solutions in Visual Studio.
To download the samples, in LINQPad, click the Samples tab,
and then click “Download more samples.” LINQPad is free—
go to http://www.linqpad.net.

A First C# Program
Following is a program that multiplies 12 by 30 and prints the result, 360, to
the screen. The double forward slash indicates that the remainder of a line is a
comment:

int x = 12 * 30;                  // Statement 1
System.Console.WriteLine (x);     // Statement 2

Our program consists of two statements. Statements in C# execute sequentially and
are terminated by a semicolon. The first statement computes the expression 12 * 30
and stores the result in a variable, named x, whose type is a 32-bit integer (int).
The second statement calls the WriteLine method on a class called Console, which is
defined in a namespace called System. This prints the variable x to a text window on
the screen.

A method performs a function; a class groups function members and data members
to form an object-oriented building block. The Console class groups members
that handle command-line input/output (I/O) functionality, such as the WriteLine
method. A class is a kind of type, which we examine in “Type Basics” on page 36.
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At the outermost level, types are organized into namespaces. Many commonly used
types—including the Console class—reside in the System namespace. The .NET
libraries are organized into nested namespaces. For example, the System.Text
namespace contains types for handling text, and System.IO contain types for input/
output.

Qualifying the Console class with the System namespace on every use adds clutter.
The using directive lets you avoid this clutter by importing a namespace:

using System;             // Import the System namespace

int x = 12 * 30;
Console.WriteLine (x);    // No need to specify System.

A basic form of code reuse is to write higher-level functions that call lower-level
functions. We can refactor our program with a reusable method called FeetToInches
that multiplies an integer by 12, as follows:

using System;

Console.WriteLine (FeetToInches (30));      // 360
Console.WriteLine (FeetToInches (100));     // 1200

int FeetToInches (int feet)
{
  int inches = feet * 12;
  return inches;
}

Our method contains a series of statements surrounded by a pair of braces. This is
called a statement block.

A method can receive input data from the caller by specifying parameters and output
data back to the caller by specifying a return type. Our FeetToInches method has a
parameter for inputting feet, and a return type for outputting inches:

int FeetToInches (int feet)
...

The literals 30 and 100 are the arguments passed to the FeetToInches method.

If a method doesn’t receive input, use empty parentheses. If it doesn’t return any‐
thing, use the void keyword:

using System;
SayHello();

void SayHello()
{
  Console.WriteLine ("Hello, world");
}

Methods are one of several kinds of functions in C#. Another kind of function we
used in our example program was the * operator, which performs multiplication.
There are also constructors, properties, events, indexers, and finalizers.
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Compilation
The C# compiler compiles source code (a set of files with the .cs extension) into
an assembly. An assembly is the unit of packaging and deployment in .NET. An
assembly can be either an application or a library. A normal console or Windows
application has an entry point, whereas a library does not. The purpose of a library
is to be called upon (referenced) by an application or by other libraries. .NET itself is
a set of libraries (as well as a runtime environment).

Each of the programs in the preceding section began directly with a series of state‐
ments (called top-level statements). The presence of top-level statements implicitly
creates an entry point for a console or Windows application. (Without top-level
statements, a Main method denotes an application’s entry point—see “Custom
Types” on page 37.)

Unlike .NET Framework, .NET 8 assemblies never have a .exe
extension. The .exe that you see after building a .NET 8
application is a platform-specific native loader responsible for
starting your application’s .dll assembly.
.NET 8 also allows you to create a self-contained deployment
that includes the loader, your assemblies, and the required
portions of the .NET runtime—all in a single .exe file. .NET
8 also allows ahead-of-time (AOT) compilation, where the
executable contains precompiled native code for faster startup
and reduced memory consumption.

The dotnet tool (dotnet.exe on Windows) helps you to manage .NET source code
and binaries from the command line. You can use it to both build and run your
program, as an alternative to using an integrated development environment (IDE)
such as Visual Studio or Visual Studio Code.

You can obtain the dotnet tool either by installing the .NET 8 SDK or by instal‐
ling Visual Studio. Its default location is %ProgramFiles%\dotnet on Windows
or /usr/bin/dotnet on Ubuntu Linux.

To compile an application, the dotnet tool requires a project file as well as one or
more C# files. The following command scaffolds a new console project (creates its
basic structure):

dotnet new Console -n MyFirstProgram

This creates a subfolder called MyFirstProgram containing a project file called
MyFirstProgram.csproj and a C# file called Program.cs that prints “Hello world.”

To build and run your program, run the following command from the MyFirstPro‐
gram folder:

dotnet run MyFirstProgram

Or, if you just want to build without running:

dotnet build MyFirstProgram.csproj
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The output assembly will be written to a subdirectory under bin\debug.

We explain assemblies in detail in Chapter 17.

Syntax
C# syntax is inspired by C and C++ syntax. In this section, we describe C#’s
elements of syntax, using the following program:

using System;

int x = 12 * 30;
Console.WriteLine (x);

Identifiers and Keywords
Identifiers are names that programmers choose for their classes, methods, variables,
and so on. Here are the identifiers in our example program, in the order in which
they appear:

System   x   Console   WriteLine

An identifier must be a whole word, essentially made up of Unicode characters
starting with a letter or underscore. C# identifiers are case sensitive. By convention,
parameters, local variables, and private fields should be in camel case (e.g., myVaria
ble), and all other identifiers should be in Pascal case (e.g., MyMethod).

Keywords are names that mean something special to the compiler. There are two
keywords in our example program: using and int.

Most keywords are reserved, which means that you can’t use them as identifiers.
Here is the full list of C# reserved keywords:

abstract

as

base

bool

break

byte

case

catch

char

checked

class

const

continue

decimal

default

delegate

do

double

else

enum

event

explicit

extern

false

finally

fixed

float

for

foreach

goto

if

implicit

in

int

interface

internal

is

lock

long

namespace

new

null

object

operator

out

override

params

private

protected

public

readonly

record

ref

return

sbyte

sealed

short

sizeof

stackalloc

static

string

struct

switch

this

throw

true

try

typeof

uint

ulong

unchecked

unsafe

ushort

using

virtual

void

volatile

while
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If you really want to use an identifier that clashes with a reserved keyword, you can
do so by qualifying it with the @ prefix. For instance:

int using = 123;      // Illegal
int @using = 123;     // Legal

The @ symbol doesn’t form part of the identifier itself. So, @myVariable is the same
as myVariable.

Contextual keywords
Some keywords are contextual, meaning that you also can use them as identifiers—
without an @ symbol:

add

alias

and

ascending

async

await

by

descending

dynamic

equals

file

from

get

global

group

init

into

join

let

managed

nameof

nint

not

notnull

nuint

on

or

orderby

partial

remove

required

select

set

unmanaged

value

var

with

when

where

yield

With contextual keywords, ambiguity cannot arise within the context in which they
are used. 

Literals, Punctuators, and Operators
Literals are primitive pieces of data lexically embedded into the program. The
literals we used in our example program are 12 and 30.

Punctuators help demarcate the structure of the program. An example is the semi‐
colon, which terminates a statement. Statements can wrap multiple lines:

Console.WriteLine
  (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10);

An operator transforms and combines expressions. Most operators in C# are deno‐
ted with a symbol, such as the multiplication operator, *. We discuss operators in
more detail later in this chapter. These are the operators we used in our example
program:

=  *  .  ()

A period denotes a member of something (or a decimal point with numeric literals).
Parentheses are used when declaring or calling a method; empty parentheses are
used when the method accepts no arguments. (Parentheses also have other purposes
that you’ll see later in this chapter.) An equals sign performs assignment. (The
double equals sign, ==, performs equality comparison, as you’ll see later.)
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Comments
C# offers two different styles of source-code documentation: single-line comments
and multiline comments. A single-line comment begins with a double forward slash
and continues until the end of the line; for example:

int x = 3;   // Comment about assigning 3 to x

A multiline comment begins with /* and ends with */; for example:

int x = 3;   /* This is a comment that
                spans two lines */

Comments can embed XML documentation tags, which we explain in “XML Docu‐
mentation” on page 272.

Type Basics
A type defines the blueprint for a value. In this example, we use two literals of type
int with values 12 and 30. We also declare a variable of type int whose name is x:

int x = 12 * 30;
Console.WriteLine (x);

Because most of the code listings in this book require types
from the System namespace, we will omit “using System”
from now on, unless we’re illustrating a concept relating to
namespaces.

A variable denotes a storage location that can contain different values over time. In
contrast, a constant always represents the same value (more on this later):

const int y = 360;

All values in C# are instances of a type. The meaning of a value and the set of
possible values a variable can have are determined by its type.

Predefined Type Examples
Predefined types are types that are specially supported by the compiler. The int
type is a predefined type for representing the set of integers that fit into 32 bits of
memory, from −231 to 231−1, and is the default type for numeric literals within this
range. You can perform functions such as arithmetic with instances of the int type,
as follows:

int x = 12 * 30;

Another predefined C# type is string. The string type represents a sequence of
characters, such as “.NET” or http://oreilly.com. You can work with strings by calling
functions on them, as follows:
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string message = "Hello world";
string upperMessage = message.ToUpper();
Console.WriteLine (upperMessage);               // HELLO WORLD

int x = 2022;
message = message + x.ToString();
Console.WriteLine (message);                    // Hello world2022

In this example, we called x.ToString() to obtain a string representation of the
integer x. You can call ToString() on a variable of almost any type.

The predefined bool type has exactly two possible values: true and false. The
bool type is commonly used with an if statement to conditionally branch execution
flow:

bool simpleVar = false;
if (simpleVar)
  Console.WriteLine ("This will not print");

int x = 5000;
bool lessThanAMile = x < 5280;
if (lessThanAMile)
  Console.WriteLine ("This will print");

In C#, predefined types (also referred to as built-in types)
are recognized with a C# keyword. The System namespace
in .NET contains many important types that are not prede‐
fined by C# (e.g., DateTime).

Custom Types
Just as we can write our own methods, we can write our own types. In this next
example, we define a custom type named UnitConverter—a class that serves as a
blueprint for unit conversions:

UnitConverter feetToInchesConverter = new UnitConverter (12);
UnitConverter milesToFeetConverter  = new UnitConverter (5280);

Console.WriteLine (feetToInchesConverter.Convert(30));    // 360
Console.WriteLine (feetToInchesConverter.Convert(100));   // 1200

Console.WriteLine (feetToInchesConverter.Convert(
                   milesToFeetConverter.Convert(1)));     // 63360

public class UnitConverter
{
  int ratio;                              // Field

  public UnitConverter (int unitRatio)    // Constructor
  {
     ratio = unitRatio;
  } 

  public int Convert (int unit)           // Method
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  {
     return unit * ratio;
  } 
}

In this example, our class definition appears in the same file
as our top-level statements. This is legal—as long as the top-
level statements appear first—and is acceptable when writ‐
ing small test programs. With larger programs, the standard
approach is to put the class definition in a separate file such as
UnitConverter.cs.

Members of a type
A type contains data members and function members. The data member of
UnitConverter is the field called ratio. The function members of UnitConverter
are the Convert method and the UnitConverter’s constructor.

Symmetry of predefined types and custom types
A beautiful aspect of C# is that predefined types and custom types have few
differences. The predefined int type serves as a blueprint for integers. It holds
data—32 bits—and provides function members that use that data, such as ToString.
Similarly, our custom UnitConverter type acts as a blueprint for unit conversions. It
holds data—the ratio—and provides function members to use that data.

Constructors and instantiation
Data is created by instantiating a type. Predefined types can be instantiated simply
by using a literal such as 12 or "Hello world". The new operator creates instances of
a custom type. We created and declared an instance of the UnitConverter type with
this statement:

UnitConverter feetToInchesConverter = new UnitConverter (12);

Immediately after the new operator instantiates an object, the object’s constructor is
called to perform initialization. A constructor is defined like a method, except that
the method name and return type are reduced to the name of the enclosing type:

public UnitConverter (int unitRatio) { ratio = unitRatio; }

Instance versus static members
The data members and function members that operate on the instance of the type
are called instance members. The UnitConverter’s Convert method and the int’s
ToString method are examples of instance members. By default, members are
instance members.

Data members and function members that don’t operate on the instance of the type
can be marked as static. To refer to a static member from outside its type, you
specify its type name rather than an instance. An example is the WriteLine method
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of the Console class. Because this is static, we call Console.WriteLine() and not
new Console().WriteLine().

(The Console class is actually declared as a static class, which means that all of its
members are static and you can never create instances of a Console.)

In the following code, the instance field Name pertains to an instance of a particular
Panda, whereas Population pertains to the set of all Panda instances. We create two
instances of the Panda, print their names, and then print the total population:

Panda p1 = new Panda ("Pan Dee");
Panda p2 = new Panda ("Pan Dah");

Console.WriteLine (p1.Name);      // Pan Dee
Console.WriteLine (p2.Name);      // Pan Dah

Console.WriteLine (Panda.Population);   // 2

public class Panda
{
  public string Name;             // Instance field
  public static int Population;   // Static field

  public Panda (string n)         // Constructor
  {
    Name = n;                     // Assign the instance field
    Population = Population + 1;  // Increment the static Population field
  }
}

Attempting to evaluate p1.Population or Panda.Name will generate a compile-time
error.

The public keyword
The public keyword exposes members to other classes. In this example, if the Name
field in Panda was not marked as public, it would be private and could not be
accessed from outside the class. Marking a member public is how a type communi‐
cates: “Here is what I want other types to see—everything else is my own private
implementation details.” In object-oriented terms, we say that the public members
encapsulate the private members of the class.

Defining namespaces
Particularly with larger programs, it makes sense to organize types into namespaces.
Here’s how to define the Panda class inside a namespace called Animals:

using System;
using Animals;

Panda p = new Panda ("Pan Dee");
Console.WriteLine (p.Name);
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namespace Animals
{
  public class Panda
  {
     ...
  }
}

In this example, we also imported the Animals namespace so that our top-level
statements could access its types without qualification. Without that import, we’d
need to do this:

Animals.Panda p = new Animals.Panda ("Pan Dee");

We cover namespaces in detail at the end of this chapter (see “Namespaces” on page
95).

Defining a Main method
All of our examples, so far, have used top-level statements (a feature introduced in
C# 9).

Without top-level statements, a simple console or Windows application looks like
this:

using System;

class Program
{
  static void Main()   // Program entry point
  {
    int x = 12 * 30;
    Console.WriteLine (x);
  }
}

In the absence of top-level statements, C# looks for a static method called Main,
which becomes the entry point. The Main method can be defined inside any class
(and only one Main method can exist).

The Main method can optionally return an integer (rather than void) in order
to return a value to the execution environment (where a nonzero value typically
indicates an error). The Main method can also optionally accept an array of strings
as a parameter (that will be populated with any arguments passed to the executable).
For example:

static int Main (string[] args) {...}

An array (such as string[]) represents a fixed number of
elements of a particular type. Arrays are specified by placing
square brackets after the element type. We describe them in
“Arrays” on page 61.
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(The Main method can also be declared async and return a Task or Task<int> in
support of asynchronous programming, which we cover in Chapter 14.)

Top-Level Statements
Top-level statements (introduced in C# 9) let you avoid the baggage of a static Main
method and a containing class. A file with top-level statements comprises three
parts, in this order:

1. (Optionally) using directives1.

2. A series of statements, optionally mixed with method declarations2.

3. (Optionally) Type and namespace declarations3.

For example:

using System;                           // Part 1

Console.WriteLine ("Hello, world");     // Part 2
void SomeMethod1() { ... }              // Part 2
Console.WriteLine ("Hello again!");     // Part 2
void SomeMethod2() { ... }              // Part 2

class SomeClass { ... }                 // Part 3
namespace SomeNamespace { ... }         // Part 3

Because the CLR doesn’t explicitly support top-level statements, the compiler trans‐
lates your code into something like this:

using System;                           // Part 1

static class Program$   // Special compiler-generated name
{
  static void Main$ (string[] args)   // Compiler-generated name
  {
    Console.WriteLine ("Hello, world");     // Part 2
    void SomeMethod1() { ... }              // Part 2
    Console.WriteLine ("Hello again!");     // Part 2
    void SomeMethod2() { ... }              // Part 2
  }
}

class SomeClass { ... }                 // Part 3
namespace SomeNamespace { ... }         // Part 3

Notice that everything in Part 2 is wrapped inside the main method. This means
that SomeMethod1 and SomeMethod2 act as local methods. We discuss the full implica‐
tions in “Local methods” on page 106, the most important being that local methods
(unless declared as static) can access variables declared within the containing
method:

int x = 3;
LocalMethod();

void LocalMethod() { Console.WriteLine (x); }   // We can access x
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1 A minor caveat is that very large long values lose some precision when converted to double.

Another consequence is that top-level methods cannot be accessed from other
classes or types.

Top-level statements can optionally return an integer value to the caller and access
a “magic” variable of type string[] called args, corresponding to command-line
arguments passed by the caller.

As a program can have only one entry point, there can be at most one file with
top-level statements in a C# project. 

Types and Conversions
C# can convert between instances of compatible types. A conversion always creates
a new value from an existing one. Conversions can be either implicit or explicit:
implicit conversions happen automatically, and explicit conversions require a cast.
In the following example, we implicitly convert an int to a long type (which has
twice the bit capacity of an int) and explicitly cast an int to a short type (which
has half the bit capacity of an int):

int x = 12345;       // int is a 32-bit integer
long y = x;          // Implicit conversion to 64-bit integer
short z = (short)x;  // Explicit conversion to 16-bit integer

Implicit conversions are allowed when both of the following are true:

• The compiler can guarantee that they will always succeed.•
• No information is lost in conversion.1•

Conversely, explicit conversions are required when one of the following is true:

• The compiler cannot guarantee that they will always succeed.•
• Information might be lost during conversion.•

(If the compiler can determine that a conversion will always fail, both kinds of
conversion are prohibited. Conversions that involve generics can also fail in certain
conditions—see “Type Parameters and Conversions” on page 166.)

The numeric conversions that we just saw are built into the
language. C# also supports reference conversions and boxing
conversions (see Chapter 3) as well as custom conversions (see
“Operator Overloading” on page 256). The compiler doesn’t
enforce the aforementioned rules with custom conversions, so
it’s possible for badly designed types to behave otherwise.
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Value Types Versus Reference Types
All C# types fall into the following categories:

• Value types•
• Reference types•
• Generic type parameters•
• Pointer types•

In this section, we describe value types and reference types.
We cover generic type parameters in “Generics” on page 159
and pointer types in “Unsafe Code and Pointers” on page 263.

Value types comprise most built-in types (specifically, all numeric types, the char
type, and the bool type) as well as custom struct and enum types.

Reference types comprise all class, array, delegate, and interface types. (This includes
the predefined string type.)

The fundamental difference between value types and reference types is how they are
handled in memory.

Value types
The content of a value type variable or constant is simply a value. For example, the
content of the built-in value type, int, is 32 bits of data.

You can define a custom value type with the struct keyword (see Figure 2-1):

public struct Point { public int X; public int Y; }

Or more tersely:

public struct Point { public int X, Y; }

Figure 2-1. A value-type instance in memory

The assignment of a value-type instance always copies the instance; for example:

Point p1 = new Point();
p1.X = 7;

Point p2 = p1;             // Assignment causes copy

Console.WriteLine (p1.X);  // 7
Console.WriteLine (p2.X);  // 7
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p1.X = 9;                  // Change p1.X

Console.WriteLine (p1.X);  // 9
Console.WriteLine (p2.X);  // 7

Figure 2-2 shows that p1 and p2 have independent storage.

Figure 2-2. Assignment copies a value-type instance

Reference types
A reference type is more complex than a value type, having two parts: an object and
the reference to that object. The content of a reference-type variable or constant is
a reference to an object that contains the value. Here is the Point type from our
previous example rewritten as a class rather than a struct (shown in Figure 2-3):

public class Point { public int X, Y; }

Figure 2-3. A reference-type instance in memory

Assigning a reference-type variable copies the reference, not the object instance.
This allows multiple variables to refer to the same object—something not ordinarily
possible with value types. If we repeat the previous example, but with Point now a
class, an operation to p1 affects p2:

Point p1 = new Point();
p1.X = 7;

Point p2 = p1;             // Copies p1 reference

Console.WriteLine (p1.X);  // 7
Console.WriteLine (p2.X);  // 7

p1.X = 9;                  // Change p1.X

Console.WriteLine (p1.X);  // 9
Console.WriteLine (p2.X);  // 9
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Figure 2-4 shows that p1 and p2 are two references that point to the same object.

Figure 2-4. Assignment copies a reference

Null
A reference can be assigned the literal null, indicating that the reference points to
no object:

Point p = null;
Console.WriteLine (p == null);   // True

// The following line generates a runtime error
// (a NullReferenceException is thrown):
Console.WriteLine (p.X);

class Point {...}

In “Nullable Reference Types” on page 215, we describe a
feature of C# that helps to reduce accidental NullReference
Exception errors.

In contrast, a value type cannot ordinarily have a null value:

Point p = null;  // Compile-time error
int x = null;    // Compile-time error

struct Point {...}

C# also has a construct called nullable value types for repre‐
senting value-type nulls. For more information, see “Nullable
Value Types” on page 210.

Storage overhead
Value-type instances occupy precisely the memory required to store their fields. In
this example, Point takes 8 bytes of memory:

struct Point
{
  int x;  // 4 bytes
  int y;  // 4 bytes
}
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Technically, the CLR positions fields within the type at an
address that’s a multiple of the fields’ size (up to a maximum
of 8 bytes). Thus, the following actually consumes 16 bytes of
memory (with the 7 bytes following the first field “wasted”):

struct A { byte b; long l; }

You can override this behavior by applying the StructLayout
attribute (see “Mapping a Struct to Unmanaged Memory” on
page 997).

Reference types require separate allocations of memory for the reference and object.
The object consumes as many bytes as its fields, plus additional administrative
overhead. The precise overhead is intrinsically private to the implementation of
the .NET runtime, but at minimum, the overhead is 8 bytes, used to store a key
to the object’s type as well as temporary information such as its lock state for
multithreading and a flag to indicate whether it has been fixed from movement by
the garbage collector. Each reference to an object requires an extra 4 or 8 bytes,
depending on whether the .NET runtime is running on a 32- or 64-bit platform. 

Predefined Type Taxonomy
The predefined types in C# are as follows:

Value types
• Numeric•

— Signed integer (sbyte, short, int, long)—

— Unsigned integer (byte, ushort, uint, ulong)—

— Real number (float, double, decimal)—

• Logical (bool)•

• Character (char)•

Reference types
• String (string)•

• Object (object)•

Predefined types in C# alias .NET types in the System namespace. There is only a
syntactic difference between these two statements:

int i = 5;
System.Int32 i = 5;

The set of predefined value types excluding decimal are known as primitive types
in the CLR. Primitive types are so called because they are supported directly via
instructions in compiled code, and this usually translates to direct support on the
underlying processor; for example:
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                   // Underlying hexadecimal representation
int i = 7;         // 0x7
bool b = true;     // 0x1
char c = 'A';      // 0x41
float f = 0.5f;    // uses IEEE floating-point encoding

The System.IntPtr and System.UIntPtr types are also primitive (see Chapter 24).

Numeric Types
C# has the predefined numeric types shown in Table 2-1.

Table 2-1. Predefined numeric types in C#

C# type System type Suffix Size Range

Integral—signed

sbyte SByte 8 bits –27 to 27–1

short Int16 16 bits –215 to 215–1

int Int32 32 bits –231 to 231–1

long Int64 L 64 bits –263 to 263–1

nint IntPtr 32/64 bits

Integral—unsigned

byte Byte 8 bits 0 to 28–1

ushort UInt16 16 bits 0 to 216–1

uint UInt32 U 32 bits 0 to 232–1

ulong UInt64 UL 64 bits 0 to 264–1

nuint UIntPtr 32/64 bits

Real

float Single F 32 bits ± (~10–45 to 1038)

double Double D 64 bits ± (~10–324 to 10308)

decimal Decimal M 128 bits ± (~10–28 to 1028)

Of the integral types, int and long are first-class citizens and are favored by both C#
and the runtime. The other integral types are typically used for interoperability or
when space efficiency is paramount. The nint and nuint native-sized integer types
are most useful when working with pointers, so we will describe these in a later
chapter (see “Native-Sized Integers” on page 266).
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2 Technically, decimal is a floating-point type, too, although it’s not referred to as such in the C#
language specification.

Of the real number types, float and double are called floating-point types2 and
are typically used for scientific and graphical calculations. The decimal type is
typically used for financial calculations, for which base-10-accurate arithmetic and
high precision are required.

.NET supplements this list with several specialized numeric
types, including Int128 and UInt128 for signed and unsigned
128-bit integers, BigInteger for arbitrarily large integers, and
Half for 16-bit floating point numbers. Half is intended
mainly for interoperating with graphics card processors and
does not have native support in most CPUs, making float
and double better choices for general use.

Numeric Literals
Integral-type literals can use decimal or hexadecimal notation; hexadecimal is deno‐
ted with the 0x prefix. For example:

int x = 127;
long y = 0x7F;

You can insert an underscore anywhere within a numeric literal to make it more
readable:

int million = 1_000_000;

You can specify numbers in binary with the 0b prefix:

var b = 0b1010_1011_1100_1101_1110_1111;

Real literals can use decimal and/or exponential notation:

double d = 1.5;
double million = 1E06;

Numeric literal type inference
By default, the compiler infers a numeric literal to be either double or an integral
type:

• If the literal contains a decimal point or the exponential symbol (E), it is a•
double.

• Otherwise, the literal’s type is the first type in this list that can fit the literal’s•
value: int, uint, long, and ulong.

For example:
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Console.WriteLine (        1.0.GetType());  // Double  (double)
Console.WriteLine (       1E06.GetType());  // Double  (double)
Console.WriteLine (          1.GetType());  // Int32   (int)
Console.WriteLine ( 0xF0000000.GetType());  // UInt32  (uint)
Console.WriteLine (0x100000000.GetType());  // Int64   (long)

Numeric suffixes
Numeric suffixes explicitly define the type of a literal. Suffixes can be either lower‐
case or uppercase, and are as follows:

Category C# type Example

F float float f = 1.0F;

D double double d = 1D;

M decimal decimal d = 1.0M;

U uint uint i = 1U;

L long long i = 1L;

UL ulong ulong i = 1UL;

The suffixes U and L are rarely necessary because the uint, long, and ulong types
can nearly always be either inferred or implicitly converted from int:

long i = 5;     // Implicit lossless conversion from int literal to long

The D suffix is technically redundant in that all literals with a decimal point are
inferred to be double. And you can always add a decimal point to a numeric literal:

double x = 4.0;

The F and M suffixes are the most useful and should always be applied when
specifying float or decimal literals. Without the F suffix, the following line would
not compile, because 4.5 would be inferred to be of type double, which has no
implicit conversion to float:

float f = 4.5F;

The same principle is true for a decimal literal:

decimal d = -1.23M;     // Will not compile without the M suffix.

We describe the semantics of numeric conversions in detail in the following section.

Numeric Conversions

Converting between integral types
Integral type conversions are implicit when the destination type can represent every
possible value of the source type. Otherwise, an explicit conversion is required; for
example:
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int x = 12345;       // int is a 32-bit integer
long y = x;          // Implicit conversion to 64-bit integral type
short z = (short)x;  // Explicit conversion to 16-bit integral type

Converting between floating-point types
A float can be implicitly converted to a double given that a double can represent
every possible value of a float. The reverse conversion must be explicit.

Converting between floating-point and integral types
All integral types can be implicitly converted to all floating-point types:

int i = 1;
float f = i;

The reverse conversion must be explicit:

int i2 = (int)f;

When you cast from a floating-point number to an integral
type, any fractional portion is truncated; no rounding is per‐
formed. The static class System.Convert provides methods
that round while converting between various numeric types
(see Chapter 6).

Implicitly converting a large integral type to a floating-point type preserves magni‐
tude but can occasionally lose precision. This is because floating-point types always
have more magnitude than integral types but can have less precision. Rewriting our
example with a larger number demonstrates this:

int i1 = 100000001;
float f = i1;          // Magnitude preserved, precision lost
int i2 = (int)f;       // 100000000

Decimal conversions
All integral types can be implicitly converted to the decimal type given that a
decimal can represent every possible C# integral-type value. All other numeric
conversions to and from a decimal type must be explicit because they introduce the
possibility of either a value being out of range or precision being lost.

Arithmetic Operators
The arithmetic operators (+, -, *, /, %) are defined for all numeric types except the 8-
and 16-bit integral types:

+    Addition
-    Subtraction
*    Multiplication
/    Division
%    Remainder after division
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Increment and Decrement Operators
The increment and decrement operators (++, --, respectively) increment and decre‐
ment numeric types by 1. The operator can either follow or precede the variable,
depending on whether you want its value before or after the increment/decrement;
for example:

int x = 0, y = 0;
Console.WriteLine (x++);   // Outputs 0; x is now 1
Console.WriteLine (++y);   // Outputs 1; y is now 1

Specialized Operations on Integral Types
The integral types are int, uint, long, ulong, short, ushort, byte, and sbyte.

Division
Division operations on integral types always eliminate the remainder (round toward
zero). Dividing by a variable whose value is zero generates a runtime error (a
DivideByZeroException):

int a = 2 / 3;      // 0

int b = 0;
int c = 5 / b;      // throws DivideByZeroException

Dividing by the literal or constant 0 generates a compile-time error.

Overflow
At runtime, arithmetic operations on integral types can overflow. By default, this
happens silently—no exception is thrown, and the result exhibits “wraparound”
behavior, as though the computation were done on a larger integer type and the
extra significant bits discarded. For example, decrementing the minimum possible
int value results in the maximum possible int value:

int a = int.MinValue;
a--;
Console.WriteLine (a == int.MaxValue); // True

Overflow check operators
The checked operator instructs the runtime to generate an OverflowException
rather than overflowing silently when an integral-type expression or statement
exceeds the arithmetic limits of that type. The checked operator affects expressions
with the ++, −−, +, − (binary and unary), *, /, and explicit conversion operators
between integral types. Overflow checking incurs a small performance cost.

The checked operator has no effect on the double and float
types (which overflow to special “infinite” values, as you’ll see
soon) and no effect on the decimal type (which is always
checked).
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You can use checked around either an expression or a statement block:

int a = 1000000;
int b = 1000000;

int c = checked (a * b);      // Checks just the expression.

checked                       // Checks all expressions
{                             // in statement block.
   ...
   c = a * b;
   ...
}

You can make arithmetic overflow checking the default for all expressions in a
program by selecting the “checked” option at the project level (in Visual Studio,
go to Advanced Build Settings). If you then need to disable overflow checking just
for specific expressions or statements, you can do so with the unchecked operator.
For example, the following code will not throw exceptions—even if the project’s
“checked” option is selected:

int x = int.MaxValue;
int y = unchecked (x + 1);
unchecked { int z = x + 1; }

Overflow checking for constant expressions
Regardless of the “checked” project setting, expressions evaluated at compile time
are always overflow-checked—unless you apply the unchecked operator:

int x = int.MaxValue + 1;               // Compile-time error
int y = unchecked (int.MaxValue + 1);   // No errors

Bitwise operators
C# supports the following bitwise operators:

Operator Meaning Sample expression Result

~ Complement ~0xfU 0xfffffff0U

& And 0xf0 & 0x33 0x30

| Or 0xf0 | 0x33 0xf3

^ Exclusive Or 0xff00 ^ 0x0ff0 0xf0f0

<< Shift left 0x20 << 2 0x80

>> Shift right 0x20 >> 1 0x10

>>> Unsigned shift right int.MinValue >>> 1 0x40000000

The shift-right operator (>>) replicates the high-order bit when operating on signed
integers, whereas the unsigned shift-right operator (>>>) does not.
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Additional bitwise operations are exposed via a class called
BitOperations in the System.Numerics namespace (see
“BitOperations” on page 340).

8- and 16-Bit Integral Types
The 8- and 16-bit integral types are byte, sbyte, short, and ushort. These types
lack their own arithmetic operators, so C# implicitly converts them to larger types
as required. This can cause a compile-time error when trying to assign the result
back to a small integral type:

short x = 1, y = 1;
short z = x + y;          // Compile-time error

In this case, x and y are implicitly converted to int so that the addition can be
performed. This means that the result is also an int, which cannot be implicitly cast
back to a short (because it could cause loss of data). To make this compile, you
must add an explicit cast:

short z = (short) (x + y);   // OK

Special Float and Double Values
Unlike integral types, floating-point types have values that certain operations treat
specially. These special values are NaN (Not a Number), +∞, −∞, and −0. The float
and double classes have constants for NaN, +∞, and −∞, as well as other values
(MaxValue, MinValue, and Epsilon); for example:

Console.WriteLine (double.NegativeInfinity);   // -Infinity

The constants that represent special values for double and float are as follows:

Special value Double constant Float constant

NaN double.NaN float.NaN

+∞ double.PositiveInfinity float.PositiveInfinity

−∞ double.NegativeInfinity float.NegativeInfinity

−0 −0.0 −0.0f

Dividing a nonzero number by zero results in an infinite value:

Console.WriteLine ( 1.0 /  0.0);                  //  Infinity
Console.WriteLine (−1.0 /  0.0);                  // -Infinity
Console.WriteLine ( 1.0 / −0.0);                  // -Infinity
Console.WriteLine (−1.0 / −0.0);                  //  Infinity

Dividing zero by zero, or subtracting infinity from infinity, results in a NaN:

Console.WriteLine ( 0.0 /  0.0);                  //  NaN
Console.WriteLine ((1.0 /  0.0) − (1.0 / 0.0));   //  NaN
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When using ==, a NaN value is never equal to another value, even another NaN
value:

Console.WriteLine (0.0 / 0.0 == double.NaN);    // False

To test whether a value is NaN, you must use the float.IsNaN or double.IsNaN
method:

Console.WriteLine (double.IsNaN (0.0 / 0.0));   // True

When using object.Equals, however, two NaN values are equal:

Console.WriteLine (object.Equals (0.0 / 0.0, double.NaN));   // True

NaNs are sometimes useful in representing special values. In
Windows Presentation Foundation (WPF), double.NaN repre‐
sents a measurement whose value is “Automatic.” Another way
to represent such a value is with a nullable type (Chapter 4);
another is with a custom struct that wraps a numeric type and
adds an additional field (Chapter 3).

float and double follow the specification of the IEEE 754 format types, supported
natively by almost all processors. You can find detailed information on the behavior
of these types at http://www.ieee.org.

double Versus decimal
double is useful for scientific computations (such as computing spatial coordinates).
decimal is useful for financial computations and values that are manufactured
rather than the result of real-world measurements. Here’s a summary of the
differences.

Category double decimal

Internal representation Base 2 Base 10

Decimal precision 15–16 significant figures 28–29 significant figures

Range ±(~10−324 to ~10308) ±(~10−28 to ~1028)

Special values +0, −0, +∞, −∞, and NaN None

Speed Native to processor Non-native to processor (about 10 times slower than
double)

Real Number Rounding Errors
float and double internally represent numbers in base 2. For this reason, only
numbers expressible in base 2 are represented precisely. Practically, this means most
literals with a fractional component (which are in base 10) will not be represented
precisely; for example:

float x = 0.1f;  // Not quite 0.1
Console.WriteLine (x + x + x + x + x + x + x + x + x + x);    // 1.0000001
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3 It’s possible to overload these operators (Chapter 4) such that they return a non-bool type, but
this is almost never done in practice.

This is why float and double are bad for financial calculations. In contrast, deci
mal works in base 10 and so can precisely represent numbers expressible in base
10 (as well as its factors, base 2 and base 5). Because real literals are in base 10,
decimal can precisely represent numbers such as 0.1. However, neither double nor
decimal can precisely represent a fractional number whose base 10 representation is
recurring:

decimal m = 1M / 6M;               // 0.1666666666666666666666666667M
double  d = 1.0 / 6.0;             // 0.16666666666666666

This leads to accumulated rounding errors:

decimal notQuiteWholeM = m+m+m+m+m+m;  // 1.0000000000000000000000000002M
double  notQuiteWholeD = d+d+d+d+d+d;  // 0.99999999999999989

which break equality and comparison operations:

Console.WriteLine (notQuiteWholeM == 1M);   // False
Console.WriteLine (notQuiteWholeD < 1.0);   // True

Boolean Type and Operators
C#’s bool type (aliasing the System.Boolean type) is a logical value that can be
assigned the literal true or false.

Although a Boolean value requires only one bit of storage, the runtime will use one
byte of memory because this is the minimum chunk that the runtime and processor
can efficiently work with. To avoid space inefficiency in the case of arrays, .NET
provides a BitArray class in the System.Collections namespace that is designed to
use just one bit per Boolean value.

bool Conversions
No casting conversions can be made from the bool type to numeric types, or vice
versa.

Equality and Comparison Operators
== and != test for equality and inequality of any type but always return a bool
value.3 Value types typically have a very simple notion of equality:

int x = 1;
int y = 2;
int z = 1;
Console.WriteLine (x == y);         // False
Console.WriteLine (x == z);         // True
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For reference types, equality, by default, is based on reference, as opposed to the
actual value of the underlying object (more on this in Chapter 6):

Dude d1 = new Dude ("John");
Dude d2 = new Dude ("John");
Console.WriteLine (d1 == d2);       // False
Dude d3 = d1;
Console.WriteLine (d1 == d3);       // True

public class Dude
{
  public string Name;
  public Dude (string n) { Name = n; }
}

The equality and comparison operators, ==, !=, <, >, >=, and <=, work for all numeric
types, but you should use them with caution with real numbers (as we saw in “Real
Number Rounding Errors” on page 54). The comparison operators also work on
enum type members by comparing their underlying integral-type values. We describe
this in “Enums” on page 154.

We explain the equality and comparison operators in greater detail in “Operator
Overloading” on page 256, and in “Equality Comparison” on page 344 and “Order
Comparison” on page 355.

Conditional Operators
The && and || operators test for and and or conditions. They are frequently used in
conjunction with the ! operator, which expresses not. In the following example, the
UseUmbrella method returns true if it’s rainy or sunny (to protect us from the rain
or the sun), as long as it’s not also windy (umbrellas are useless in the wind):

static bool UseUmbrella (bool rainy, bool sunny, bool windy)
{
  return !windy && (rainy || sunny);
}

The && and || operators short-circuit evaluation when possible. In the preceding
example, if it is windy, the expression (rainy || sunny) is not even evaluated.
Short-circuiting is essential in allowing expressions such as the following to run
without throwing a NullReferenceException:

if (sb != null && sb.Length > 0) ...

The & and | operators also test for and and or conditions:

return !windy & (rainy | sunny);
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The difference is that they do not short-circuit. For this reason, they are rarely used
in place of conditional operators.

Unlike in C and C++, the & and | operators perform (non-
short-circuiting) Boolean comparisons when applied to bool
expressions. The & and | operators perform bitwise operations
only when applied to numbers.

Conditional operator (ternary operator)
The conditional operator (more commonly called the ternary operator because it’s
the only operator that takes three operands) has the form q ? a : b; thus, if
condition q is true, a is evaluated; otherwise b is evaluated:

static int Max (int a, int b)
{
  return (a > b) ? a : b;
}

The conditional operator is particularly useful in Language-Integrated Query
(LINQ) expressions (Chapter 8).

Strings and Characters
C#’s char type (aliasing the System.Char type) represents a Unicode character and
occupies 2 bytes (UTF-16). A char literal is specified within single quotes:

char c = 'A';       // Simple character

Escape sequences express characters that cannot be expressed or interpreted literally.
An escape sequence is a backslash followed by a character with a special meaning;
for example:

char newLine = '\n';
char backSlash = '\\';

Table 2-2 shows the escape sequence characters.

Table 2-2. Escape sequence characters

Char Meaning Value

\' Single quote 0x0027

\" Double quote 0x0022

\\ Backslash 0x005C

\0 Null 0x0000

\a Alert 0x0007

\b Backspace 0x0008

\f Form feed 0x000C

\n New line 0x000A
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Char Meaning Value

\r Carriage return 0x000D

\t Horizontal tab 0x0009

\v Vertical tab 0x000B

The \u (or \x) escape sequence lets you specify any Unicode character via its
four-digit hexadecimal code:

char copyrightSymbol = '\u00A9';
char omegaSymbol     = '\u03A9';
char newLine         = '\u000A';

Char Conversions
An implicit conversion from a char to a numeric type works for the numeric types
that can accommodate an unsigned short. For other numeric types, an explicit
conversion is required.

String Type
C#’s string type (aliasing the System.String type, covered in depth in Chapter 6)
represents an immutable (unmodifiable) sequence of Unicode characters. A string
literal is specified within double quotes:

string a = "Heat";

string is a reference type rather than a value type. Its equality
operators, however, follow value-type semantics:

string a = "test";
string b = "test";
Console.Write (a == b);  // True

The escape sequences that are valid for char literals also work inside strings:

string a = "Here's a tab:\t";

The cost of this is that whenever you need a literal backslash, you must write it
twice:

string a1 = "\\\\server\\fileshare\\helloworld.cs";

To avoid this problem, C# allows verbatim string literals. A verbatim string literal
is prefixed with @ and does not support escape sequences. The following verbatim
string is identical to the preceding one:

string a2 = @"\\server\fileshare\helloworld.cs";

A verbatim string literal can also span multiple lines:

string escaped  = "First Line\r\nSecond Line";
string verbatim = @"First Line
Second Line";
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// True if your text editor uses CR-LF line separators:
Console.WriteLine (escaped == verbatim);

You can include the double-quote character in a verbatim literal by writing it twice:

string xml = @"<customer id=""123""></customer>";

Raw string literals (C# 11)
Wrapping a string in three or more quote characters (""") creates a raw string lit‐
eral. Raw string literals can contain almost any character sequence, without escaping
or doubling up:

string raw = """<file path="c:\temp\test.txt"></file>""";

Raw string literals make it easy to represent JSON, XML, and HTML literals, as well
as regular expressions and source code. Should you need to include three (or more)
quote characters in the string itself, you can do so by wrapping the string in four (or
more) quote characters:

string raw = """"The """ sequence denotes raw string literals."""";

Multiline raw string literals are subject to special rules. We can represent the string
"Line 1\r\nLine 2" as follows:

string multiLineRaw = """
  Line 1
  Line 2
  """;

Notice that the opening and closing quotes must be on separate lines to the string
content. Additionally:

• Whitespace following the opening """ (on the same line) is ignored.•

• Whitespace preceding the closing """ (on the same line) is treated as common•
indentation and is removed from every line in the string. This lets you include
indentation for source-code readability without that indentation becoming part
of the string.

Here’s another example to illustrate the multiline raw string literal rules:

if (true)
  Console.WriteLine ("""
    {
      "Name" : "Joe"
    }
    """);

The output is as follows:

{
  "Name" : "Joe"
}
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The compiler will generate an error if each line in a multiline raw string literal is not
prefixed with the common indentation specified by the closing quotes.

Raw string literals can be interpolated, subject to special rules described in “String
interpolation” on page 60.

String concatenation
The + operator concatenates two strings:

string s = "a" + "b";

One of the operands might be a nonstring value, in which case ToString is called on
that value:

string s = "a" + 5;  // a5

Using the + operator repeatedly to build up a string is inefficient: a better solution is
to use the System.Text.StringBuilder type (described in Chapter 6).

String interpolation
A string preceded with the $ character is called an interpolated string. Interpolated
strings can include expressions enclosed in braces:

int x = 4;
Console.Write ($"A square has {x} sides");  // Prints: A square has 4 sides

Any valid C# expression of any type can appear within the braces, and C# will
convert the expression to a string by calling its ToString method or equivalent. You
can change the formatting by appending the expression with a colon and a format
string (format strings are described in “String.Format and composite format strings”
on page 296):

string s = $"255 in hex is {byte.MaxValue:X2}";  // X2 = 2-digit hexadecimal
// Evaluates to "255 in hex is FF"

Should you need to use a colon for another purpose (such as a ternary conditional
operator, which we’ll cover later), you must wrap the entire expression in parenthe‐
ses:

bool b = true;
Console.WriteLine ($"The answer in binary is {(b ? 1 : 0)}");

From C# 10, interpolated strings can be constants, as long as the interpolated values
are constants:

const string greeting = "Hello";
const string message = $"{greeting}, world";

From C# 11, interpolated strings are permitted to span multiple lines (whether
standard or verbatim):

string s = $"this interpolation spans {1 +
1} lines";
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Raw string literals (from C# 11) can also be interpolated:

string s = $"""The date and time is {DateTime.Now}""";

To include a brace literal in an interpolated string:

• With standard and verbatim string literals, repeat the desired brace character.•

• With raw string literals, change the interpolation sequence by repeating the $•
prefix.

Using two (or more) $ characters in a raw string literal prefix changes the interpola‐
tion sequence from one brace to two (or more) braces:

Console.WriteLine ($$"""{ "TimeStamp": "{{DateTime.Now}}" }""");
// Output: { "TimeStamp": "01/01/2024 12:13:25 PM" }

This preserves the ability to copy-and-paste text into a raw string literal without
needing to modify the string.

String comparisons
To perform equality comparisons with strings, you can use the == operator (or
one of string’s Equals methods). For order comparison, you must use the string’s
CompareTo method; the < and > operators are unsupported. We describe equality
and order comparison in detail in “Comparing Strings” on page 297.

UTF-8 Strings
From C# 11, you can use the u8 suffix to create string literals encoded in UTF-8
rather than UTF-16. This feature is intended for advanced scenarios such as the
low-level handling of JSON text in performance hotspots:

ReadOnlySpan<byte> utf8 = "ab→cd"u8;  // Arrow symbol consumes 3 bytes
Console.WriteLine (utf8.Length);      // 7

The underlying type is ReadOnlySpan<byte>, which we cover in Chapter 23. You
can convert this to an array by calling the ToArray() method.

Arrays
An array represents a fixed number of variables (called elements) of a particular
type. The elements in an array are always stored in a contiguous block of memory,
providing highly efficient access.

An array is denoted with square brackets after the element type:

char[] vowels = new char[5];    // Declare an array of 5 characters

Square brackets also index the array, accessing a particular element by position:

vowels[0] = 'a';
vowels[1] = 'e';
vowels[2] = 'i';
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vowels[3] = 'o';
vowels[4] = 'u';
Console.WriteLine (vowels[1]);      // e

This prints “e” because array indexes start at 0. You can use a for loop statement to
iterate through each element in the array. The for loop in this example cycles the
integer i from 0 to 4:

for (int i = 0; i < vowels.Length; i++)
  Console.Write (vowels[i]);            // aeiou

The Length property of an array returns the number of elements in the array.
After an array has been created, you cannot change its length. The System.Collec
tion namespace and subnamespaces provide higher-level data structures, such as
dynamically sized arrays and dictionaries.

An array initialization expression lets you declare and populate an array in a single
step:

char[] vowels = new char[] {'a','e','i','o','u'};

Or simply:

char[] vowels = {'a','e','i','o','u'};

From C# 12, you can use square brackets instead of curly
braces:

char[] vowels = ['a','e','i','o','u'];

This is called a collection expression and has the advantage of
also working when calling methods:

Foo (['a','e','i','o','u']);

void Foo (char[] letters) { ... }

Collection expressions also work with other collection types
such as lists and sets—see “Collection Initializers and Collec‐
tion Expressions” on page 205.

All arrays inherit from the System.Array class, providing common services for all
arrays. These members include methods to get and set elements regardless of the
array type. We describe them in “The Array Class” on page 377.

Default Element Initialization
Creating an array always preinitializes the elements with default values. The default
value for a type is the result of a bitwise zeroing of memory. For example, consider
creating an array of integers. Because int is a value type, this allocates 1,000 integers
in one contiguous block of memory. The default value for each element will be 0:

int[] a = new int[1000];
Console.Write (a[123]);            // 0
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Value types versus reference types
Whether an array element type is a value type or a reference type has important
performance implications. When the element type is a value type, each element
value is allocated as part of the array, as shown here:

Point[] a = new Point[1000];
int x = a[500].X;                  // 0

public struct Point { public int X, Y; }

Had Point been a class, creating the array would have merely allocated 1,000 null
references:

Point[] a = new Point[1000];
int x = a[500].X;                  // Runtime error, NullReferenceException

public class Point { public int X, Y; }

To avoid this error, we must explicitly instantiate 1,000 Points after instantiating the
array:

Point[] a = new Point[1000];
for (int i = 0; i < a.Length; i++) // Iterate i from 0 to 999
   a[i] = new Point();             // Set array element i with new point

An array itself is always a reference type object, regardless of the element type. For
instance, the following is legal:

int[] a = null;

Indices and Ranges
Indices and ranges (introduced in C# 8) simplify working with elements or portions
of an array.

Indices and ranges also work with the CLR types Span<T> and
ReadOnlySpan<T> (see Chapter 23).
You can also make your own types work with indices and
ranges, by defining an indexer of type Index or Range (see
“Indexers” on page 118).

Indices
Indices let you refer to elements relative to the end of an array, with the ^ operator.
^1 refers to the last element, ^2 refers to the second-to-last element, and so on:

char[] vowels = new char[] {'a','e','i','o','u'};
char lastElement  = vowels [^1];   // 'u'
char secondToLast = vowels [^2];   // 'o'

(^0 equals the length of the array, so vowels[^0] generates an error.)
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C# implements indices with the help of the Index type, so you can also do the
following:

Index first = 0;
Index last = ^1;
char firstElement = vowels [first];   // 'a'
char lastElement = vowels [last];     // 'u'

Ranges
Ranges let you “slice” an array by using the .. operator:

char[] firstTwo =  vowels [..2];    // 'a', 'e'
char[] lastThree = vowels [2..];    // 'i', 'o', 'u'
char[] middleOne = vowels [2..3];   // 'i'

The second number in the range is exclusive, so ..2 returns the elements before
vowels[2].

You can also use the ^ symbol in ranges. The following returns the last two charac‐
ters:

char[] lastTwo = vowels [^2..];     // 'o', 'u'

C# implements ranges with the help of the Range type, so you can also do the
following:

Range firstTwoRange = 0..2;
char[] firstTwo = vowels [firstTwoRange];   // 'a', 'e'

Multidimensional Arrays
Multidimensional arrays come in two varieties: rectangular and jagged. Rectangular
arrays represent an n-dimensional block of memory, and jagged arrays are arrays of
arrays.

Rectangular arrays
Rectangular arrays are declared using commas to separate each dimension. The
following declares a rectangular two-dimensional array for which the dimensions
are 3 by 3:

int[,] matrix = new int[3,3];

The GetLength method of an array returns the length for a given dimension (start‐
ing at 0):

for (int i = 0; i < matrix.GetLength(0); i++)
  for (int j = 0; j < matrix.GetLength(1); j++)
    matrix[i,j] = i * 3 + j;

You can initialize a rectangular array with explicit values. The following code creates
an array identical to the previous example:
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int[,] matrix = new int[,]
{
  {0,1,2},
  {3,4,5},
  {6,7,8}
};

Jagged arrays
Jagged arrays are declared using successive square brackets to represent each
dimension. Here is an example of declaring a jagged two-dimensional array for
which the outermost dimension is 3:

int[][] matrix = new int[3][];

Interestingly, this is new int[3][] and not new int[][3].
Eric Lippert has written an excellent article on why this is so.

The inner dimensions aren’t specified in the declaration because, unlike a rectangu‐
lar array, each inner array can be an arbitrary length. Each inner array is implicitly
initialized to null rather than an empty array. You must manually create each inner
array:

for (int i = 0; i < matrix.Length; i++)
{
  matrix[i] = new int[3];                    // Create inner array
  for (int j = 0; j < matrix[i].Length; j++)
    matrix[i][j] = i * 3 + j;
}

You can initialize a jagged array with explicit values. The following code creates an
array identical to the previous example with an additional element at the end:

int[][] matrix = new int[][]
{
  new int[] {0,1,2},
  new int[] {3,4,5},
  new int[] {6,7,8,9}
};

Simplified Array Initialization Expressions
There are two ways to shorten array initialization expressions. The first is to omit
the new operator and type qualifications:

char[] vowels = {'a','e','i','o','u'};

int[,] rectangularMatrix =
{
  {0,1,2},
  {3,4,5},
  {6,7,8}
};
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int[][] jaggedMatrix =
{
  new int[] {0,1,2},
  new int[] {3,4,5},
  new int[] {6,7,8,9}
};

(From C# 12, you can use square brackets instead of braces with single-dimensional
arrays.)

The second approach is to use the var keyword, which instructs the compiler to
implicitly type a local variable. Here are simple examples:

var i = 3;           // i is implicitly of type int
var s = "sausage";   // s is implicitly of type string

The same principle can be applied to arrays, except that it can be taken one stage
further. By omitting the type qualifier after the new keyword, the compiler infers the
array type:

var vowels = new[] {'a','e','i','o','u'};   // Compiler infers char[]

Here’s how we can apply this to multidimensional arrays:

var rectMatrix = new[,]        // rectMatrix is implicitly of type int[,]
{
  {0,1,2},
  {3,4,5},
  {6,7,8}
};
var jaggedMat = new int[][]    // jaggedMat is implicitly of type int[][]
{
  new[] {0,1,2},
  new[] {3,4,5},
  new[] {6,7,8,9}
};

For this to work, the elements must all be implicitly convertible to a single type (and
at least one of the elements must be of that type, and there must be exactly one best
type), as in the following example:

var x = new[] {1,10000000000};   // all convertible to long

Bounds Checking
All array indexing is bounds checked by the runtime. An IndexOutOfRange
Exception is thrown if you use an invalid index:

int[] arr = new int[3];
arr[3] = 1;               // IndexOutOfRangeException thrown

Array bounds checking is necessary for type safety and simplifies debugging.
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Generally, the performance hit from bounds checking is
minor, and the Just-In-Time (JIT) compiler can perform opti‐
mizations, such as determining in advance whether all indexes
will be safe before entering a loop, thus avoiding a check on
each iteration. In addition, C# provides “unsafe” code that
can explicitly bypass bounds checking (see “Unsafe Code and
Pointers” on page 263).

Variables and Parameters
A variable represents a storage location that has a modifiable value. A variable can
be a local variable, parameter (value, ref, or out, or in), field (instance or static), or
array element.

The Stack and the Heap
The stack and the heap are the places where variables reside. Each has very different
lifetime semantics.

Stack
The stack is a block of memory for storing local variables and parameters. The stack
logically grows and shrinks as a method or function is entered and exited. Consider
the following method (to avoid distraction, input argument checking is ignored):

static int Factorial (int x)
{
  if (x == 0) return 1;
  return x * Factorial (x-1);
}

This method is recursive, meaning that it calls itself. Each time the method is
entered, a new int is allocated on the stack, and each time the method exits, the int
is deallocated.

Heap
The heap is the memory in which objects (i.e., reference-type instances) reside.
Whenever a new object is created, it is allocated on the heap, and a reference to that
object is returned. During a program’s execution, the heap begins filling up as new
objects are created. The runtime has a garbage collector that periodically deallocates
objects from the heap, so your program does not run out of memory. An object is
eligible for deallocation as soon as it’s not referenced by anything that’s itself “alive.”

In the following example, we begin by creating a StringBuilder object referenced
by the variable ref1 and then write out its content. That StringBuilder object
is then immediately eligible for garbage collection because nothing subsequently
uses it.
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Then, we create another StringBuilder referenced by variable ref2 and copy
that reference to ref3. Even though ref2 is not used after that point, ref3 keeps
the same StringBuilder object alive—ensuring that it doesn’t become eligible for
collection until we’ve finished using ref3:

using System;
using System.Text;

StringBuilder ref1 = new StringBuilder ("object1");
Console.WriteLine (ref1);
// The StringBuilder referenced by ref1 is now eligible for GC.

StringBuilder ref2 = new StringBuilder ("object2");
StringBuilder ref3 = ref2;
// The StringBuilder referenced by ref2 is NOT yet eligible for GC.

Console.WriteLine (ref3);      // object2

Value-type instances (and object references) live wherever the variable was declared.
If the instance was declared as a field within a class type, or as an array element, that
instance lives on the heap.

You can’t explicitly delete objects in C#, as you can in C++.
An unreferenced object is eventually collected by the garbage
collector.

The heap also stores static fields. Unlike objects allocated on the heap (which can be
garbage-collected), these live until the process ends.

Definite Assignment
C# enforces a definite assignment policy. In practice, this means that outside of
an unsafe or interop context, you can’t accidentally access uninitialized memory.
Definite assignment has three implications:

• Local variables must be assigned a value before they can be read.•
• Function arguments must be supplied when a method is called (unless marked•

as optional; see “Optional parameters” on page 74).
• All other variables (such as fields and array elements) are automatically initial‐•

ized by the runtime.

For example, the following code results in a compile-time error:

int x;
Console.WriteLine (x);        // Compile-time error

Fields and array elements are automatically initialized with the default values for
their type. The following code outputs 0 because array elements are implicitly
assigned to their default values:
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int[] ints = new int[2];
Console.WriteLine (ints[0]);    // 0

The following code outputs 0, because fields are implicitly assigned a default value
(whether instance or static):

Console.WriteLine (Test.X);   // 0

class Test { public static int X; }   // field

Default Values
All type instances have a default value. The default value for the predefined types is
the result of a bitwise zeroing of memory:

Type Default value

Reference types (and nullable value types) null

Numeric and enum types 0

char type '\0'

bool type false

You can obtain the default value for any type via the default keyword:

Console.WriteLine (default (decimal));   // 0

You can optionally omit the type when it can be inferred:

decimal d = default;

The default value in a custom value type (i.e., struct) is the same as the default
value for each field defined by the custom type. 

Parameters
A method may have a sequence of parameters. Parameters define the set of argu‐
ments that must be provided for that method. In the following example, the method
Foo has a single parameter named p, of type int:

Foo (8);                        // 8 is an argument
static void Foo (int p) {...}   // p is a parameter

You can control how parameters are passed with the ref, in, and out modifiers:

Parameter modifier Passed by Variable must be definitely assigned

(None) Value Going in

ref Reference Going in

in Reference (read-only) Going in

out Reference Going out
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Passing arguments by value
By default, arguments in C# are passed by value, which is by far the most common
case. This means that a copy of the value is created when passed to the method:

int x = 8;
Foo (x);                    // Make a copy of x
Console.WriteLine (x);      // x will still be 8

static void Foo (int p)
{
  p = p + 1;                // Increment p by 1
  Console.WriteLine (p);    // Write p to screen
}

Assigning p a new value does not change the contents of x, because p and x reside in
different memory locations.

Passing a reference-type argument by value copies the reference but not the object.
In the following example, Foo sees the same StringBuilder object we instantiated
(sb) but has an independent reference to it. In other words, sb and fooSB are
separate variables that reference the same StringBuilder object:

StringBuilder sb = new StringBuilder();
Foo (sb);
Console.WriteLine (sb.ToString());    // test

static void Foo (StringBuilder fooSB)
{
  fooSB.Append ("test");
  fooSB = null;
}

Because fooSB is a copy of a reference, setting it to null doesn’t make sb null. (If,
however, fooSB was declared and called with the ref modifier, sb would become
null.)

The ref modifier
To pass by reference, C# provides the ref parameter modifier. In the following
example, p and x refer to the same memory locations:

int x = 8;
Foo (ref  x);              // Ask Foo to deal directly with x
Console.WriteLine (x);     // x is now 9

static void Foo (ref int p)
{
  p = p + 1;               // Increment p by 1
  Console.WriteLine (p);   // Write p to screen
}
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4 An exception to this rule is when calling Component Object Model (COM) methods. We discuss
this in Chapter 25.

Now assigning p a new value changes the contents of x. Notice how the ref modifier
is required both when writing and when calling the method.4 This makes it very
clear what’s going on.

The ref modifier is essential in implementing a swap method (in “Generics” on
page 159, we show how to write a swap method that works with any type):

string x = "Penn";
string y = "Teller";
Swap (ref x, ref y);
Console.WriteLine (x);   // Teller
Console.WriteLine (y);   // Penn

static void Swap (ref string a, ref string b)
{
  string temp = a;
  a = b;
  b = temp;
}

A parameter can be passed by reference or by value, regardless
of whether the parameter type is a reference type or a value
type.

The out modifier
An out argument is like a ref argument except for the following:

• It need not be assigned before going into the function.•
• It must be assigned before it comes out of the function.•

The out modifier is most commonly used to get multiple return values back from a
method; for example:

string a, b;
Split ("Stevie Ray Vaughn", out a, out b);
Console.WriteLine (a);                      // Stevie Ray
Console.WriteLine (b);                      // Vaughn

void Split (string name, out string firstNames, out string lastName)
{
  int i = name.LastIndexOf (' ');
  firstNames = name.Substring (0, i);
  lastName = name.Substring (i + 1);
}

Like a ref parameter, an out parameter is passed by reference.
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Out variables and discards
You can declare variables on the fly when calling methods with out parameters. We
can replace the first two lines in our preceding example with this:

Split ("Stevie Ray Vaughan", out string a, out string b);

When calling methods with multiple out parameters, sometimes you’re not interes‐
ted in receiving values from all the parameters. In such cases, you can “discard” the
ones in which you’re uninterested by using an underscore:

Split ("Stevie Ray Vaughan", out string a, out _);   // Discard 2nd param
Console.WriteLine (a);

In this case, the compiler treats the underscore as a special symbol, called a discard.
You can include multiple discards in a single call. Assuming SomeBigMethod has
been defined with seven out parameters, we can ignore all but the fourth, as follows:

SomeBigMethod (out _, out _, out _, out int x, out _, out _, out _);

For backward compatibility, this language feature will not take effect if a real
underscore variable is in scope:

string _;
Split ("Stevie Ray Vaughan", out string a, out _);
Console.WriteLine (_);     // Vaughan

Implications of passing by reference
When you pass an argument by reference, you alias the storage location of an
existing variable rather than create a new storage location. In the following example,
the variables x and y represent the same instance:

class Test
{
  static int x;

  static void Main() { Foo (out x); }

  static void Foo (out int y)
  {
    Console.WriteLine (x);                // x is 0
    y = 1;                                // Mutate y
    Console.WriteLine (x);                // x is 1
  }
}

The in modifier
An in parameter is similar to a ref parameter except that the argument’s value
cannot be modified by the method (doing so generates a compile-time error). This
modifier is most useful when passing a large value type to the method because it
allows the compiler to avoid the overhead of copying the argument prior to passing
it in while still protecting the original value from modification.
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Overloading solely on the presence of in is permitted:

void Foo (   SomeBigStruct a) { ... }
void Foo (in SomeBigStruct a) { ... }

To call the second overload, the caller must use the in modifier:

SomeBigStruct x = ...;
Foo (x);      // Calls the first overload
Foo (in x);   // Calls the second overload

When there’s no ambiguity

void Bar (in SomeBigStruct a) { ... }

use of the in modifier is optional for the caller:

Bar (x);     // OK (calls the 'in' overload)
Bar (in x);  // OK (calls the 'in' overload)

To make this example meaningful, SomeBigStruct would be defined as a struct (see
“Structs” on page 142).

The params modifier
The params modifier, if applied to the last parameter of a method, allows the
method to accept any number of arguments of a particular type. The parameter
type must be declared as a (single-dimensional) array, as shown in the following
example:

int total = Sum (1, 2, 3, 4);
Console.WriteLine (total);              // 10

// The call to Sum above is equivalent to:
int total2 = Sum (new int[] { 1, 2, 3, 4 });

int Sum (params int[] ints)
{
  int sum = 0;
  for (int i = 0; i < ints.Length; i++)
    sum += ints [i];                       // Increase sum by ints[i]
  return sum;
}

If there are zero arguments in the params position, a zero-length array is created.

You can also supply a params argument as an ordinary array. The first line in our
example is semantically equivalent to this:

int total = Sum (new int[] { 1, 2, 3, 4 } );
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Optional parameters
Methods, constructors, and indexers (Chapter 3) can declare optional parameters. A
parameter is optional if it specifies a default value in its declaration:

void Foo (int x = 23) { Console.WriteLine (x); }

You can omit optional parameters when calling the method:

Foo();     // 23

The default argument of 23 is actually passed to the optional parameter x—the com‐
piler bakes the value 23 into the compiled code at the calling side. The preceding call
to Foo is semantically identical to:

Foo (23);

because the compiler simply substitutes the default value of an optional parameter
wherever it is used.

Adding an optional parameter to a public method that’s called
from another assembly requires recompilation of both assem‐
blies—just as though the parameter were mandatory.

The default value of an optional parameter must be specified by a constant expres‐
sion, a parameterless constructor of a value type, or a default expression. Optional
parameters cannot be marked with ref or out.

Mandatory parameters must occur before optional parameters in both the method
declaration and the method call (the exception is with params arguments, which still
always come last). In the following example, the explicit value of 1 is passed to x,
and the default value of 0 is passed to y:

Foo (1);    // 1, 0

void Foo (int x = 0, int y = 0) { Console.WriteLine (x + ", " + y); }

You can do the converse (pass a default value to x and an explicit value to y) by
combining optional parameters with named arguments.

Named arguments
Rather than identifying an argument by position, you can identify an argument by
name:

Foo (x:1, y:2);  // 1, 2

void Foo (int x, int y) { Console.WriteLine (x + ", " + y); }

Named arguments can occur in any order. The following calls to Foo are semanti‐
cally identical:

Foo (x:1, y:2);
Foo (y:2, x:1);
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A subtle difference is that argument expressions are evalu‐
ated in the order in which they appear at the calling site.
In general, this makes a difference only with interdependent
side-effecting expressions such as the following, which writes
0, 1:

int a = 0;
Foo (y: ++a, x: --a);  // ++a is evaluated first

Of course, you would almost certainly avoid writing such code
in practice!

You can mix named and positional arguments:

Foo (1, y:2);

However, there is a restriction: positional arguments must come before named
arguments unless they are used in the correct position. So, you could call Foo like
this:

Foo (x:1, 2);         // OK. Arguments in the declared positions

But not like this:

Foo (y:2, 1);         // Compile-time error. y isn't in the first position

Named arguments are particularly useful in conjunction with optional parameters.
For instance, consider the following method:

void Bar (int a = 0, int b = 0, int c = 0, int d = 0) { ... }

You can call this supplying only a value for d, as follows:

Bar (d:3);

This is particularly useful when calling COM APIs, which we discuss in detail in
Chapter 24.

Ref Locals
A somewhat esoteric feature of C# is that you can define a local variable that
references an element in an array or field in an object (from C# 7):

int[] numbers = { 0, 1, 2, 3, 4 };
ref int numRef = ref numbers [2];

In this example, numRef is a reference to numbers[2]. When we modify numRef, we
modify the array element:

numRef *= 10;
Console.WriteLine (numRef);        // 20
Console.WriteLine (numbers [2]);   // 20

The target for a ref local must be an array element, field, or local variable; it cannot
be a property (Chapter 3). Ref locals are intended for specialized micro-optimization
scenarios and are typically used in conjunction with ref returns.
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Ref Returns
The Span<T> and ReadOnlySpan<T> types that we describe
in Chapter 23 use ref returns to implement a highly effi‐
cient indexer. Outside such scenarios, ref returns are not com‐
monly used, and you can consider them a micro-optimization
feature.

You can return a ref local from a method. This is called a ref return:

class Program
{
  static string x = "Old Value";

  static ref string GetX() => ref x;    // This method returns a ref

  static void Main()
  {
    ref string xRef = ref GetX();       // Assign result to a ref local
    xRef = "New Value";
    Console.WriteLine (x);              // New Value
  }
}

If you omit the ref modifier on the calling side, it reverts to returning an ordinary
value:

string localX = GetX();  // Legal: localX is an ordinary non-ref variable.

You also can use ref returns when defining a property or indexer:

static ref string Prop => ref x;

Such a property is implicitly writable, despite there being no set accessor:

Prop = "New Value";

You can prevent such modification by using ref readonly:

static ref readonly string Prop => ref x;

The ref readonly modifier prevents modification while still enabling the perfor‐
mance gain of returning by reference. The gain would be very small in this case,
because x is of type string (a reference type): no matter how long the string, the
only inefficiency that you can hope to avoid is the copying of a single 32- or 64-bit
reference. Real gains can occur with custom value types (see “Structs” on page 142),
but only if the struct is marked as readonly (otherwise, the compiler will perform a
defensive copy).

Attempting to define an explicit set accessor on a ref return property or indexer is
illegal.
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var—Implicitly Typed Local Variables
It is often the case that you declare and initialize a variable in one step. If the
compiler is able to infer the type from the initialization expression, you can use the
keyword var in place of the type declaration; for example:

var x = "hello";
var y = new System.Text.StringBuilder();
var z = (float)Math.PI;

This is precisely equivalent to the following:

string x = "hello";
System.Text.StringBuilder y = new System.Text.StringBuilder();
float z = (float)Math.PI;

Because of this direct equivalence, implicitly typed variables are statically typed. For
example, the following generates a compile-time error:

var x = 5;
x = "hello";    // Compile-time error; x is of type int

var can decrease code readability when you can’t deduce the
type purely by looking at the variable declaration. For exam‐
ple:

Random r = new Random();
var x = r.Next();

What type is x?

In “Anonymous Types” on page 220, we will describe a scenario in which the use of
var is mandatory.

Target-Typed new Expressions
Another way to reduce lexical repetition is with target-typed new expressions (from
C# 9):

System.Text.StringBuilder sb1 = new();
System.Text.StringBuilder sb2 = new ("Test");

This is precisely equivalent to:

System.Text.StringBuilder sb1 = new System.Text.StringBuilder();
System.Text.StringBuilder sb2 = new System.Text.StringBuilder ("Test");

The principle is that you can call new without specifying a type name if the compiler
is able to unambiguously infer it. Target-typed new expressions are particularly
useful when the variable declaration and initialization are in different parts of your
code. A common example is when you want to initialize a field in a constructor:

class Foo
{
  System.Text.StringBuilder sb;
  
  public Foo (string initialValue)
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  {
    sb = new (initialValue);
  }
}

Target-typed new expressions are also helpful in the following scenario:

MyMethod (new ("test"));

void MyMethod (System.Text.StringBuilder sb) { ... }

Expressions and Operators
An expression essentially denotes a value. The simplest kinds of expressions are
constants and variables. Expressions can be transformed and combined using oper‐
ators. An operator takes one or more input operands to output a new expression.

Here is an example of a constant expression:

12

We can use the * operator to combine two operands (the literal expressions 12 and
30), as follows:

12 * 30

We can build complex expressions because an operand can itself be an expression,
such as the operand (12 * 30) in the following example:

1 + (12 * 30)

Operators in C# can be classed as unary, binary, or ternary, depending on the
number of operands they work on (one, two, or three). The binary operators always
use infix notation in which the operator is placed between the two operands.

Primary Expressions
Primary expressions include expressions composed of operators that are intrinsic to
the basic plumbing of the language. Here is an example:

Math.Log (1)

This expression is composed of two primary expressions. The first expression per‐
forms a member lookup (with the . operator), and the second expression performs
a method call (with the () operator).

Void Expressions
A void expression is an expression that has no value, such as this:

Console.WriteLine (1)

Because it has no value, you cannot use a void expression as an operand to build
more complex expressions:

1 + Console.WriteLine (1)      // Compile-time error
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Assignment Expressions
An assignment expression uses the = operator to assign the result of another expres‐
sion to a variable; for example:

x = x * 5

An assignment expression is not a void expression—it has a value of whatever
was assigned, and so can be incorporated into another expression. In the following
example, the expression assigns 2 to x and 10 to y:

y = 5 * (x = 2)

You can use this style of expression to initialize multiple values:

a = b = c = d = 0

The compound assignment operators are syntactic shortcuts that combine assign‐
ment with another operator:

x *= 2    // equivalent to x = x * 2
x <<= 1   // equivalent to x = x << 1

(A subtle exception to this rule is with events, which we describe in Chapter 4: the
+= and -= operators here are treated specially and map to the event’s add and remove
accessors.)

Operator Precedence and Associativity
When an expression contains multiple operators, precedence and associativity deter‐
mine the order of their evaluation. Operators with higher precedence execute before
operators of lower precedence. If the operators have the same precedence, the
operator’s associativity determines the order of evaluation.

Precedence
The following expression

1 + 2 * 3

is evaluated as follows because * has a higher precedence than +:

1 + (2 * 3)

Left-associative operators
Binary operators (except for assignment, lambda, and null-coalescing operators) are
left-associative; in other words, they are evaluated from left to right. For example,
the following expression

8 / 4 / 2

is evaluated as follows:

( 8 / 4 ) / 2    // 1
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You can insert parentheses to change the actual order of evaluation:

8 / ( 4 / 2 )    // 4

Right-associative operators
The assignment operators as well as the lambda, null-coalescing, and conditional
operators are right-associative; in other words, they are evaluated from right to left.

Right associativity allows multiple assignments such as the following to compile:

x = y = 3;

This first assigns 3 to y and then assigns the result of that expression (3) to x.

Operator Table
Table 2-3 lists C#’s operators in order of precedence. Operators in the same category
have the same precedence.

We explain user-overloadable operators in “Operator Overloading” on page 256.

Table 2-3. C# operators (categories in order of precedence)

Category Operator
symbol

Operator name Example User-
overloadable

Primary . Member access x.y No

?. and ?[] Null-conditional x?.y or x?[0] No

! (postfix) Null-forgiving x!.y or x![0] No

-> (unsafe) Pointer to struct x->y No

() Function call x() No

[] Array/index a[x] Via indexer

++ Post-increment x++ Yes

−− Post-decrement x−− Yes

new Create instance new Foo() No

stackalloc Stack allocation stackalloc(10) No

typeof Get type from
identifier

typeof(int) No

nameof Get name of
identifier

nameof(x) No

checked Integral overflow
check on

checked(x) No

unchecked Integral overflow
check off

unchecked(x) No

default Default value default(char) No
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Category Operator
symbol

Operator name Example User-
overloadable

Unary await Await await myTask No

sizeof Get size of struct sizeof(int) No

+ Positive value of +x Yes

− Negative value of −x Yes

! Not !x Yes

~ Bitwise complement ~x Yes

++ Pre-increment ++x Yes

−− Pre-decrement −−x Yes

() Cast (int)x No

^ Index from end array[^1] No

* (unsafe) Value at address *x No

& (unsafe) Address of value &x No

Range ..

..^

Range of indices x..y

x..^y

No

Switch & with switch Switch expression num switch {

  1 => true,

  _ => false

}

No

with With expression rec with

{ X = 123 }

No

Multiplicative * Multiply x * y Yes

/ Divide x / y Yes

% Remainder x % y Yes

Additive + Add x + y Yes

− Subtract x − y Yes

Shift << Shift left x << 1 Yes

>> Shift right x >> 1 Yes

>>> Unsigned shift right x >>> 1 Yes

Relational < Less than x < y Yes

> Greater than x > y Yes

<= Less than or equal to x <= y Yes

>= Greater than or
equal to

x >= y Yes

is Type is or is subclass
of

x is y No

as Type conversion x as y No
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Category Operator
symbol

Operator name Example User-
overloadable

Equality == Equals x == y Yes

!= Not equals x != y Yes

Bitwise And & And x & y Yes

Bitwise Xor ^ Exclusive Or x ^ y Yes

Bitwise Or | Or x | y Yes

Conditional
And

&& Conditional And x && y Via &

Conditional Or || Conditional Or x || y Via |

Null
coalescing

?? Null coalescing x ?? y No

Conditional ?: Conditional isTrue ? thenThis 

: elseThis

No

Assignment
and lambda

= Assign x = y No

*= Multiply self by x *= 2 Via *

/= Divide self by x /= 2 Via /

%= Remainder & assign
to self

x %= 2

+= Add to self x += 2 Via +

−= Subtract from self x −= 2 Via −

<<= Shift self left by x <<= 2 Via <<

>>= Shift self right by x >>= 2 Via >>

>>>= Unsigned shift self
right by

x >>>= 2 Via >>>

&= And self by x &= 2 Via &

^= Exclusive-Or self by x ^= 2 Via ^

|= Or self by x |= 2 Via |

??= Null-coalescing
assignment

x ??= 0 No

=> Lambda x => x + 1 No

Null Operators
C# provides three operators to make it easier to work with nulls: the null-coalescing
operator, the null-coalescing assignment operator, and the null-conditional operator.

82 | Chapter 2: C# Language Basics



Null-Coalescing Operator
The ?? operator is the null-coalescing operator. It says, “If the operand to the left is
non-null, give it to me; otherwise, give me another value.” For example:

string s1 = null;
string s2 = s1 ?? "nothing";   // s2 evaluates to "nothing"

If the lefthand expression is non-null, the righthand expression is never evaluated.
The null-coalescing operator also works with nullable value types (see “Nullable
Value Types” on page 210).

Null-Coalescing Assignment Operator
The ??= operator (introduced in C# 8) is the null-coalescing assignment operator. It
says, “If the operand to the left is null, assign the right operand to the left operand.”
Consider the following:

myVariable ??= someDefault;

This is equivalent to:

if (myVariable == null) myVariable = someDefault;

The ??= operator is particularly useful in implementing lazily calculated properties.
We’ll cover this topic later, in “Calculated Fields and Lazy Evaluation” on page 233.

Null-Conditional Operator
The ?. operator is the null-conditional or “Elvis” operator (after the Elvis emoticon).
It allows you to call methods and access members just like the standard dot operator
except that if the operand on the left is null, the expression evaluates to null instead
of throwing a NullReferenceException:

System.Text.StringBuilder sb = null;
string s = sb?.ToString();  // No error; s instead evaluates to null

The last line is equivalent to the following:

string s = (sb == null ? null : sb.ToString());

Null-conditional expressions also work with indexers:

string[] words = null;
string word = words?[1];   // word is null

Upon encountering a null, the Elvis operator short-circuits the remainder of the
expression. In the following example, s evaluates to null, even with a standard dot
operator between ToString() and ToUpper():

System.Text.StringBuilder sb = null;
string s = sb?.ToString().ToUpper();   // s evaluates to null without error
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Repeated use of Elvis is necessary only if the operand immediately to its left might
be null. The following expression is robust to both x being null and x.y being null:

x?.y?.z

It is equivalent to the following (except that x.y is evaluated only once):

x == null ? null 
          : (x.y == null ? null : x.y.z)

The final expression must be capable of accepting a null. The following is illegal:

System.Text.StringBuilder sb = null;
int length = sb?.ToString().Length;   // Illegal : int cannot be null

We can fix this with the use of nullable value types (see “Nullable Value Types” on
page 210). If you’re already familiar with nullable value types, here’s a preview:

int? length = sb?.ToString().Length;   // OK: int? can be null

You can also use the null-conditional operator to call a void method:

someObject?.SomeVoidMethod();

If someObject is null, this becomes a “no-operation” rather than throwing a NullRe
ferenceException.

You can use the null-conditional operator with the commonly used type members
that we describe in Chapter 3, including methods, fields, properties, and indexers. It
also combines well with the null-coalescing operator:

System.Text.StringBuilder sb = null;
string s = sb?.ToString() ?? "nothing";   // s evaluates to "nothing"

Statements
Functions comprise statements that execute sequentially in the textual order in
which they appear. A statement block is a series of statements appearing between
braces (the {} tokens).

Declaration Statements
A variable declaration introduces a new variable, optionally initializing it with
an expression. You may declare multiple variables of the same type in a comma-
separated list:

string someWord = "rosebud";
int someNumber = 42;
bool rich = true, famous = false;

A constant declaration is like a variable declaration except that it cannot be changed
after it has been declared, and the initialization must occur with the declaration (see
“Constants” on page 104):

const double c = 2.99792458E08;
c += 10;                        // Compile-time Error
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Local variables
The scope of a local variable or local constant extends throughout the current block.
You cannot declare another local variable with the same name in the current block
or in any nested blocks:

int x;
{
  int y;
  int x;            // Error - x already defined
}
{
  int y;            // OK - y not in scope
}
Console.Write (y);  // Error - y is out of scope

A variable’s scope extends in both directions throughout its
code block. This means that if we moved the initial declara‐
tion of x in this example to the bottom of the method, we’d
get the same error. This is in contrast to C++ and is somewhat
peculiar, given that it’s not legal to refer to a variable or con‐
stant before it’s declared.

Expression Statements
Expression statements are expressions that are also valid statements. An expression
statement must either change state or call something that might change state.
Changing state essentially means changing a variable. Following are the possible
expression statements:

• Assignment expressions (including increment and decrement expressions)•
• Method call expressions (both void and nonvoid)•
• Object instantiation expressions•

Here are some examples:

// Declare variables with declaration statements:
string s;
int x, y;
System.Text.StringBuilder sb;

// Expression statements
x = 1 + 2;                 // Assignment expression
x++;                       // Increment expression
y = Math.Max (x, 5);       // Assignment expression
Console.WriteLine (y);     // Method call expression
sb = new StringBuilder();  // Assignment expression
new StringBuilder();       // Object instantiation expression

When you call a constructor or a method that returns a value, you’re not obliged
to use the result. However, unless the constructor or method changes state, the
statement is completely useless:
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new StringBuilder();     // Legal, but useless
new string ('c', 3);     // Legal, but useless
x.Equals (y);            // Legal, but useless

Selection Statements
C# has the following mechanisms to conditionally control the flow of program
execution:

• Selection statements (if, switch)•

• Conditional operator (?:)•

• Loop statements (while, do-while, for, foreach)•

This section covers the simplest two constructs: the if statement and the switch
statement.

The if statement
An if statement executes a statement if a bool expression is true:

if (5 < 2 * 3)
  Console.WriteLine ("true");       // true

The statement can be a code block:

if (5 < 2 * 3)
{
  Console.WriteLine ("true");
  Console.WriteLine ("Let’s move on!");
}

The else clause
An if statement can optionally feature an else clause:

if (2 + 2 == 5)
  Console.WriteLine ("Does not compute");
else
  Console.WriteLine ("False");        // False

Within an else clause, you can nest another if statement:

if (2 + 2 == 5)
  Console.WriteLine ("Does not compute");
else
  if (2 + 2 == 4)
    Console.WriteLine ("Computes");    // Computes
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Changing the flow of execution with braces
An else clause always applies to the immediately preceding if statement in the
statement block:

if (true)
  if (false)
    Console.WriteLine();
  else
    Console.WriteLine ("executes");

This is semantically identical to the following:

if (true)
{
  if (false)
    Console.WriteLine();
  else
    Console.WriteLine ("executes");
}

We can change the execution flow by moving the braces:

if (true)
{
  if (false)
    Console.WriteLine();
}
else
  Console.WriteLine ("does not execute");

With braces, you explicitly state your intention. This can improve the readability of
nested if statements—even when not required by the compiler. A notable exception
is with the following pattern:

void TellMeWhatICanDo (int age)
{
  if (age >= 35)
    Console.WriteLine ("You can be president!");
  else if (age >= 21)
    Console.WriteLine ("You can drink!");
  else if (age >= 18)
    Console.WriteLine ("You can vote!");
  else
    Console.WriteLine ("You can wait!");
}

Here, we’ve arranged the if and else statements to mimic the “elseif ” construct
of other languages (and C#’s #elif preprocessor directive). Visual Studio’s auto-
formatting recognizes this pattern and preserves the indentation. Semantically,
though, each if statement following an else statement is functionally nested within
the else clause.
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The switch statement
switch statements let you branch program execution based on a selection of possi‐
ble values that a variable might have. switch statements can result in cleaner code
than multiple if statements because switch statements require an expression to be
evaluated only once:

void ShowCard (int cardNumber)
{
  switch (cardNumber)
  {
    case 13:
      Console.WriteLine ("King");
      break;
    case 12:
      Console.WriteLine ("Queen");
      break;
    case 11:
      Console.WriteLine ("Jack");
      break;
    case -1:                         // Joker is -1
      goto case 12;                  // In this game joker counts as queen
    default:                         // Executes for any other cardNumber
      Console.WriteLine (cardNumber);
      break;
  }
}

This example demonstrates the most common scenario, which is switching on
constants. When you specify a constant, you’re restricted to the built-in numeric
types and the bool, char, string, and enum types.

At the end of each case clause, you must specify explicitly where execution is to go
next, with some kind of jump statement (unless your code ends in an infinite loop).
Here are the options:

• break (jumps to the end of the switch statement)•

• goto case x (jumps to another case clause)•

• goto default (jumps to the default clause)•

• Any other jump statement—namely, return, throw, continue, or goto label•

When more than one value should execute the same code, you can list the common
cases sequentially:

switch (cardNumber)
{
  case 13:
  case 12:
  case 11:
    Console.WriteLine ("Face card");
    break;
  default:
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    Console.WriteLine ("Plain card");
    break;
}

This feature of a switch statement can be pivotal in terms of producing cleaner code
than multiple if-else statements.

Switching on types
Switching on a type is a special case of switching on a pattern.
A number of other patterns have been introduced in recent
versions of C#; see “Patterns” on page 238 for a full discussion.

You can also switch on types (from C# 7):

TellMeTheType (12);
TellMeTheType ("hello");
TellMeTheType (true);

void TellMeTheType (object x)   // object allows any type.
{
  switch (x)
  {
    case int i:
      Console.WriteLine ("It's an int!");
      Console.WriteLine ($"The square of {i} is {i * i}");
      break;
    case string s:
      Console.WriteLine ("It's a string");
      Console.WriteLine ($"The length of {s} is {s.Length}");
      break;
    case DateTime:
      Console.WriteLine ("It's a DateTime");
      break;
    default:
      Console.WriteLine ("I don't know what x is");
      break;
  }
}

(The object type allows for a variable of any type; we discuss this fully in “Inheri‐
tance” on page 126 and “The object Type” on page 138.)

Each case clause specifies a type upon which to match, and a variable upon which
to assign the typed value if the match succeeds (the “pattern” variable). Unlike with
constants, there’s no restriction on what types you can use.

You can predicate a case with the when keyword:

switch (x)
{
  case bool b when b == true:     // Fires only when b is true
    Console.WriteLine ("True!");
    break;
  case bool b:
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    Console.WriteLine ("False!");
    break;
}

The order of the case clauses can matter when switching on type (unlike when
switching on constants). This example would give a different result if we reversed
the two cases (in fact, it would not even compile, because the compiler would
determine that the second case is unreachable). An exception to this rule is the
default clause, which is always executed last, regardless of where it appears.

You can stack multiple case clauses. The Console.WriteLine in the following code
will execute for any floating-point type greater than 1,000:

switch (x)
{
  case float f when f > 1000:
  case double d when d > 1000:
  case decimal m when m > 1000:
    Console.WriteLine ("We can refer to x here but not f or d or m");
    break;
}

In this example, the compiler lets us consume the pattern variables f, d, and m, only
in the when clauses. When we call Console.WriteLine, it’s unknown which one of
those three variables will be assigned, so the compiler puts all of them out of scope.

You can mix and match constants and patterns in the same switch statement. And
you can also switch on the null value:

case null:
  Console.WriteLine ("Nothing here");
  break;

Switch expressions
From C# 8, you can use switch in the context of an expression. Assuming that
cardNumber is of type int, the following illustrates its use:

string cardName = cardNumber switch
{
  13 => "King",
  12 => "Queen",
  11 => "Jack",
  _ => "Pip card"   // equivalent to 'default'
};

Notice that the switch keyword appears after the variable name, and that the case
clauses are expressions (terminated by commas) rather than statements. Switch
expressions are more compact than their switch statement counterparts, and you
can use them in LINQ queries (Chapter 8).

If you omit the default expression (_) and the switch fails to match, an exception is
thrown.
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You can also switch on multiple values (the tuple pattern):

int cardNumber = 12;
string suite = "spades";

string cardName = (cardNumber, suite) switch
{
  (13, "spades") => "King of spades",
  (13, "clubs") => "King of clubs",
  ...
};

Many more options are possible through the use of patterns (see “Patterns” on page
238).

Iteration Statements
C# enables a sequence of statements to execute repeatedly with the while, do-while,
for, and foreach statements.

while and do-while loops
while loops repeatedly execute a body of code while a bool expression is true.
The expression is tested before the body of the loop is executed. For example, the
following writes 012:

int i = 0;
while (i < 3)
{
  Console.Write (i);
  i++;
}

do-while loops differ in functionality from while loops only in that they test the
expression after the statement block has executed (ensuring that the block is always
executed at least once). Here’s the preceding example rewritten with a do-while
loop:

int i = 0;
do
{
  Console.WriteLine (i);
  i++;
}
while (i < 3);

for loops
for loops are like while loops with special clauses for initialization and iteration of a
loop variable. A for loop contains three clauses as follows:

for (initialization-clause; condition-clause; iteration-clause)
  statement-or-statement-block
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Here’s what each clause does:

Initialization clause
Executed before the loop begins; used to initialize one or more iteration vari‐
ables

Condition clause
The bool expression that, while true, will execute the body

Iteration clause
Executed after each iteration of the statement block; used typically to update
the iteration variable

For example, the following prints the numbers 0 through 2:

for (int i = 0; i < 3; i++)
  Console.WriteLine (i);

The following prints the first 10 Fibonacci numbers (in which each number is the
sum of the previous two):

for (int i = 0, prevFib = 1, curFib = 1; i < 10; i++)
{
  Console.WriteLine (prevFib);
  int newFib = prevFib + curFib;
  prevFib = curFib; curFib = newFib;
}

Any of the three parts of the for statement can be omitted. You can implement an
infinite loop such as the following (though while(true) can be used, instead):

for (;;)
  Console.WriteLine ("interrupt me");

foreach loops
The foreach statement iterates over each element in an enumerable object. Most of
the .NET types that represent a set or list of elements are enumerable. For example,
both an array and a string are enumerable. Here is an example of enumerating over
the characters in a string, from the first character through to the last:

foreach (char c in "beer")   // c is the iteration variable
  Console.WriteLine (c);

Here’s the output:

b
e
e
r

We define enumerable objects in “Enumeration and Iterators” on page 203.
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Jump Statements
The C# jump statements are break, continue, goto, return, and throw.

Jump statements obey the reliability rules of try statements
(see “try Statements and Exceptions” on page 195). This
means that:

• A jump out of a try block always executes the try’s•
finally block before reaching the target of the jump.

• A jump cannot be made from the inside to the outside of•
a finally block (except via throw).

The break statement
The break statement ends the execution of the body of an iteration or switch
statement:

int x = 0;
while (true)
{
  if (x++ > 5)
    break;      // break from the loop
}
// execution continues here after break
...

The continue statement
The continue statement forgoes the remaining statements in a loop and makes an
early start on the next iteration. The following loop skips even numbers:

for (int i = 0; i < 10; i++)
{
  if ((i % 2) == 0)       // If i is even,
    continue;             // continue with next iteration

  Console.Write (i + " ");
}

OUTPUT: 1 3 5 7 9

The goto statement
The goto statement transfers execution to another label within a statement block.
The form is as follows:

goto statement-label;

Or, when used within a switch statement:

goto case case-constant;    // (Only works with constants, not patterns)
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A label is a placeholder in a code block that precedes a statement, denoted with a
colon suffix. The following iterates the numbers 1 through 5, mimicking a for loop:

int i = 1;
startLoop:
if (i <= 5)
{
  Console.Write (i + " ");
  i++;
  goto startLoop;
}

OUTPUT: 1 2 3 4 5

The goto case case-constant transfers execution to another case in a switch
block (see “The switch statement” on page 88).

The return statement
The return statement exits the method and must return an expression of the
method’s return type if the method is nonvoid:

decimal AsPercentage (decimal d)
{
  decimal p = d * 100m;
  return p;             // Return to the calling method with value
}

A return statement can appear anywhere in a method (except in a finally block),
and can be used more than once.

The throw statement
The throw statement throws an exception to indicate an error has occurred (see “try
Statements and Exceptions” on page 195):

if (w == null)
  throw new ArgumentNullException (...);

Miscellaneous Statements
The using statement provides an elegant syntax for calling Dispose on objects
that implement IDisposable, within a finally block (see “try Statements and
Exceptions” on page 195 and “IDisposable, Dispose, and Close” on page 581).

C# overloads the using keyword to have independent mean‐
ings in different contexts. Specifically, the using directive is
different from the using statement.

The lock statement is a shortcut for calling the Enter and Exit methods of the
Monitor class (see Chapters 14 and 23).
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Namespaces
A namespace is a domain for type names. Types are typically organized into
hierarchical namespaces, making them easier to find and avoiding conflicts. For
example, the RSA type that handles public key encryption is defined within the
following namespace:

System.Security.Cryptography

A namespace forms an integral part of a type’s name. The following code calls RSA’s
Create method:

System.Security.Cryptography.RSA rsa =
  System.Security.Cryptography.RSA.Create();

Namespaces are independent of assemblies, which are .dll files
that serve as units of deployment (described in Chapter 17).

Namespaces also have no impact on member visibility—pub

lic, internal, private, and so on.

The namespace keyword defines a namespace for types within that block; for
example:

namespace Outer.Middle.Inner
{
  class Class1 {}
  class Class2 {}
}

The dots in the namespace indicate a hierarchy of nested namespaces. The code that
follows is semantically identical to the preceding example:

namespace Outer
{
  namespace Middle
  {
    namespace Inner
    {
      class Class1 {}
      class Class2 {}
    }
  }
}

You can refer to a type with its fully qualified name, which includes all namespaces
from the outermost to the innermost. For example, we could refer to Class1 in the
preceding example as Outer.Middle.Inner.Class1.

Types not defined in any namespace are said to reside in the global namespace. The
global namespace also includes top-level namespaces, such as Outer in our example.
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File-Scoped Namespaces
Often, you will want all the types in a file to be defined in one namespace:

namespace MyNamespace
{
  class Class1 {}
  class Class2 {}
}

From C# 10, you can accomplish this with a file-scoped namespace:

namespace MyNamespace;  // Applies to everything that follows in the file.

class Class1 {}         // inside MyNamespace
class Class2 {}         // inside MyNamespace

File-scoped namespaces reduce clutter and eliminate an unnecessary level of inden‐
tation.

The using Directive
The using directive imports a namespace, allowing you to refer to types without
their fully qualified names. The following imports the previous example’s Outer
.Middle.Inner namespace:

using Outer.Middle.Inner;

Class1 c;    // Don’t need fully qualified name

It’s legal (and often desirable) to define the same type name
in different namespaces. However, you’d typically do so only
if it was unlikely for a consumer to want to import both
namespaces at once. A good example is the TextBox class,
which is defined both in System.Windows.Controls (WPF)
and System.Windows.Forms (Windows Forms).

A using directive can be nested within a namespace itself to limit the scope of the
directive.

The global using Directive
From C# 10, if you prefix a using directive with the global keyword, the directive
will apply to all files in the project or compilation unit:

global using System;
global using System.Collection.Generic;

This lets you centralize common imports and avoid repeating the same directives in
every file.

global using directives must precede nonglobal directives and cannot appear
inside namespace declarations. The global directive can be used with using static.
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Implicit global usings
From .NET 6, project files allow for implicit global using directives. If the
ImplicitUsings element is set to true in the project file (the default for new
projects), the following namespaces are automatically imported:

System
System.Collections.Generic
System.IO
System.Linq
System.Net.Http
System.Threading
System.Threading.Tasks

Additional namespaces are imported, based on the project SDK (Web, Windows
Forms, WPF, and so on).

using static
The using static directive imports a type rather than a namespace. All static
members of the imported type can then be used without qualification. In the follow‐
ing example, we call the Console class’s static WriteLine method without needing to
refer to the type:

using static System.Console;

WriteLine ("Hello");

The using static directive imports all accessible static members of the type,
including fields, properties, and nested types (Chapter 3). You can also apply this
directive to enum types (Chapter 3), in which case their members are imported. So,
if we import the following enum type:

using static System.Windows.Visibility;

we can specify Hidden instead of Visibility.Hidden:

var textBox = new TextBox { Visibility = Hidden };   // XAML-style

Should an ambiguity arise between multiple static imports, the C# compiler is not
smart enough to infer the correct type from the context and will generate an error.

Rules Within a Namespace

Name scoping
Names declared in outer namespaces can be used unqualified within inner name‐
spaces. In this example, Class1 does not need qualification within Inner:

namespace Outer
{
  class Class1 {}

  namespace Inner
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  {
    class Class2 : Class1  {}
  }
}

If you want to refer to a type in a different branch of your namespace hierarchy, you
can use a partially qualified name. In the following example, we base SalesReport
on Common.ReportBase:

namespace MyTradingCompany
{
  namespace Common
  {
    class ReportBase {}
  }
  namespace ManagementReporting
  {
    class SalesReport : Common.ReportBase  {}
  }
}

Name hiding
If the same type name appears in both an inner and an outer namespace, the inner
name wins. To refer to the type in the outer namespace, you must qualify its name:

namespace Outer
{
  class Foo { }

  namespace Inner
  {
    class Foo { }

    class Test
    {
      Foo f1;         // = Outer.Inner.Foo
      Outer.Foo f2;   // = Outer.Foo
    }
  }
}

All type names are converted to fully qualified names at
compile time. Intermediate Language (IL) code contains no
unqualified or partially qualified names.

Repeated namespaces
You can repeat a namespace declaration, as long as the type names within the
namespaces don’t conflict:

namespace Outer.Middle.Inner
{
  class Class1 {}
}
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namespace Outer.Middle.Inner
{
  class Class2 {}
}

We can even break the example into two source files such that we could compile
each class into a different assembly.

Source file 1:

namespace Outer.Middle.Inner
{
  class Class1 {}
}

Source file 2:

namespace Outer.Middle.Inner
{
  class Class2 {}
}

Nested using directives
You can nest a using directive within a namespace. This allows you to scope the
using directive within a namespace declaration. In the following example, Class1 is
visible in one scope but not in another:

namespace N1
{
  class Class1 {}
}

namespace N2
{
  using N1;

  class Class2 : Class1 {}
}

namespace N2
{
  class Class3 : Class1 {}   // Compile-time error
}

Aliasing Types and Namespaces
Importing a namespace can result in type-name collision. Rather than importing
the entire namespace, you can import just the specific types that you need, giving
each type an alias:

using PropertyInfo2 = System.Reflection.PropertyInfo;
class Program { PropertyInfo2 p; }
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An entire namespace can be aliased, as follows:

using R = System.Reflection;
class Program { R.PropertyInfo p; }

Alias any type (C# 12)
From C# 12, the using directive can alias any kind of type, including, for instance,
arrays:

using NumberList = double[];
NumberList numbers = { 2.5, 3.5 };

You can also alias tuples—we cover this in “Aliasing Tuples (C# 12)” on page 225.

Advanced Namespace Features

Extern
Extern aliases allow your program to reference two types with the same fully
qualified name (i.e., the namespace and type name are identical). This is an unusual
scenario and can occur only when the two types come from different assemblies.
Consider the following example.

Library 1, compiled to Widgets1.dll:

namespace Widgets
{
  public class Widget {}
}

Library 2, compiled to Widgets2.dll:

namespace Widgets
{
  public class Widget {}
}

Application, which references Widgets1.dll and Widgets2.dll:

using Widgets;

Widget w = new Widget();

The application cannot compile, because Widget is ambiguous. Extern aliases can
resolve the ambiguity. The first step is to modify the application’s .csproj file, assign‐
ing a unique alias to each reference:

<ItemGroup>
  <Reference Include="Widgets1">
    <Aliases>W1</Aliases>
  </Reference>
  <Reference Include="Widgets2">
    <Aliases>W2</Aliases>
  </Reference>
</ItemGroup>
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The second step is to use the extern alias directive:

extern alias W1;
extern alias W2;

W1.Widgets.Widget w1 = new W1.Widgets.Widget();
W2.Widgets.Widget w2 = new W2.Widgets.Widget();

Namespace alias qualifiers
As we mentioned earlier, names in inner namespaces hide names in outer namespa‐
ces. However, sometimes even the use of a fully qualified type name does not resolve
the conflict. Consider the following example:

namespace N
{
  class A
  {
    static void Main() => new A.B();     // Instantiate class B
    public class B {}                    // Nested type
  }
}

namespace A
{
  class B {}
}

The Main method could be instantiating either the nested class B, or the class B
within the namespace A. The compiler always gives higher precedence to identifiers
in the current namespace (in this case, the nested B class).

To resolve such conflicts, a namespace name can be qualified, relative to one of the
following:

• The global namespace—the root of all namespaces (identified with the contex‐•
tual keyword global)

• The set of extern aliases•

The :: token performs namespace alias qualification. In this example, we qualify
using the global namespace (this is most commonly seen in autogenerated code to
avoid name conflicts):

namespace N
{
  class A
  {
    static void Main()
    {
      System.Console.WriteLine (new A.B());
      System.Console.WriteLine (new global::A.B());
    }
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    public class B {}
  }
}

namespace A
{
  class B {}
}

Here is an example of qualifying with an alias (adapted from the example in
“Extern” on page 100):

extern alias W1;
extern alias W2;

W1::Widgets.Widget w1 = new W1::Widgets.Widget();
W2::Widgets.Widget w2 = new W2::Widgets.Widget();
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3
Creating Types in C#

In this chapter, we delve into types and type members.

Classes
A class is the most common kind of reference type. The simplest possible class
declaration is as follows:

class YourClassName
{
}

A more complex class optionally has the following:

Preceding the keyword
class

Attributes and class modifiers. The non-nested class modifiers are public,
internal, abstract, sealed, static, unsafe, and partial.

Following Your
ClassName

Generic type parameters and constraints, a base class, and interfaces.

Within the braces Class members (these are methods, properties, indexers, events, fields, constructors,
overloaded operators, nested types, and a finalizer).

This chapter covers all of these constructs except attributes, operator functions,
and the unsafe keyword, which are covered in Chapter 4. The following sections
enumerate each of the class members.

Fields
A field is a variable that is a member of a class or struct; for example:

class Octopus
{
  string name;
  public int Age = 10;
}

103



Fields allow the following modifiers:

Static modifier static

Access modifiers public internal private protected

Inheritance modifier new

Unsafe code modifier unsafe

Read-only modifier readonly

Threading modifier volatile

There are two popular naming conventions for private fields: camel-cased (e.g.,
firstName), and camel-cased with an underscore (_firstName). The latter conven‐
tion lets you instantly distinguish private fields from parameters and local variables.

The readonly modifier
The readonly modifier prevents a field from being modified after construction. A
read-only field can be assigned only in its declaration or within the enclosing type’s
constructor.

Field initialization
Field initialization is optional. An uninitialized field has a default value (0, '\0',
null, false). Field initializers run before constructors:

public int Age = 10;

A field initializer can contain expressions and call methods:

static readonly string TempFolder = System.IO.Path.GetTempPath();

Declaring multiple fields together
For convenience, you can declare multiple fields of the same type in a comma-
separated list. This is a convenient way for all the fields to share the same attributes
and field modifiers:

static readonly int legs = 8,
                    eyes = 2;

Constants
A constant is evaluated statically at compile time, and the compiler literally substi‐
tutes its value whenever used (rather like a macro in C++). A constant can be bool,
char, string, any of the built-in numeric types, or an enum type.

104 | Chapter 3: Creating Types in C#



A constant is declared with the const keyword and must be initialized with a value.
For example:

public class Test
{
  public const string Message = "Hello World";
}

A constant can serve a similar role to a static readonly field, but it is much more
restrictive—both in the types you can use and in field initialization semantics. A
constant also differs from a static readonly field in that the evaluation of the
constant occurs at compile time; thus

public static double Circumference (double radius)
{
  return 2 * System.Math.PI * radius;
}

is compiled to

public static double Circumference (double radius)
{
  return 6.2831853071795862 * radius;
}

It makes sense for PI to be a constant because its value is predetermined at compile
time. In contrast, a static readonly field’s value can potentially differ each time
the program is run:

static readonly DateTime StartupTime = DateTime.Now;

A static readonly field is also advantageous when exposing
to other assemblies a value that might change in a later ver‐
sion. For instance, suppose that assembly X exposes a constant
as follows:

public const decimal ProgramVersion = 2.3;

If assembly Y references X and uses this constant, the value
2.3 will be baked into assembly Y when compiled. This means
that if X is later recompiled with the constant set to 2.4, Y will
still use the old value of 2.3 until Y is recompiled. A static
readonly field avoids this problem.
Another way of looking at this is that any value that might
change in the future is not constant by definition; thus, it
should not be represented as one.

Constants can also be declared local to a method:

void Test()
{
  const double twoPI = 2 * System.Math.PI;
  ...
}
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Nonlocal constants allow the following modifiers:

Access modifiers public internal private protected

Inheritance modifier new

Methods
A method performs an action in a series of statements. A method can receive input
data from the caller by specifying parameters and output data back to the caller by
specifying a return type. A method can specify a void return type, indicating that
it doesn’t return any value to its caller. A method can also output data back to the
caller via ref/out parameters.

A method’s signature must be unique within the type. A method’s signature compri‐
ses its name and parameter types in order (but not the parameter names, nor the
return type).

Methods allow the following modifiers:

Static modifier static

Access modifiers public internal private protected

Inheritance modifiers new virtual abstract override sealed

Partial method modifier partial

Unmanaged code modifiers unsafe extern

Asynchronous code modifier async

Expression-bodied methods
A method that comprises a single expression, such as

int Foo (int x) { return x * 2; }

can be written more tersely as an expression-bodied method. A fat arrow replaces the
braces and return keyword:

int Foo (int x) => x * 2;

Expression-bodied functions can also have a void return type:

void Foo (int x) => Console.WriteLine (x);

Local methods
You can define a method within another method:

void WriteCubes()
{
  Console.WriteLine (Cube (3));
  Console.WriteLine (Cube (4));
  Console.WriteLine (Cube (5));
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  int Cube (int value) => value * value * value;
}

The local method (Cube, in this case) is visible only to the enclosing method (Write
Cubes). This simplifies the containing type and instantly signals to anyone looking
at the code that Cube is used nowhere else. Another benefit of local methods is that
they can access the local variables and parameters of the enclosing method. This
has a number of consequences, which we describe in detail in “Capturing Outer
Variables” on page 190.

Local methods can appear within other function kinds, such as property accessors,
constructors, and so on. You can even put local methods inside other local methods,
and inside lambda expressions that use a statement block (Chapter 4). Local meth‐
ods can be iterators (Chapter 4) or asynchronous (Chapter 14).

Static local methods
Adding the static modifier to a local method (from C# 8) prevents it from seeing
the local variables and parameters of the enclosing method. This helps to reduce
coupling and prevents the local method from accidentally referring to variables in
the containing method.

Local methods and top-level statements
Any methods that you declare in top-level statements are treated as local methods.
This means that (unless marked as static) they can access the variables in the
top-level statements:

int x = 3;
Foo();

void Foo() => Console.WriteLine (x);

Overloading methods
Local methods cannot be overloaded. This means that meth‐
ods declared in top-level statements (which are treated as local
methods) cannot be overloaded.

A type can overload methods (define multiple methods with the same name) as long
as the signatures are different. For example, the following methods can all coexist in
the same type:

void Foo (int x) {...}
void Foo (double x) {...}
void Foo (int x, float y) {...}
void Foo (float x, int y) {...}

However, the following pairs of methods cannot coexist in the same type, because
the return type and the params modifier are not part of a method’s signature:
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void  Foo (int x) {...}
float Foo (int x) {...}           // Compile-time error

void  Goo (int[] x) {...}
void  Goo (params int[] x) {...}  // Compile-time error

Whether a parameter is pass-by-value or pass-by-reference is also part of the signa‐
ture. For example, Foo(int) can coexist with either Foo(ref int) or Foo(out int).
However, Foo(ref int) and Foo(out int) cannot coexist:

void Foo (int x) {...}
void Foo (ref int x) {...}     // OK so far
void Foo (out int x) {...}     // Compile-time error

Instance Constructors
Constructors run initialization code on a class or struct. A constructor is defined
like a method, except that the method name and return type are reduced to the
name of the enclosing type:

Panda p = new Panda ("Petey");   // Call constructor

public class Panda
{
  string name;                   // Define field
  public Panda (string n)        // Define constructor
  {
    name = n;                    // Initialization code (set up field)
  }
}

Instance constructors allow the following modifiers:

Access modifiers public internal private protected

Unmanaged code modifiers unsafe extern

Single-statement constructors can also be written as expression-bodied members:

public Panda (string n) => name = n;

If a parameter name (or any variable name, for that matter)
conflicts with a field name, you can disambiguate by prefixing
the field with a this reference:

public Panda (string name) => this.name = name;

Overloading constructors
A class or struct may overload constructors. To avoid code duplication, one con‐
structor can call another, using the this keyword:

public class Wine
{
  public decimal Price;
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  public int Year;
  public Wine (decimal price) => Price = price;
  public Wine (decimal price, int year) : this (price) => Year = year;
}

When one constructor calls another, the called constructor executes first.

You can pass an expression into another constructor, as follows:

public Wine (decimal price, DateTime year) : this (price, year.Year) { }

The expression can access static members of the class but not instance members.
(This is enforced because the object has not been initialized by the constructor at
this stage, so any methods that you call on it are likely to fail.)

This particular example could be better implemented with a
single constructor that has year as an optional parameter:

public Wine (decimal price, int year = 0)
{
  Price = price; Year = year;
}

We will offer yet another solution shortly, in “Object Initializ‐
ers” on page 111.

Implicit parameterless constructors
For classes, the C# compiler automatically generates a parameterless public con‐
structor if and only if you do not define any constructors. However, as soon as
you define at least one constructor, the parameterless constructor is no longer
automatically generated.

Constructor and field initialization order
We previously saw that fields can be initialized with default values in their
declaration:

class Player
{
  int shields = 50;   // Initialized first
  int health = 100;   // Initialized second
}

Field initializations occur before the constructor is executed, and in the declaration
order of the fields.

Nonpublic constructors
Constructors need not be public. A common reason to have a nonpublic construc‐
tor is to control instance creation via a static method call. The static method could
be used to return an object from a pool rather than creating a new object, or to
return various subclasses based on input arguments:
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public class Class1
{
  Class1() {}                             // Private constructor
  public static Class1 Create (...)
  {
    // Perform custom logic here to return an instance of Class1
    ...
  }
}

Deconstructors
A deconstructor (also called a deconstructing method) acts as an approximate oppo‐
site to a constructor: whereas a constructor typically takes a set of values (as
parameters) and assigns them to fields, a deconstructor does the reverse and assigns
fields back to a set of variables.

A deconstruction method must be called Deconstruct and must have one or more
out parameters, such as in the following class:

class Rectangle
{
  public readonly float Width, Height;
  
  public Rectangle (float width, float height)
  {
    Width = width;
    Height = height;
  }
  
  public void Deconstruct (out float width, out float height)
  {
    width = Width;
    height = Height;
  }
}

The following special syntax calls the deconstructor:

var rect = new Rectangle (3, 4);
(float width, float height) = rect;          // Deconstruction
Console.WriteLine (width + " " + height);    // 3 4

The second line is the deconstructing call. It creates two local variables and
then calls the Deconstruct method. Our deconstructing call is equivalent to the
following:

float width, height;
rect.Deconstruct (out width, out height);

Or:

rect.Deconstruct (out var width, out var height);
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Deconstructing calls allow implicit typing, so we could shorten our call to this:

(var width, var height) = rect;

Or simply this:

var (width, height) = rect;

You can use C#’s discard symbol (_) if you’re uninterested in
one or more variables:

var (_, height) = rect;

This better indicates your intention than declaring a variable
that you never use.

If the variables into which you’re deconstructing are already defined, omit the types
altogether:

float width, height;
(width, height) = rect;

This is called a deconstructing assignment. You can use a deconstructing assignment
to simplify your class’s constructor:

public Rectangle (float width, float height) =>
  (Width, Height) = (width, height);

You can offer the caller a range of deconstruction options by overloading the
Deconstruct method.

The Deconstruct method can be an extension method (see
“Extension Methods” on page 217). This is a useful trick if you
want to deconstruct types that you did not author.

From C# 10, you can mix and match existing and new variables when
deconstructing:

double x1 = 0;
(x1, double y2) = rect;

Object Initializers
To simplify object initialization, any accessible fields or properties of an object can
be set via an object initializer directly after construction. For example, consider the
following class:

public class Bunny
{
  public string Name;
  public bool LikesCarrots, LikesHumans;

  public Bunny () {}
  public Bunny (string n) => Name = n;
}
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Using object initializers, you can instantiate Bunny objects as follows:

// Note parameterless constructors can omit empty parentheses
Bunny b1 = new Bunny { Name="Bo", LikesCarrots=true, LikesHumans=false };
Bunny b2 = new Bunny ("Bo")     { LikesCarrots=true, LikesHumans=false };

The code to construct b1 and b2 is precisely equivalent to the following:

Bunny temp1 = new Bunny();    // temp1 is a compiler-generated name
temp1.Name = "Bo";
temp1.LikesCarrots = true;
temp1.LikesHumans = false;
Bunny b1 = temp1;

Bunny temp2 = new Bunny ("Bo");
temp2.LikesCarrots = true;
temp2.LikesHumans = false;
Bunny b2 = temp2;

The temporary variables are to ensure that if an exception is thrown during initiali‐
zation, you can’t end up with a half-initialized object.

Object Initializers Versus Optional Parameters
Instead of relying on object initializers, we could write Bunny’s constructor as fol‐
lows, with one mandatory and two optional parameters:

public Bunny (string name,
              bool likesCarrots = false,
              bool likesHumans = false)
{
  Name = name;
  LikesCarrots = likesCarrots;
  LikesHumans = likesHumans; 
}

This would allow us to construct a Bunny as follows:

Bunny b1 = new Bunny (name: "Bo",
                      likesCarrots: true);

Historically, relying on constructors for object initialization could be advantageous
in that it allowed us to make Bunny’s fields (or properties, which we’ll explain shortly)
read-only. Making fields or properties read-only is good practice when there’s no
valid reason for them to change throughout the life of the object. However, as we’ll
see soon in our discussion on properties, the init modifier that was introduced in
C# 9 lets us achieve this goal with object initializers.

Optional parameters have two drawbacks. The first is that while their use in con‐
structors allows for read-only types, they don’t (easily) allow for nondestructive
mutation. (We’ll cover nondestructive mutation—and the solution to this problem
—in “Records” on page 227.)

The second drawback of optional parameters is that when used in public libraries,
they hinder backward compatibility. This is because the act of adding an optional
parameter at a later date breaks the assembly’s binary compatibility with existing
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consumers. (This is particularly important when a library is published on NuGet:
the problem becomes intractable when a consumer references packages A and B, if
A and B each depend on incompatible versions of L.)

The difficulty is that each optional parameter value is baked into the calling site. In
other words, C# translates our constructor call into this:

Bunny b1 = new Bunny ("Bo", true, false);

This is problematic if we instantiate the Bunny class from another assembly and
later modify Bunny by adding another optional parameter—such as likesCats.
Unless the referencing assembly is also recompiled, it will continue to call the
(now nonexistent) constructor with three parameters and fail at runtime. (A subtler
problem is that if we changed the value of one of the optional parameters, callers
in other assemblies would continue to use the old optional value until they were
recompiled.)

A final consideration is the effect of constructors on subclassing (which we will
cover in “Inheritance” on page 126). Having multiple constructors with long param‐
eter lists makes subclassing cumbersome; therefore, it can help to keep constructors
to a minimum in number and complexity and use object initializers to fill in the
details.

The this Reference
The this reference refers to the instance itself. In the following example, the Marry
method uses this to set the partner’s mate field:

public class Panda
{
  public Panda Mate;

  public void Marry (Panda partner)
  {
    Mate = partner;
    partner.Mate = this;
  }
}

The this reference also disambiguates a local variable or parameter from a field; for
example:

public class Test
{
  string name;
  public Test (string name) => this.name = name;
}

The this reference is valid only within nonstatic members of a class or struct.
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Properties
Properties look like fields from the outside, but internally they contain logic, like
methods do. For example, you can’t tell by looking at the following code whether
CurrentPrice is a field or a property:

Stock msft = new Stock();
msft.CurrentPrice = 30;
msft.CurrentPrice -= 3;
Console.WriteLine (msft.CurrentPrice);

A property is declared like a field but with a get/set block added. Here’s how to
implement CurrentPrice as a property:

public class Stock
{
  decimal currentPrice;           // The private "backing" field

  public decimal CurrentPrice     // The public property
  {
    get { return currentPrice; }
    set { currentPrice = value; }
  }
}

get and set denote property accessors. The get accessor runs when the property
is read. It must return a value of the property’s type. The set accessor runs when
the property is assigned. It has an implicit parameter named value of the property’s
type that you typically assign to a private field (in this case, currentPrice).

Although properties are accessed in the same way as fields, they differ in that they
give the implementer complete control over getting and setting its value. This con‐
trol enables the implementer to choose whatever internal representation is needed
without exposing the internal details to the user of the property. In this example, the
set method could throw an exception if value was outside a valid range of values.

Throughout this book, we use public fields extensively to keep
the examples free of distraction. In a real application, you
would typically favor public properties over public fields in
order to promote encapsulation.

Properties allow the following modifiers:

Static modifier static

Access modifiers public internal private protected

Inheritance modifiers new virtual abstract override sealed

Unmanaged code modifiers unsafe extern
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Read-only and calculated properties
A property is read-only if it specifies only a get accessor, and it is write-only if it
specifies only a set accessor. Write-only properties are rarely used.

A property typically has a dedicated backing field to store the underlying data.
However, a property can also be computed from other data:

decimal currentPrice, sharesOwned;

public decimal Worth
{
  get { return currentPrice * sharesOwned; }
}

Expression-bodied properties
You can declare a read-only property, such as the one in the preceding example,
more tersely as an expression-bodied property. A fat arrow replaces all the braces and
the get and return keywords:

public decimal Worth => currentPrice * sharesOwned;

With a little extra syntax, set accessors can also be expression-bodied:

public decimal Worth
{
  get => currentPrice * sharesOwned;
  set => sharesOwned = value / currentPrice;
}

Automatic properties
The most common implementation for a property is a getter and/or setter that sim‐
ply reads and writes to a private field of the same type as the property. An automatic
property declaration instructs the compiler to provide this implementation. We can
improve the first example in this section by declaring CurrentPrice as an automatic
property:

public class Stock
{
  ...
  public decimal CurrentPrice { get; set; }
}

The compiler automatically generates a private backing field of a compiler-
generated name that cannot be referred to. The set accessor can be marked private
or protected if you want to expose the property as read-only to other types.
Automatic properties were introduced in C# 3.0.
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Property initializers
You can add a property initializer to automatic properties, just as with fields:

public decimal CurrentPrice { get; set; } = 123;

This gives CurrentPrice an initial value of 123. Properties with an initializer can be
read-only:

public int Maximum { get; } = 999;

Just as with read-only fields, read-only automatic properties can also be assigned in
the type’s constructor. This is useful in creating immutable (read-only) types.

get and set accessibility
The get and set accessors can have different access levels. The typical use case for
this is to have a public property with an internal or private access modifier on
the setter:

public class Foo
{
  private decimal x;
  public decimal X
  {
    get         { return x;  }
    private set { x = Math.Round (value, 2); }
  }
}

Notice that you declare the property itself with the more permissive access level
(public, in this case) and add the modifier to the accessor you want to be less
accessible.

Init-only setters
From C# 9, you can declare a property accessor with init instead of set:

public class Note
{
  public int Pitch    { get; init; } = 20;   // “Init-only” property
  public int Duration { get; init; } = 100;  // “Init-only” property
}

These init-only properties act like read-only properties, except that they can also be
set via an object initializer:

var note = new Note { Pitch = 50 };

After that, the property cannot be altered:

note.Pitch = 200;  // Error – init-only setter!

Init-only properties cannot even be set from inside their class, except via their
property initializer, the constructor, or another init-only accessor.
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The alternative to init-only properties is to have read-only properties that you
populate via a constructor:

public class Note
{
  public int Pitch    { get; }
  public int Duration { get; }

  public Note (int pitch = 20, int duration = 100)
  {
    Pitch = pitch; Duration = duration;
  }
}

Should the class be part of a public library, this approach makes versioning difficult,
in that adding an optional parameter to the constructor at a later date breaks binary
compatibility with consumers (whereas adding a new init-only property breaks
nothing).

Init-only properties have another significant advantage, which
is that they allow for nondestructive mutation when used in
conjunction with records (see “Records” on page 227).

Just as with ordinary set accessors, init-only accessors can provide an
implementation:

public class Note
{
  readonly int _pitch;
  public int Pitch { get => _pitch; init => _pitch = value; }
  ...

Notice that the _pitch field is read-only: init-only setters are permitted to modify
readonly fields in their own class. (Without this feature, _pitch would need to be
writable, and the class would fail at being internally immutable.)

Changing a property’s accessor from init to set (or vice
versa) is a binary breaking change: anyone that references your
assembly will need to recompile their assembly.
This should not be an issue when creating wholly immutable
types, in that your type will never require properties with a
(writable) set accessor.

CLR property implementation
C# property accessors internally compile to methods called get_XXX and set_XXX:

public decimal get_CurrentPrice {...}
public void set_CurrentPrice (decimal value) {...}

An init accessor is processed like a set accessor, but with an extra flag encoded
into the set accessor’s “modreq” metadata (see “Init-only properties” on page 818).
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Simple nonvirtual property accessors are inlined by the Just-In-Time (JIT) compiler,
eliminating any performance difference between accessing a property and a field.
Inlining is an optimization in which a method call is replaced with the body of that
method.

Indexers
Indexers provide a natural syntax for accessing elements in a class or struct that
encapsulate a list or dictionary of values. Indexers are similar to properties but are
accessed via an index argument rather than a property name. The string class has
an indexer that lets you access each of its char values via an int index:

string s = "hello";
Console.WriteLine (s[0]); // 'h'
Console.WriteLine (s[3]); // 'l'

The syntax for using indexers is like that for using arrays, except that the index
argument(s) can be of any type(s).

Indexers have the same modifiers as properties (see “Properties” on page 114) and
can be called null-conditionally by inserting a question mark before the square
bracket (see “Null Operators” on page 82):

string s = null;
Console.WriteLine (s?[0]);  // Writes nothing; no error.

Implementing an indexer
To write an indexer, define a property called this, specifying the arguments in
square brackets:

class Sentence
{
  string[] words = "The quick brown fox".Split();

  public string this [int wordNum]      // indexer
  {
    get { return words [wordNum];  }
    set { words [wordNum] = value; }
  }
}

Here’s how we could use this indexer:

Sentence s = new Sentence();
Console.WriteLine (s[3]);       // fox
s[3] = "kangaroo";
Console.WriteLine (s[3]);       // kangaroo

A type can declare multiple indexers, each with parameters of different types. An
indexer can also take more than one parameter:

public string this [int arg1, string arg2]
{
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  get { ... }  set { ... }
}

If you omit the set accessor, an indexer becomes read-only, and you can use
expression-bodied syntax to shorten its definition:

public string this [int wordNum] => words [wordNum];

CLR indexer implementation
Indexers internally compile to methods called get_Item and set_Item, as follows:

public string get_Item (int wordNum) {...}
public void set_Item (int wordNum, string value) {...}

Using indices and ranges with indexers
You can support indices and ranges (see “Indices and Ranges” on page 63) in
your own classes by defining an indexer with a parameter type of Index or Range.
We could extend our previous example, by adding the following indexers to the
Sentence class:

  public string this [Index index] => words [index];
  public string[] this [Range range] => words [range];

This then enables the following:

Sentence s = new Sentence();
Console.WriteLine (s [^1]);         // fox  
string[] firstTwoWords = s [..2];   // (The, quick)

Primary Constructors (C# 12)
From C# 12, you can include a parameter list directly after a class (or struct)
declaration:

class Person (string firstName, string lastName)
{
  public void Print() => Console.WriteLine (firstName + " " + lastName);
}

This instructs the compiler to automatically build a primary constructor using the
primary constructor parameters (firstName and lastName), so that we can instanti‐
ate our class as follows:

Person p = new Person ("Alice", "Jones");
p.Print();    // Alice Jones

Primary constructors are useful for prototyping and other simple scenarios. The
alternative would be to define fields and write a constructor explicitly:

class Person    // (without primary constructors)
{
  string firstName, lastName;       // Field declarations

  public Person (string firstName, string lastName)   // Constructor
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  {
    this.firstName = firstName;     // Assign field
    this.lastName = lastName;       // Assign field
  }

  public void Print() => Console.WriteLine (firstName + " " + lastName);
}

The constructor that C# builds is called primary because any additional construc‐
tors that you choose to (explicitly) write must invoke it:

class Person (string firstName, string lastName)
{
  public Person (string firstName, string lastName, int age)
    : this (firstName, lastName)   // Must call the primary constructor
  {
    ...
  }
}

This ensures that primary constructor parameters are always populated.

C# also provides records, which we cover in “Records” on page
227. Records also support primary constructors; however, the
compiler takes an extra step with records and generates (by
default) a public init-only property for each primary construc‐
tor parameter. Should this behavior be desirable, consider
using records instead.

Primary constructors are best suited to simple scenarios due to the following
limitations:

• You cannot add extra initialization code to a primary constructor.•
• Although it’s easy to expose a primary constructor parameter as a public•

property, you cannot easily incorporate validation logic unless the property is
read-only.

Primary constructors displace the default parameterless constructor that C# would
otherwise generate.

Primary constructor semantics
To understand how primary constructors work, consider how an ordinary con‐
structor behaves:

class Person
{
  public Person (string firstName, string lastName)
  {
    ... do something with firstName, lastName
  }
}
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When the code inside this constructor finishes executing, parameters firstName
and lastName disappear out of scope and cannot be subsequently accessed. In
contrast, a primary constructor’s parameters do not disappear out of scope and can
be subsequently accessed from anywhere within the class, for the life of the object.

Primary constructor parameters are special C# constructs, not
fields, although the compiler does end up generating hidden
fields behind the scenes to store their values if necessary.

Primary constructors and field/property initializers
The accessibility of primary constructor parameters extends to field and property
initializers. In the following example, we use field and property initializers to assign
firstName to a public field, and lastName to a public property:

class Person (string firstName, string lastName)
{
  public readonly string FirstName = firstName;  // Field
  public string LastName { get; } = lastName;    // Property
}

Masking primary constructor parameters
Fields (or properties) can reuse primary constructor parameter names:

class Person (string firstName, string lastName)
{
  readonly string firstName = firstName;
  readonly string lastName = lastName;

  public void Print() => Console.WriteLine (firstName + " " + lastName);
}

In this scenario, the field or property takes precedence, thereby masking the pri‐
mary constructor parameter, except on the righthand side of field and property
initializers (shown in boldface).

Just like ordinary parameters, primary constructor parameters
are writable. Masking them with a same-named readonly
field (as in our example) effectively protects them from subse‐
quent modification.

Validating primary constructor parameters
Sometimes it’s useful to perform computation in field initializers:

new Person ("Alice", "Jones").Print();   // Alice Jones

class Person (string firstName, string lastName)
{
  public readonly string FullName = firstName + " " + lastName;
  public void Print() => Console.WriteLine (FullName);
}
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In the next example, we save an uppercase version of lastName to a field of the same
name (masking the original value):

new Person ("Alice", "Jones").Print();   // Alice JONES

class Person (string firstName, string lastName)
{
  readonly string lastName = lastName.ToUpper();
  public void Print() => Console.WriteLine (firstName + " " + lastName);
}

In “throw expressions” on page 200, we describe how to throw exceptions when
encountering scenarios such as invalid data. Here’s a preview to illustrate how this
can be used with primary constructors to validate lastName upon construction,
ensuring that it cannot be null:

new Person ("Alice", null);   // throws ArgumentNullException

class Person (string firstName, string lastName)
{
  readonly string lastName = (lastName == null)
     ? throw new ArgumentNullException ("lastName")
     : lastName;
}

(Remember that code within a field or property initializer executes when the object
is constructed—not when the field or property is accessed.) In the next example, we
expose a primary constructor parameter as a read/write property:

class Person (string firstName, string lastName)
{
  public string LastName { get; set; } = lastName;
}

Adding validation to this example is not straightforward in that you must validate in
two places: in a (manually implemented) property set accessor and in the property
initializer. (The same problem exists if the property is defined as init-only.) At
this point, it’s easier to abandon the shortcut of primary constructors and define a
constructor and backing fields explicitly.

Static Constructors
A static constructor executes once per type rather than once per instance. A type can
define only one static constructor, and it must be parameterless and have the same
name as the type:

class Test
{
  static Test() { Console.WriteLine ("Type Initialized"); }
}
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The runtime automatically invokes a static constructor just prior to the type being
used. Two things trigger this:

• Instantiating the type•
• Accessing a static member in the type•

The only modifiers allowed by static constructors are unsafe and extern.

If a static constructor throws an unhandled exception (Chap‐
ter 4), that type becomes unusable for the life of the applica‐
tion.

From C# 9, you can also define module initializers, which
execute once per assembly (when the assembly is first loaded).
To define a module initializer, write a static void method
and then apply the [ModuleInitializer] attribute to that
method:

[System.Runtime.CompilerServices.ModuleInitializer]
internal static void InitAssembly()
{
  ...
}

Static constructors and field initialization order
Static field initializers run just before the static constructor is called. If a type has
no static constructor, static field initializers will execute just prior to the type being
used—or anytime earlier at the whim of the runtime.

Static field initializers run in the order in which the fields are declared. The follow‐
ing example illustrates this. X is initialized to 0, and Y is initialized to 3:

class Foo
{
  public static int X = Y;    // 0
  public static int Y = 3;    // 3
}

If we swap the two field initializers around, both fields are initialized to 3. The next
example prints 0 followed by 3 because the field initializer that instantiates a Foo
executes before X is initialized to 3:

Console.WriteLine (Foo.X);    // 3

class Foo
{
  public static Foo Instance = new Foo();
  public static int X = 3;

  Foo() => Console.WriteLine (X);    // 0
}

If we swap the two lines in boldface, the example prints 3 followed by 3.
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Static Classes
A class marked static cannot be instantiated or subclassed, and must be composed
solely of static members. The System.Console and System.Math classes are good
examples of static classes.

Finalizers
Finalizers are class-only methods that execute before the garbage collector reclaims
the memory for an unreferenced object. The syntax for a finalizer is the name of the
class prefixed with the ~ symbol:

class Class1
{
  ~Class1()
  {
    ...
  }
}

This is actually C# syntax for overriding Object’s Finalize method, and the com‐
piler expands it into the following method declaration:

protected override void Finalize()
{
  ...
  base.Finalize();
}

We discuss garbage collection and finalizers fully in Chapter 12.

You can write single-statement finalizers using expression-bodied syntax:

~Class1() => Console.WriteLine ("Finalizing");

Partial Types and Methods
Partial types allow a type definition to be split—typically across multiple files. A
common scenario is for a partial class to be autogenerated from some other source
(such as a Visual Studio template or designer), and for that class to be augmented
with additional hand-authored methods:

// PaymentFormGen.cs - auto-generated
partial class PaymentForm { ... }

// PaymentForm.cs - hand-authored
partial class PaymentForm { ... }

Each participant must have the partial declaration; the following is illegal:

partial class PaymentForm {}
class PaymentForm {}
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Participants cannot have conflicting members. A constructor with the same param‐
eters, for instance, cannot be repeated. Partial types are resolved entirely by the
compiler, which means that each participant must be available at compile time and
must reside in the same assembly.

You can specify a base class on one or more partial class declarations, as long
as the base class, if specified, is the same. In addition, each participant can inde‐
pendently specify interfaces to implement. We cover base classes and interfaces in
“Inheritance” on page 126 and “Interfaces” on page 147.

The compiler makes no guarantees with regard to field initialization order between
partial type declarations.

Partial methods
A partial type can contain partial methods. These let an autogenerated partial type
provide customizable hooks for manual authoring; for example:

partial class PaymentForm    // In auto-generated file
{
  ...
  partial void ValidatePayment (decimal amount);
}

partial class PaymentForm    // In hand-authored file
{
  ...
  partial void ValidatePayment (decimal amount)
  {
    if (amount > 100)
      ...
  }
}

A partial method consists of two parts: a definition and an implementation. The
definition is typically written by a code generator, and the implementation is typi‐
cally manually authored. If an implementation is not provided, the definition of the
partial method is compiled away (as is the code that calls it). This allows autogener‐
ated code to be liberal in providing hooks without having to worry about bloat.
Partial methods must be void and are implicitly private. They cannot include out
parameters.

Extended partial methods
Extended partial methods (from C# 9) are designed for the reverse code generation
scenario, where a programmer defines hooks that a code generator implements. An
example of where this might occur is with source generators, a Roslyn feature that
lets you feed the compiler an assembly that automatically generates portions of your
code.
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A partial method declaration is extended if it begins with an accessibility modifier:

public partial class Test
{
  public partial void M1();    // Extended partial method
  private partial void M2();   // Extended partial method
}

The presence of the accessibility modifier doesn’t just affect accessibility: it tells the
compiler to treat the declaration differently.

Extended partial methods must have implementations; they do not melt away
if unimplemented. In this example, both M1 and M2 must have implementations
because they each specify accessibility modifiers (public and private).

Because they cannot melt away, extended partial methods can return any type and
can include out parameters:

public partial class Test
{
  public partial bool IsValid (string identifier);
  internal partial bool TryParse (string number, out int result);
}

The nameof operator
The nameof operator returns the name of any symbol (type, member, variable, and
so on) as a string:

int count = 123;
string name = nameof (count);       // name is "count"

Its advantage over simply specifying a string is that of static type checking. Tools
such as Visual Studio can understand the symbol reference, so if you rename the
symbol in question, all of its references will be renamed, too.

To specify the name of a type member such as a field or property, include the type as
well. This works with both static and instance members:

string name = nameof (StringBuilder.Length);

This evaluates to Length. To return StringBuilder.Length, you would do this:

nameof (StringBuilder) + "." + nameof (StringBuilder.Length);

Inheritance
A class can inherit from another class to extend or customize the original class.
Inheriting from a class lets you reuse the functionality in that class instead of
building it from scratch. A class can inherit from only a single class but can itself be
inherited by many classes, thus forming a class hierarchy. In this example, we begin
by defining a class called Asset:
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public class Asset
{
  public string Name;
}

Next, we define classes called Stock and House, which will inherit from Asset.
Stock and House get everything an Asset has, plus any additional members that
they define:

public class Stock : Asset   // inherits from Asset
{
  public long SharesOwned;
}

public class House : Asset   // inherits from Asset
{
  public decimal Mortgage;
}

Here’s how we can use these classes:

Stock msft = new Stock { Name="MSFT",
                         SharesOwned=1000 };

Console.WriteLine (msft.Name);         // MSFT
Console.WriteLine (msft.SharesOwned);  // 1000

House mansion = new House { Name="Mansion",
                            Mortgage=250000 };

Console.WriteLine (mansion.Name);      // Mansion
Console.WriteLine (mansion.Mortgage);  // 250000

The derived classes, Stock and House, inherit the Name field from the base class,
Asset.

A derived class is also called a subclass.
A base class is also called a superclass.

Polymorphism
References are polymorphic. This means a variable of type x can refer to an object
that subclasses x. For instance, consider the following method:

public static void Display (Asset asset)
{
  System.Console.WriteLine (asset.Name);
}

This method can display both a Stock and a House because they are both Assets:

Stock msft    = new Stock ... ;
House mansion = new House ... ;
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Display (msft);
Display (mansion);

Polymorphism works on the basis that subclasses (Stock and House) have all the
features of their base class (Asset). The converse, however, is not true. If Display
was modified to accept a House, you could not pass in an Asset:

Display (new Asset());     // Compile-time error

public static void Display (House house)         // Will not accept Asset
{
  System.Console.WriteLine (house.Mortgage);
}

Casting and Reference Conversions
An object reference can be:

• Implicitly upcast to a base class reference•
• Explicitly downcast to a subclass reference•

Upcasting and downcasting between compatible reference types performs reference
conversions: a new reference is (logically) created that points to the same object. An
upcast always succeeds; a downcast succeeds only if the object is suitably typed.

Upcasting
An upcast operation creates a base class reference from a subclass reference:

Stock msft = new Stock();
Asset a = msft;              // Upcast

After the upcast, variable a still references the same Stock object as variable msft.
The object being referenced is not itself altered or converted:

Console.WriteLine (a == msft);        // True

Although a and msft refer to the identical object, a has a more restrictive view on
that object:

Console.WriteLine (a.Name);           // OK
Console.WriteLine (a.SharesOwned);    // Compile-time error

The last line generates a compile-time error because the variable a is of type Asset,
even though it refers to an object of type Stock. To get to its SharesOwned field, you
must downcast the Asset to a Stock.

Downcasting
A downcast operation creates a subclass reference from a base class reference:

Stock msft = new Stock();
Asset a = msft;                      // Upcast
Stock s = (Stock)a;                  // Downcast
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Console.WriteLine (s.SharesOwned);   // <No error>
Console.WriteLine (s == a);          // True
Console.WriteLine (s == msft);       // True

As with an upcast, only references are affected—not the underlying object. A down‐
cast requires an explicit cast because it can potentially fail at runtime:

House h = new House();
Asset a = h;               // Upcast always succeeds
Stock s = (Stock)a;        // Downcast fails: a is not a Stock

If a downcast fails, an InvalidCastException is thrown. This is an example of
runtime type checking (we elaborate on this concept in “Static and Runtime Type
Checking” on page 140).

The as operator
The as operator performs a downcast that evaluates to null (rather than throwing
an exception) if the downcast fails:

Asset a = new Asset();
Stock s = a as Stock;       // s is null; no exception thrown

This is useful when you’re going to subsequently test whether the result is null:

if (s != null) Console.WriteLine (s.SharesOwned);

Without such a test, a cast is advantageous, because if it fails,
a more helpful exception is thrown. We can illustrate by com‐
paring the following two lines of code:

long shares = ((Stock)a).SharesOwned;    // Approach #1
long shares = (a as Stock).SharesOwned;  // Approach #2

If a is not a Stock, the first line throws an InvalidCastExcep
tion, which is an accurate description of what went wrong.
The second line throws a NullReferenceException, which is
ambiguous. Was a not a Stock, or was a null?
Another way of looking at it is that with the cast operator,
you’re saying to the compiler: “I’m certain of a value’s type; if
I’m wrong, there’s a bug in my code, so throw an exception!”
Whereas with the as operator, you’re uncertain of its type and
want to branch according to the outcome at runtime.

The as operator cannot perform custom conversions (see “Operator Overloading” on
page 256), and it cannot do numeric conversions:

long x = 3 as long;    // Compile-time error

The as and cast operators will also perform upcasts, although
this is not terribly useful because an implicit conversion will
do the job.
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The is operator
The is operator tests whether a variable matches a pattern. C# supports several
kinds of patterns, the most important being a type pattern, where a type name
follows the is keyword.

In this context, the is operator tests whether a reference conversion would suc‐
ceed—in other words, whether an object derives from a specified class (or imple‐
ments an interface). It is often used to test before downcasting:

if (a is Stock)
  Console.WriteLine (((Stock)a).SharesOwned);

The is operator also evaluates to true if an unboxing conversion would succeed (see
“The object Type” on page 138). However, it does not consider custom or numeric
conversions.

The is operator works with many other patterns introduced
in recent versions of C#. For a full discussion, see “Patterns”
on page 238.

Introducing a pattern variable
You can introduce a variable while using the is operator:

if (a is Stock s)
  Console.WriteLine (s.SharesOwned);

This is equivalent to the following:

Stock s;
if (a is Stock)
{
  s = (Stock) a;
  Console.WriteLine (s.SharesOwned);
}

The variable that you introduce is available for “immediate” consumption, so the
following is legal:

if (a is Stock s && s.SharesOwned > 100000)
  Console.WriteLine ("Wealthy");

And it remains in scope outside the is expression, allowing this:

if (a is Stock s && s.SharesOwned > 100000)
  Console.WriteLine ("Wealthy");
else
  s = new Stock();   // s is in scope

Console.WriteLine (s.SharesOwned);  // Still in scope
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Virtual Function Members
A function marked as virtual can be overridden by subclasses wanting to provide
a specialized implementation. Methods, properties, indexers, and events can all be
declared virtual:

public class Asset
{
  public string Name;
  public virtual decimal Liability => 0;   // Expression-bodied property
}

(Liability => 0 is a shortcut for { get { return 0; } }. For more details on
this syntax, see “Expression-bodied properties” on page 115.)

A subclass overrides a virtual method by applying the override modifier:

public class Stock : Asset
{
  public long SharesOwned;
}

public class House : Asset
{
  public decimal Mortgage;
  public override decimal Liability => Mortgage;
}

By default, the Liability of an Asset is 0. A Stock does not need to specialize this
behavior. However, the House specializes the Liability property to return the value
of the Mortgage:

House mansion = new House { Name="McMansion", Mortgage=250000 };
Asset a = mansion;
Console.WriteLine (mansion.Liability);  // 250000
Console.WriteLine (a.Liability);        // 250000

The signatures, return types, and accessibility of the virtual and overridden methods
must be identical. An overridden method can call its base class implementation via
the base keyword (we cover this in “The base Keyword” on page 134).

Calling virtual methods from a constructor is potentially dan‐
gerous because authors of subclasses are unlikely to know,
when overriding the method, that they are working with
a partially initialized object. In other words, the overriding
method might end up accessing methods or properties that
rely on fields not yet initialized by the constructor.

Covariant return types
From C# 9, you can override a method (or property get accessor) such that it
returns a more derived (subclassed) type. For example:
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public class Asset
{
  public string Name;
  public virtual Asset Clone() => new Asset { Name = Name };
}

public class House : Asset
{
  public decimal Mortgage;
  public override House Clone() => new House
                                   { Name = Name, Mortgage = Mortgage };
}

This is permitted because it does not break the contract that Clone must return an
Asset: it returns a House, which is an Asset (and more).

Prior to C# 9, you had to override methods with the identical return type:

public override Asset Clone() => new House { ... }

This still does the job, because the overridden Clone method instantiates a House
rather than an Asset. However, to treat the returned object as a House, you must
then perform a downcast:

House mansion1 = new House { Name="McMansion", Mortgage=250000 };
House mansion2 = (House) mansion1.Clone();

Abstract Classes and Abstract Members
A class declared as abstract can never be instantiated. Instead, only its concrete
subclasses can be instantiated.

Abstract classes are able to define abstract members. Abstract members are like vir‐
tual members except that they don’t provide a default implementation. That imple‐
mentation must be provided by the subclass unless that subclass is also declared
abstract:

public abstract class Asset
{
  // Note empty implementation
  public abstract decimal NetValue { get; }
}

public class Stock : Asset
{
  public long SharesOwned;
  public decimal CurrentPrice;

  // Override like a virtual method.
  public override decimal NetValue => CurrentPrice * SharesOwned;
}
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Hiding Inherited Members
A base class and a subclass can define identical members. For example:

public class A      { public int Counter = 1; }
public class B : A  { public int Counter = 2; }

The Counter field in class B is said to hide the Counter field in class A. Usually, this
happens by accident, when a member is added to the base type after an identical
member was added to the subtype. For this reason, the compiler generates a warn‐
ing and then resolves the ambiguity as follows:

• References to A (at compile time) bind to A.Counter.•

• References to B (at compile time) bind to B.Counter.•

Occasionally, you want to hide a member deliberately, in which case you can apply
the new modifier to the member in the subclass. The new modifier does nothing more
than suppress the compiler warning that would otherwise result:

public class A     { public     int Counter = 1; }
public class B : A { public new int Counter = 2; }

The new modifier communicates your intent to the compiler—and other program‐
mers—that the duplicate member is not an accident.

C# overloads the new keyword to have independent meanings
in different contexts. Specifically, the new operator is different
from the new member modifier.

new versus override
Consider the following class hierarchy:

public class BaseClass
{
  public virtual void Foo()  { Console.WriteLine ("BaseClass.Foo"); }
}

public class Overrider : BaseClass
{
  public override void Foo() { Console.WriteLine ("Overrider.Foo"); }
}

public class Hider : BaseClass
{
  public new void Foo()      { Console.WriteLine ("Hider.Foo"); }
}

The differences in behavior between Overrider and Hider are demonstrated in the
following code:

Overrider over = new Overrider();
BaseClass b1 = over;
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over.Foo();                         // Overrider.Foo
b1.Foo();                           // Overrider.Foo

Hider h = new Hider();
BaseClass b2 = h;
h.Foo();                           // Hider.Foo
b2.Foo();                          // BaseClass.Foo

Sealing Functions and Classes
An overridden function member can seal its implementation with the sealed key‐
word to prevent it from being overridden by further subclasses. In our earlier
virtual function member example, we could have sealed House’s implementation of
Liability, preventing a class that derives from House from overriding Liability,
as follows:

public sealed override decimal Liability { get { return Mortgage; } }

You can also apply the sealed modifier to the class itself, to prevent subclassing.
Sealing a class is more common than sealing a function member.

Although you can seal a function member against overriding, you can’t seal a
member against being hidden.

The base Keyword
The base keyword is similar to the this keyword. It serves two essential purposes:

• Accessing an overridden function member from the subclass•
• Calling a base-class constructor (see the next section)•

In this example, House uses the base keyword to access Asset’s implementation of
Liability:

public class House : Asset
{
  ...
  public override decimal Liability => base.Liability + Mortgage;
}

With the base keyword, we access Asset’s Liability property nonvirtually. This
means that we will always access Asset’s version of this property—regardless of the
instance’s actual runtime type.

The same approach works if Liability is hidden rather than overridden. (You
can also access hidden members by casting to the base class before invoking the
function.)
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Constructors and Inheritance
A subclass must declare its own constructors. The base class’s constructors are
accessible to the derived class but are never automatically inherited. For example, if
we define Baseclass and Subclass as follows:

public class Baseclass
{
  public int X;
  public Baseclass () { }
  public Baseclass (int x) => X = x;
}

public class Subclass : Baseclass { }

the following is illegal:

Subclass s = new Subclass (123);

Subclass must hence “redefine” any constructors it wants to expose. In doing so,
however, it can call any of the base class’s constructors via the base keyword:

public class Subclass : Baseclass
{
  public Subclass (int x) : base (x) { }
}

The base keyword works rather like the this keyword except that it calls a con‐
structor in the base class.

Base-class constructors always execute first; this ensures that base initialization
occurs before specialized initialization.

Implicit calling of the parameterless base-class constructor
If a constructor in a subclass omits the base keyword, the base type’s parameterless
constructor is implicitly called:

public class Baseclass
{
  public int X;
  public Baseclass() { X = 1; }
}

public class Subclass : Baseclass
{
  public Subclass() { Console.WriteLine (X); }  // 1
}

If the base class has no accessible parameterless constructor, subclasses are forced to
use the base keyword in their constructors. This means that a base class with (only)
a multiparameter constructor burdens subclasses with the obligation to call it:

class Baseclass
{
   public Baseclass (int x, int y, int z, string s, DateTime d) { ... }
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}

public class Subclass : Baseclass
{
  public Subclass (int x, int y, int z, string s, DateTime d)
    : base (x, y, z, s, d) { ... }
}

Required members (C# 11)
The requirement for subclasses to invoke a constructor in the base class can become
burdensome in large class hierarchies if there are many constructors with many
parameters. Sometimes, the best solution is to avoid constructors altogether and
rely solely on object initializers to set fields or properties during construction. To
help with this, you can mark a field or property as required (from C# 11):

public class Asset
{
  public required string Name;
}

A required member must be populated via an object initializer when constructed:

Asset a1 = new Asset { Name="House" };  // OK
Asset a2 = new Asset();                 // Error: will not compile!

Should you wish to also write a constructor, you can apply the [SetsRequired
Members] attribute to bypass the required member restriction for that constructor:

public class Asset
{
  public required string Name;

  public Asset() { }
    
  [System.Diagnostics.CodeAnalysis.SetsRequiredMembers]
  public Asset (string n) => Name = n;
}

Consumers can now benefit from the convenience of that constructor without any
trade-off:

Asset a1 = new Asset { Name = "House" };  // OK
Asset a2 = new Asset ("House");           // OK
Asset a3 = new Asset();                   // Error!

Notice that we also defined a parameterless constructor (for use with the object
initializer). Its presence also ensures that subclasses remain under no burden to
reproduce any constructor. In the following example, the House class chooses not to
implement a convenience constructor:

public class House : Asset { }            // No constructor, no worries!

House h1 = new House { Name = "House" };  // OK
House h2 = new House();                   // Error!

136 | Chapter 3: Creating Types in C#



Constructor and field initialization order
When an object is instantiated, initialization takes place in the following order:

1. From subclass to base class:1.
a. Fields are initialized.a.
b. Arguments to base-class constructor calls are evaluated.b.

2. From base class to subclass:2.
a. Constructor bodies execute.a.

For example:

public class B
{
  int x = 1;         // Executes 3rd
  public B (int x)
  {
    ...              // Executes 4th
  }
}
public class D : B
{
  int y = 1;         // Executes 1st
  public D (int x)
    : base (x + 1)   // Executes 2nd
  {
     ...             // Executes 5th
  }
}

Inheritance with primary constructors
Classes with primary constructors can subclass with the following syntax:

public class Baseclass (int x) { ... }

public class Subclass (int x, int y) : Baseclass (x) { ... }

The call to Baseclass(x) is equivalent to calling base(x) in the following example:

public class Subclass : Baseclass
{
  public Subclass (int x, int y) : base (x) { ... }
}

Overloading and Resolution
Inheritance has an interesting impact on method overloading. Consider the follow‐
ing two overloads:

static void Foo (Asset a) { }
static void Foo (House h) { }
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When an overload is called, the most specific type has precedence:

House h = new House (...);
Foo(h);                      // Calls Foo(House)

The particular overload to call is determined statically (at compile time) rather than
at runtime. The following code calls Foo(Asset), even though the runtime type of a
is House:

Asset a = new House (...);
Foo(a);                      // Calls Foo(Asset)

If you cast Asset to dynamic (Chapter 4), the decision as to
which overload to call is deferred until runtime and is then
based on the object’s actual type:

Asset a = new House (...);
Foo ((dynamic)a);   // Calls Foo(House)

The object Type
object (System.Object) is the ultimate base class for all types. Any type can be
upcast to object.

To illustrate how this is useful, consider a general-purpose stack. A stack is a data
structure based on the principle of LIFO—“last in, first out.” A stack has two
operations: push an object on the stack and pop an object off the stack. Here is a
simple implementation that can hold up to 10 objects:

public class Stack
{
  int position;
  object[] data = new object[10];
  public void Push (object obj)   { data[position++] = obj;  }
  public object Pop()             { return data[--position]; }
}

Because Stack works with the object type, we can Push and Pop instances of any
type to and from the Stack:

Stack stack = new Stack();
stack.Push ("sausage");
string s = (string) stack.Pop();   // Downcast, so explicit cast is needed

Console.WriteLine (s);             // sausage

object is a reference type, by virtue of being a class. Despite this, value types, such
as int, can also be cast to and from object, and so be added to our stack. This
feature of C# is called type unification and is demonstrated here:

stack.Push (3);
int three = (int) stack.Pop();
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1 The reference type can also be System.ValueType or System.Enum (Chapter 6).

When you cast between a value type and object, the CLR must perform some
special work to bridge the difference in semantics between value and reference
types. This process is called boxing and unboxing.

In “Generics” on page 159, we describe how to improve our
Stack class to better handle stacks with same-typed elements.

Boxing and Unboxing
Boxing is the act of converting a value-type instance to a reference-type instance.
The reference type can be either the object class or an interface (which we visit
later in the chapter).1 In this example, we box an int into an object:

int x = 9;
object obj = x;           // Box the int

Unboxing reverses the operation by casting the object back to the original value
type:

int y = (int)obj;         // Unbox the int

Unboxing requires an explicit cast. The runtime checks that the stated value type
matches the actual object type, and throws an InvalidCastException if the check
fails. For instance, the following throws an exception because long does not exactly
match int:

object obj = 9;           // 9 is inferred to be of type int
long x = (long) obj;      // InvalidCastException

The following succeeds, however:

object obj = 9;
long x = (int) obj;

As does this:

object obj = 3.5;              // 3.5 is inferred to be of type double
int x = (int) (double) obj;    // x is now 3

In the last example, (double) performs an unboxing and then (int) performs a
numeric conversion.

Boxing conversions are crucial in providing a unified type
system. The system is not perfect, however: we’ll see in
“Generics” on page 159 that variance with arrays and generics
supports only reference conversions and not boxing conversions:

object[] a1 = new string[3];   // Legal
object[] a2 = new int[3];      // Error
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Copying semantics of boxing and unboxing
Boxing copies the value-type instance into the new object, and unboxing copies the
contents of the object back into a value-type instance. In the following example,
changing the value of i doesn’t change its previously boxed copy:

int i = 3;
object boxed = i;
i = 5;
Console.WriteLine (boxed);    // 3

Static and Runtime Type Checking
C# programs are type-checked both statically (at compile time) and at runtime (by
the CLR).

Static type checking enables the compiler to verify the correctness of your program
without running it. The following code will fail because the compiler enforces static
typing:

int x = "5";

Runtime type checking is performed by the CLR when you downcast via a reference
conversion or unboxing:

object y = "5";
int z = (int) y;          // Runtime error, downcast failed

Runtime type checking is possible because each object on the heap internally stores
a little type token. You can retrieve this token by calling the GetType method of
object.

The GetType Method and typeof Operator
All types in C# are represented at runtime with an instance of System.Type. There
are two basic ways to get a System.Type object:

• Call GetType on the instance•

• Use the typeof operator on a type name•

GetType is evaluated at runtime; typeof is evaluated statically at compile time
(when generic type parameters are involved, it’s resolved by the JIT compiler).

System.Type has properties for such things as the type’s name, assembly, base type,
and so on:

Point p = new Point();
Console.WriteLine (p.GetType().Name);             // Point
Console.WriteLine (typeof (Point).Name);          // Point
Console.WriteLine (p.GetType() == typeof(Point)); // True
Console.WriteLine (p.X.GetType().Name);           // Int32
Console.WriteLine (p.Y.GetType().FullName);       // System.Int32
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public class Point { public int X, Y; }

System.Type also has methods that act as a gateway to the runtime’s reflection
model, described in Chapter 18.

The ToString Method
The ToString method returns the default textual representation of a type instance.
This method is overridden by all built-in types. Here is an example of using the int
type’s ToString method:

int x = 1;
string s = x.ToString();     // s is "1"

You can override the ToString method on custom types as follows:

Panda p = new Panda { Name = "Petey" };
Console.WriteLine (p);   // Petey

public class Panda
{
  public string Name;
  public override string ToString() => Name;
}

If you don’t override ToString, the method returns the type name.

When you call an overridden object member such as
ToString directly on a value type, boxing doesn’t occur. Box‐
ing then occurs only if you cast:

int x = 1;
string s1 = x.ToString();    // Calling on nonboxed value
object box = x;
string s2 = box.ToString();  // Calling on boxed value

Object Member Listing
Here are all the members of object:

public class Object
{
  public Object();

  public extern Type GetType();

  public virtual bool Equals (object obj);
  public static bool Equals  (object objA, object objB);
  public static bool ReferenceEquals (object objA, object objB);

  public virtual int GetHashCode();

  public virtual string ToString();

  protected virtual void Finalize();
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  protected extern object MemberwiseClone();
}

We describe the Equals, ReferenceEquals, and GetHashCode methods in “Equality
Comparison” on page 344.

Structs
A struct is similar to a class, with the following key differences:

• A struct is a value type, whereas a class is a reference type.•
• A struct does not support inheritance (other than implicitly deriving from•
object, or more precisely, System.ValueType).

A struct can have all of the members that a class can, except for a finalizer. And
because it cannot be subclassed, members cannot be marked as virtual, abstract, or
protected.

Prior to C# 10, structs were further prohibited from defining
fields initializers and parameterless constructors. Although
this prohibition has now been relaxed—primarily for the ben‐
efit of record structs (see “Records” on page 227)—it’s worth
thinking carefully before defining these constructs, as they
can result in confusing behavior that we’ll describe in “Struct
Construction Semantics” on page 142.

A struct is appropriate when value-type semantics are desirable. Good examples of
structs are numeric types, where it is more natural for assignment to copy a value
rather than a reference. Because a struct is a value type, each instance does not
require instantiation of an object on the heap; this results in useful savings when
creating many instances of a type. For instance, creating an array of value type
elements requires only a single heap allocation.

Because structs are value types, an instance cannot be null. The default value for a
struct is an empty instance, with all fields empty (set to their default values).

Struct Construction Semantics
Prior to C# 11, every field in a struct had to be explicitly
assigned in the constructor (or field initializer). This restric‐
tion has now been relaxed.

The default constructor
In addition to any constructors that you define, a struct always has an implicit
parameterless constructor that performs a bitwise-zeroing of its fields (setting them
to their default values):

Point p = new Point();        // p.x and p.y will be 0
struct Point { int x, y; }
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Even when you define a parameterless constructor of your own, the implicit param‐
eterless constructor still exists and can be accessed via the default keyword:

Point p1 = new Point();       // p1.x and p1.y will be 1
Point p2 = default;           // p2.x and p2.y will be 0

struct Point
{
  int x = 1;
  int y;
  public Point() => y = 1;
}

In this example, we initialized x to 1 via a field initializer, and we initialized y to 1
via the parameterless constructor. And yet with the default keyword, we were still
able to create a Point that bypassed both initializations. The default constructor can
be accessed other ways, too, as the following example illustrates:

var points = new Point[10];   // Each point in the array will be (0,0)
var test = new Test();        // test.p will be (0,0)

class Test { Point p; }

Having what amounts to two parameterless constructors can
be a source of confusion, and is arguably a good reason to
avoid defining field initializers and explicit parameterless con‐
structors in structs.

A good strategy with structs is to design them such that their default value is
a valid state, thereby making initialization redundant. For example, rather than
initializing a property as follows:

public string Protocol { get; set; } = "https";

consider the following:

struct WebOptions
{
  string protocol;
  public string Protocol { get => protocol ?? "https";
                           set => protocol = value;    }
}

Read-Only Structs and Functions
You can apply the readonly modifier to a struct to enforce that all fields are
readonly; this aids in declaring intent as well as affording the compiler more
optimization freedom:

readonly struct Point
{
  public readonly int X, Y;   // X and Y must be readonly
}
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If you need to apply readonly at a more granular level, you can apply the readonly
modifier (from C# 8) to a struct’s functions. This ensures that if the function
attempts to modify any field, a compile-time error is generated:

struct Point
{
  public int X, Y;
  public readonly void ResetX() => X = 0;  // Error!
}

If a readonly function calls a non-readonly function, the compiler generates a
warning (and defensively copies the struct to avoid the possibility of a mutation).

Ref Structs
Ref structs were introduced in C# 7.2 as a niche feature pri‐
marily for the benefit of the Span<T> and ReadOnlySpan<T>
structs that we describe in Chapter 23 (and the highly opti‐
mized Utf8JsonReader that we describe in Chapter 11). These
structs help with a micro-optimization technique that aims to
reduce memory allocations.

Unlike reference types, whose instances always live on the heap, value types live
in-place (wherever the variable was declared). If a value type appears as a parameter
or local variable, it will reside on the stack:

void SomeMethod()
{
  Point p;   // p will reside on the stack
}
struct Point { public int X, Y; }

But if a value type appears as a field in a class, it will reside on the heap:

class MyClass
{
  Point p;   // Lives on heap, because MyClass instances live on the heap
}

Similarly, arrays of structs live on the heap, and boxing a struct sends it to the heap.

Adding the ref modifier to a struct’s declaration ensures that it can only ever reside
on the stack. Attempting to use a ref struct in such a way that it could reside on the
heap generates a compile-time error:

var points = new Point [100];           // Error: will not compile!

ref struct Point { public int X, Y; }
class MyClass    { Point P;         }   // Error: will not compile!

Ref structs were introduced mainly for the benefit of the Span<T> and ReadOnly
Span<T> structs. Because Span<T> and ReadOnlySpan<T> instances can exist only on
the stack, it’s possible for them to safely wrap stack-allocated memory.
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Ref structs cannot partake in any C# feature that directly or indirectly introduces
the possibility of existing on the heap. This includes a number of advanced C#
features that we describe in Chapter 4, namely, lambda expressions, iterators, and
asynchronous functions (because, behind the scenes, these features all create hidden
classes with fields). Also, ref structs cannot appear inside non-ref structs, and they
cannot implement interfaces (because this could result in boxing).

Access Modifiers
To promote encapsulation, a type or type member can limit its accessibility to other
types and other assemblies by adding an access modifier to the declaration:

public

Fully accessible. This is the implicit accessibility for members of an enum or
interface.

internal

Accessible only within the containing assembly or friend assemblies. This is the
default accessibility for non-nested types.

private

Accessible only within the containing type. This is the default accessibility for
members of a class or struct.

protected

Accessible only within the containing type or subclasses.

protected internal

The union of protected and internal accessibility. A member that is pro
tected internal is accessible in two ways.

private protected

The intersection of protected and internal accessibility. A member that is
private protected is accessible only within the containing type, or from
subclasses that reside in the same assembly (making it less accessible than
protected or internal alone).

file (from C# 11)
Accessible only from within the same file. Intended for use by source generators
(see “Extended partial methods” on page 125). This modifier can be applied
only to type declarations.

Examples
Class2 is accessible from outside its assembly; Class1 is not:

class Class1 {}                  // Class1 is internal (default)
public class Class2 {}
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ClassB exposes field x to other types in the same assembly; ClassA does not:

class ClassA { int x;          } // x is private (default)
class ClassB { internal int x; }

Functions within Subclass can call Bar but not Foo:

class BaseClass
{
  void Foo()           {}        // Foo is private (default)
  protected void Bar() {}
}

class Subclass : BaseClass
{
  void Test1() { Foo(); }       // Error - cannot access Foo
  void Test2() { Bar(); }       // OK
}

Friend Assemblies
You can expose internal members to other friend assemblies by adding
the System.Runtime.CompilerServices.InternalsVisibleTo assembly attribute,
specifying the name of the friend assembly as follows:

[assembly: InternalsVisibleTo ("Friend")]

If the friend assembly has a strong name (see Chapter 17), you must specify its full
160-byte public key:

[assembly: InternalsVisibleTo ("StrongFriend, PublicKey=0024f000048c...")]

You can extract the full public key from a strongly named assembly with a LINQ
query (we explain LINQ in detail in Chapter 8):

string key = string.Join ("",
  Assembly.GetExecutingAssembly().GetName().GetPublicKey()
    .Select (b => b.ToString ("x2")));

The companion sample in LINQPad invites you to browse to
an assembly and then copies the assembly’s full public key to
the clipboard.

Accessibility Capping
A type caps the accessibility of its declared members. The most common example
of capping is when you have an internal type with public members. For example,
consider this:

class C { public void Foo() {} }

C’s (default) internal accessibility caps Foo’s accessibility, effectively making Foo
internal. A common reason Foo would be marked public is to make for easier
refactoring should C later be changed to public.
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Restrictions on Access Modifiers
When overriding a base class function, accessibility must be identical on the over‐
ridden function; for example:

class BaseClass             { protected virtual  void Foo() {} }
class Subclass1 : BaseClass { protected override void Foo() {} }  // OK
class Subclass2 : BaseClass { public    override void Foo() {} }  // Error

(An exception is when overriding a protected internal method in another assem‐
bly, in which case the override must simply be protected.)

The compiler prevents any inconsistent use of access modifiers. For example, a
subclass itself can be less accessible than a base class but not more:

internal class A {}
public class B : A {}          // Error

Interfaces
An interface is similar to a class, but only specifies behavior and does not hold state
(data). Consequently:

• An interface can define only functions and not fields.•
• Interface members are implicitly abstract. (There are exceptions to this rule•

that we will describe in “Default Interface Members” on page 151 and “Static
Interface Members” on page 152.)

• A class (or struct) can implement multiple interfaces. In contrast, a class can•
inherit from only a single class, and a struct cannot inherit at all (aside from
deriving from System.ValueType).

An interface declaration is like a class declaration, but it (normally) provides no
implementation for its members because its members are implicitly abstract. These
members will be implemented by the classes and structs that implement the inter‐
face. An interface can contain only functions, that is, methods, properties, events,
and indexers (which noncoincidentally are precisely the members of a class that can
be abstract).

Here is the definition of the IEnumerator interface, defined in System.Collec
tions:

public interface IEnumerator
{
  bool MoveNext();
  object Current { get; }
  void Reset();
}

Interface members are always implicitly public and cannot declare an access modi‐
fier. Implementing an interface means providing a public implementation for all of
its members:
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internal class Countdown : IEnumerator
{
  int count = 11;
  public bool MoveNext() => count-- > 0;
  public object Current => count;
  public void Reset() { throw new NotSupportedException(); }
}

You can implicitly cast an object to any interface that it implements:

IEnumerator e = new Countdown();
while (e.MoveNext())
  Console.Write (e.Current);      // 109876543210

Even though Countdown is an internal class, its members that
implement IEnumerator can be called publicly by casting an
instance of Countdown to IEnumerator. For instance, if a pub‐
lic type in the same assembly defined a method as follows:

public static class Util
{
  public static object GetCountDown() => new CountDown();
}

a caller from another assembly could do this:
IEnumerator e = (IEnumerator) Util.GetCountDown();
e.MoveNext();

If IEnumerator were itself defined as internal, this wouldn’t
be possible.

Extending an Interface
Interfaces can derive from other interfaces; for instance:

public interface IUndoable             { void Undo(); }
public interface IRedoable : IUndoable { void Redo(); }

IRedoable “inherits” all the members of IUndoable. In other words, types that
implement IRedoable must also implement the members of IUndoable.

Explicit Interface Implementation
Implementing multiple interfaces can sometimes result in a collision between
member signatures. You can resolve such collisions by explicitly implementing an
interface member. Consider the following example:

interface I1 { void Foo(); }
interface I2 { int Foo(); }

public class Widget : I1, I2
{
  public void Foo()
  {
    Console.WriteLine ("Widget's implementation of I1.Foo");
  }
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  int I2.Foo()
  {
    Console.WriteLine ("Widget's implementation of I2.Foo");
    return 42;
  }
}

Because I1 and I2 have conflicting Foo signatures, Widget explicitly implements I2’s
Foo method. This lets the two methods coexist in one class. The only way to call an
explicitly implemented member is to cast to its interface:

Widget w = new Widget();
w.Foo();                      // Widget's implementation of I1.Foo
((I1)w).Foo();                // Widget's implementation of I1.Foo
((I2)w).Foo();                // Widget's implementation of I2.Foo

Another reason to explicitly implement interface members is to hide members that
are highly specialized and distracting to a type’s normal use case. For example, a
type that implements ISerializable would typically want to avoid flaunting its
ISerializable members unless explicitly cast to that interface.

Implementing Interface Members Virtually
An implicitly implemented interface member is, by default, sealed. It must be
marked virtual or abstract in the base class in order to be overridden:

public interface IUndoable { void Undo(); }

public class TextBox : IUndoable
{
  public virtual void Undo() => Console.WriteLine ("TextBox.Undo");
}

public class RichTextBox : TextBox
{
  public override void Undo() => Console.WriteLine ("RichTextBox.Undo");
}

Calling the interface member through either the base class or the interface calls the
subclass’s implementation:

RichTextBox r = new RichTextBox();
r.Undo();                          // RichTextBox.Undo
((IUndoable)r).Undo();             // RichTextBox.Undo
((TextBox)r).Undo();               // RichTextBox.Undo

An explicitly implemented interface member cannot be marked virtual, nor can it
be overridden in the usual manner. It can, however, be reimplemented.

Reimplementing an Interface in a Subclass
A subclass can reimplement any interface member already implemented by a base
class. Reimplementation hijacks a member implementation (when called through
the interface) and works whether or not the member is virtual in the base class. It
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also works whether a member is implemented implicitly or explicitly—although it
works best in the latter case, as we will demonstrate.

In the following example, TextBox implements IUndoable.Undo explicitly, and so
it cannot be marked as virtual. To “override” it, RichTextBox must reimplement
IUndoable’s Undo method:

public interface IUndoable { void Undo(); }

public class TextBox : IUndoable
{
  void IUndoable.Undo() => Console.WriteLine ("TextBox.Undo");
}

public class RichTextBox : TextBox, IUndoable
{
  public void Undo() => Console.WriteLine ("RichTextBox.Undo");
}

Calling the reimplemented member through the interface calls the subclass’s imple‐
mentation:

RichTextBox r = new RichTextBox();
r.Undo();                 // RichTextBox.Undo      Case 1
((IUndoable)r).Undo();    // RichTextBox.Undo      Case 2

Assuming the same RichTextBox definition, suppose that TextBox implemented
Undo implicitly:

public class TextBox : IUndoable
{
  public void Undo() => Console.WriteLine ("TextBox.Undo");
}

This would give us another way to call Undo, which would “break” the system, as
shown in Case 3:

RichTextBox r = new RichTextBox();
r.Undo();                 // RichTextBox.Undo      Case 1
((IUndoable)r).Undo();    // RichTextBox.Undo      Case 2
((TextBox)r).Undo();      // TextBox.Undo          Case 3

Case 3 demonstrates that reimplementation hijacking is effective only when a mem‐
ber is called through the interface and not through the base class. This is usually
undesirable in that it can create inconsistent semantics. This makes reimplementa‐
tion most appropriate as a strategy for overriding explicitly implemented interface
members.

Alternatives to interface reimplementation
Even with explicit member implementation, interface reimplementation is problem‐
atic for a couple of reasons:
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• The subclass has no way to call the base class method.•
• The base class author might not anticipate that a method will be reimplemen‐•

ted and might not allow for the potential consequences.

Reimplementation can be a good last resort when subclassing hasn’t been anticipa‐
ted. A better option, however, is to design a base class such that reimplementation
will never be required. There are two ways to achieve this:

• When implicitly implementing a member, mark it virtual if appropriate.•
• When explicitly implementing a member, use the following pattern if you•

anticipate that subclasses might need to override any logic:

public class TextBox : IUndoable
{
  void IUndoable.Undo()         => Undo();    // Calls method below
  protected virtual void Undo() => Console.WriteLine ("TextBox.Undo");
}

public class RichTextBox : TextBox
{
  protected override void Undo() => Console.WriteLine("RichTextBox.Undo");
}

If you don’t anticipate any subclassing, you can mark the class as sealed to preempt
interface reimplementation.

Interfaces and Boxing
Converting a struct to an interface causes boxing. Calling an implicitly implemented
member on a struct does not cause boxing:

interface  I { void Foo();          }
struct S : I { public void Foo() {} }

...
S s = new S();
s.Foo();         // No boxing.

I i = s;         // Box occurs when casting to interface.
i.Foo();

Default Interface Members
From C# 8, you can add a default implementation to an interface member, making it
optional to implement:

interface ILogger
{
  void Log (string text) => Console.WriteLine (text);
}
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This is advantageous if you want to add a member to an interface defined in a
popular library without breaking (potentially thousands of) implementations.

Default implementations are always explicit, so if a class implementing ILogger fails
to define a Log method, the only way to call it is through the interface:

class Logger : ILogger { }
...
((ILogger)new Logger()).Log ("message");

This prevents a problem of multiple implementation inheritance: if the same default
member is added to two interfaces that a class implements, there is never an
ambiguity as to which member is called.

Static Interface Members
An interface can also declare static members. There are two kinds of static interface
members:

• Static nonvirtual interface members•
• Static virtual/abstract interface members•

In contrast to instance members, static members on interfaces
are nonvirtual by default. To make a static interface member
virtual, you must mark it with static abstract or static
virtual.

Static nonvirtual interface members
Static nonvirtual interface members exist mainly to help with writing default inter‐
face members. They are not implemented by classes or structs; instead, they are
consumed directly. Along with methods, properties, events, and indexers, static
nonvirtual members permit fields, which are typically accessed from code inside
default member implementations:

interface ILogger
{
  void Log (string text) => 
    Console.WriteLine (Prefix + text);

  static string Prefix = ""; 
}

Static nonvirtual interface members are public by default, so they can be accessed
from the outside:

ILogger.Prefix = "File log: ";

You can restrict this by adding an accessibility modifier (such as private,
protected, or internal).
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Instance fields are (still) prohibited. This is in line with the principle of interfaces,
which is to define behavior, not state.

Static virtual/abstract interface members
Static virtual/abstract interface members (from C# 11) enable static polymorphism,
an advanced feature that we will discuss in Chapter 4. Static virtual interface mem‐
bers are marked with static abstract or static virtual:

interface ITypeDescribable
{
  static abstract string Description { get; }
  static virtual string Category => null;
}

An implementing class or struct must implement static abstract members, and can
optionally implement static virtual members:

class CustomerTest : ITypeDescribable
{
  public static string Description => "Customer tests";  // Mandatory
  public static string Category    => "Unit testing";    // Optional
}

In addition to methods, properties, and events, operators and conversions are also
legal targets for static virtual interface members (see “Operator Overloading” on
page 256). Static virtual interface members are called through a constrained type
parameter; we will demonstrate this in “Static Polymorphism” on page 260 and
“Generic Math” on page 262, after covering generics later in this chapter.

Writing a Class Versus an Interface
As a guideline:

• Use classes and subclasses for types that naturally share an implementation.•

• Use interfaces for types that have independent implementations.•

Consider the following classes:

abstract class Animal {}
abstract class Bird           : Animal {}
abstract class Insect         : Animal {}
abstract class FlyingCreature : Animal {}
abstract class Carnivore      : Animal {}

// Concrete classes:

class Ostrich : Bird {}
class Eagle   : Bird, FlyingCreature, Carnivore {}  // Illegal
class Bee     : Insect, FlyingCreature {}           // Illegal
class Flea    : Insect, Carnivore {}                // Illegal
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The Eagle, Bee, and Flea classes do not compile because inheriting from multiple
classes is prohibited. To resolve this, we must convert some of the types to inter‐
faces. The question then arises, which types? Following our general rule, we could
say that insects share an implementation, and birds share an implementation, so
they remain classes. In contrast, flying creatures have independent mechanisms for
flying, and carnivores have independent strategies for eating animals, so we would
convert FlyingCreature and Carnivore to interfaces:

interface IFlyingCreature {}
interface ICarnivore      {}

In a typical scenario, Bird and Insect might correspond to a Windows control and
a web control; FlyingCreature and Carnivore might correspond to IPrintable and
IUndoable.

Enums
An enum is a special value type that lets you specify a group of named numeric
constants. For example:

public enum BorderSide { Left, Right, Top, Bottom }

We can use this enum type as follows:

BorderSide topSide = BorderSide.Top;
bool isTop = (topSide == BorderSide.Top);   // true

Each enum member has an underlying integral value. These are by default:

• Underlying values are of type int.•

• The constants 0, 1, 2... are automatically assigned, in the declaration order of•
the enum members.

You can specify an alternative integral type, as follows:

public enum BorderSide : byte { Left, Right, Top, Bottom }

You can also specify an explicit underlying value for each enum member:

public enum BorderSide : byte { Left=1, Right=2, Top=10, Bottom=11 }

The compiler also lets you explicitly assign some of the enum
members. The unassigned enum members keep incrementing
from the last explicit value. The preceding example is equiva‐
lent to the following:

public enum BorderSide : byte
 { Left=1, Right, Top=10, Bottom }
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Enum Conversions
You can convert an enum instance to and from its underlying integral value with an
explicit cast:

int i = (int) BorderSide.Left;
BorderSide side = (BorderSide) i;
bool leftOrRight = (int) side <= 2;

You can also explicitly cast one enum type to another. Suppose that Horizontal
Alignment is defined as follows:

public enum HorizontalAlignment
{
  Left = BorderSide.Left,
  Right = BorderSide.Right,
  Center
}

A translation between the enum types uses the underlying integral values:

HorizontalAlignment h = (HorizontalAlignment) BorderSide.Right;
// same as:
HorizontalAlignment h = (HorizontalAlignment) (int) BorderSide.Right;

The numeric literal 0 is treated specially by the compiler in an enum expression and
does not require an explicit cast:

BorderSide b = 0;    // No cast required
if (b == 0) ...

There are two reasons for the special treatment of 0:

• The first member of an enum is often used as the “default” value.•

• For combined enum types, 0 means “no flags.”•

Flags Enums
You can combine enum members. To prevent ambiguities, members of a combina‐
ble enum require explicitly assigned values, typically in powers of two:

[Flags]
enum BorderSides { None=0, Left=1, Right=2, Top=4, Bottom=8 }

or:

enum BorderSides { None=0, Left=1, Right=1<<1, Top=1<<2, Bottom=1<<3 }

To work with combined enum values, you use bitwise operators such as | and &.
These operate on the underlying integral values:

BorderSides leftRight = BorderSides.Left | BorderSides.Right;

if ((leftRight & BorderSides.Left) != 0)
  Console.WriteLine ("Includes Left");     // Includes Left
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string formatted = leftRight.ToString();   // "Left, Right"

BorderSides s = BorderSides.Left;
s |= BorderSides.Right;
Console.WriteLine (s == leftRight);   // True

s ^= BorderSides.Right;               // Toggles BorderSides.Right
Console.WriteLine (s);                // Left

By convention, the Flags attribute should always be applied to an enum type
when its members are combinable. If you declare such an enum without the Flags
attribute, you can still combine members, but calling ToString on an enum instance
will emit a number rather than a series of names.

By convention, a combinable enum type is given a plural rather than singular name.

For convenience, you can include combination members within an enum declara‐
tion itself:

[Flags]
enum BorderSides
{
  None=0,
  Left=1, Right=1<<1, Top=1<<2, Bottom=1<<3,
  LeftRight = Left | Right, 
  TopBottom = Top  | Bottom,
  All       = LeftRight | TopBottom
}

Enum Operators
The operators that work with enums are:

=   ==   !=   <   >   <=   >=   +   -   ^  &  |   ˜
+=   -=   ++  --   sizeof

The bitwise, arithmetic, and comparison operators return the result of processing
the underlying integral values. Addition is permitted between an enum and an
integral type, but not between two enums.

Type-Safety Issues
Consider the following enum:

public enum BorderSide { Left, Right, Top, Bottom }

Because an enum can be cast to and from its underlying integral type, the actual
value it can have might fall outside the bounds of a legal enum member:

BorderSide b = (BorderSide) 12345;
Console.WriteLine (b);                // 12345
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The bitwise and arithmetic operators can produce similarly invalid values:

BorderSide b = BorderSide.Bottom;
b++;                                  // No errors

An invalid BorderSide would break the following code:

void Draw (BorderSide side)
{
  if      (side == BorderSide.Left)  {...}
  else if (side == BorderSide.Right) {...}
  else if (side == BorderSide.Top)   {...}
  else                               {...} // Assume BorderSide.Bottom
}

One solution is to add another else clause:

  ...
  else if (side == BorderSide.Bottom) ...
  else throw new ArgumentException ("Invalid BorderSide: " + side, "side");

Another workaround is to explicitly check an enum value for validity. The static
Enum.IsDefined method does this job:

BorderSide side = (BorderSide) 12345;
Console.WriteLine (Enum.IsDefined (typeof (BorderSide), side));   // False

Unfortunately, Enum.IsDefined does not work for flagged enums. However, the
following helper method (a trick dependent on the behavior of Enum.ToString())
returns true if a given flagged enum is valid:

for (int i = 0; i <= 16; i++)
{
  BorderSides side = (BorderSides)i;
  Console.WriteLine (IsFlagDefined (side) + " " + side);
}

bool IsFlagDefined (Enum e)
{
  decimal d;
  return !decimal.TryParse(e.ToString(), out d);
}

[Flags]
public enum BorderSides { Left=1, Right=2, Top=4, Bottom=8 }

Nested Types
A nested type is declared within the scope of another type:

public class TopLevel
{
  public class Nested { }               // Nested class
  public enum Color { Red, Blue, Tan }  // Nested enum
}
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A nested type has the following features:

• It can access the enclosing type’s private members and everything else the•
enclosing type can access.

• You can declare it with the full range of access modifiers rather than just•
public and internal.

• The default accessibility for a nested type is private rather than internal.•
• Accessing a nested type from outside the enclosing type requires qualification•

with the enclosing type’s name (like when accessing static members).

For example, to access Color.Red from outside our TopLevel class, we’d need to do
this:

TopLevel.Color color = TopLevel.Color.Red;

All types (classes, structs, interfaces, delegates, and enums) can be nested within
either a class or a struct.

Here is an example of accessing a private member of a type from a nested type:

public class TopLevel
{
  static int x;
  class Nested
  {
    static void Foo() { Console.WriteLine (TopLevel.x); }
  }
}

Here is an example of applying the protected access modifier to a nested type:

public class TopLevel
{
  protected class Nested { }
}

public class SubTopLevel : TopLevel
{
  static void Foo() { new TopLevel.Nested(); }
}

Here is an example of referring to a nested type from outside the enclosing type:

public class TopLevel
{
  public class Nested { }
}

class Test
{
  TopLevel.Nested n;
}
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Nested types are used heavily by the compiler itself when it generates private classes
that capture state for constructs such as iterators and anonymous methods.

If the sole reason for using a nested type is to avoid cluttering
a namespace with too many types, consider using a nested
namespace, instead. A nested type should be used because
of its stronger access control restrictions, or when the nested
class must access private members of the containing class.

Generics
C# has two separate mechanisms for writing code that is reusable across different
types: inheritance and generics. Whereas inheritance expresses reusability with a
base type, generics express reusability with a “template” that contains “placeholder”
types. Generics, when compared to inheritance, can increase type safety and reduce
casting and boxing.

C# generics and C++ templates are similar concepts, but they
work differently. We explain this difference in “C# Generics
Versus C++ Templates” on page 171.

Generic Types
A generic type declares type parameters—placeholder types to be filled in by the
consumer of the generic type, which supplies the type arguments. Here is a generic
type Stack<T>, designed to stack instances of type T. Stack<T> declares a single type
parameter T:

public class Stack<T>
{
  int position;
  T[] data = new T[100];
  public void Push (T obj)  => data[position++] = obj;
  public T Pop()            => data[--position];
}

We can use Stack<T> as follows:

var stack = new Stack<int>();
stack.Push (5);
stack.Push (10);
int x = stack.Pop();        // x is 10
int y = stack.Pop();        // y is 5

Stack<int> fills in the type parameter T with the type argument int, implicitly cre‐
ating a type on the fly (the synthesis occurs at runtime). Attempting to push a string
onto our Stack<int> would, however, produce a compile-time error. Stack<int>
effectively has the following definition (substitutions appear in bold, with the class
name hashed out to avoid confusion):

public class ###
{
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  int position;
  int[] data = new int[100];
  public void Push (int obj)  => data[position++] = obj;
  public int Pop()            => data[--position];
}

Technically, we say that Stack<T> is an open type, whereas Stack<int> is a closed
type. At runtime, all generic type instances are closed—with the placeholder types
filled in. This means that the following statement is illegal:

var stack = new Stack<T>();   // Illegal: What is T?

However, it’s legal if it’s within a class or method that itself defines T as a type
parameter:

public class Stack<T>
{
  ...
  public Stack<T> Clone()
  {
    Stack<T> clone = new Stack<T>();   // Legal
    ...
  } 
}

Why Generics Exist
Generics exist to write code that is reusable across different types. Suppose that
we need a stack of integers but we don’t have generic types. One solution would
be to hardcode a separate version of the class for every required element type
(e.g., IntStack, StringStack, etc.). Clearly, this would cause considerable code
duplication. Another solution would be to write a stack that is generalized by using
object as the element type:

public class ObjectStack
{
  int position;
  object[] data = new object[10];
  public void Push (object obj) => data[position++] = obj;
  public object Pop()           => data[--position];
}

An ObjectStack, however, wouldn’t work as well as a hardcoded IntStack for
specifically stacking integers. An ObjectStack would require boxing and downcast‐
ing that could not be checked at compile time:

// Suppose we just want to store integers here:
ObjectStack stack = new ObjectStack();

stack.Push ("s");          // Wrong type, but no error!
int i = (int)stack.Pop();  // Downcast - runtime error

What we need is both a general implementation of a stack that works for all element
types as well as a way to easily specialize that stack to a specific element type for
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increased type safety and reduced casting and boxing. Generics give us precisely this
by allowing us to parameterize the element type. Stack<T> has the benefits of both
ObjectStack and IntStack. Like ObjectStack, Stack<T> is written once to work
generally across all types. Like IntStack, Stack<T> is specialized for a particular
type—the beauty is that this type is T, which we substitute on the fly.

ObjectStack is functionally equivalent to Stack<object>.

Generic Methods
A generic method declares type parameters within the signature of a method.

With generic methods, many fundamental algorithms can be implemented in a
general-purpose way. Here is a generic method that swaps the contents of two
variables of any type T:

static void Swap<T> (ref T a, ref T b)
{
  T temp = a;
  a = b;
  b = temp;
}

Swap<T> is called as follows:

int x = 5;
int y = 10;
Swap (ref x, ref y);

Generally, there is no need to supply type arguments to a generic method, because
the compiler can implicitly infer the type. If there is ambiguity, generic methods can
be called with type arguments as follows:

Swap<int> (ref x, ref y);

Within a generic type, a method is not classed as generic unless it introduces type
parameters (with the angle bracket syntax). The Pop method in our generic stack
merely uses the type’s existing type parameter, T, and is not classed as a generic
method.

Methods and types are the only constructs that can introduce type parameters.
Properties, indexers, events, fields, constructors, operators, and so on cannot
declare type parameters, although they can partake in any type parameters already
declared by their enclosing type. In our generic stack example, for instance, we
could write an indexer that returns a generic item:

public T this [int index] => data [index];

Similarly, constructors can partake in existing type parameters but not introduce
them:

public Stack<T>() { }   // Illegal
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Declaring Type Parameters
Type parameters can be introduced in the declaration of classes, structs, interfaces,
delegates (covered in Chapter 4), and methods. Other constructs, such as proper‐
ties, cannot introduce a type parameter, but they can use one. For example, the
property Value uses T:

public struct Nullable<T>
{
  public T Value { get; }
}

A generic type or method can have multiple parameters:

class Dictionary<TKey, TValue> {...}

To instantiate:

Dictionary<int,string> myDict = new Dictionary<int,string>();

Or:

var myDict = new Dictionary<int,string>();

Generic type names and method names can be overloaded as long as the number
of type parameters is different. For example, the following three type names do not
conflict:

class A        {}
class A<T>     {}
class A<T1,T2> {}

By convention, generic types and methods with a single type
parameter typically name their parameter T, as long as the
intent of the parameter is clear. When using multiple type
parameters, each parameter is prefixed with T but has a more
descriptive name.

typeof and Unbound Generic Types
Open generic types do not exist at runtime: they are closed as part of compilation.
However, it is possible for an unbound generic type to exist at runtime—purely as
a Type object. The only way to specify an unbound generic type in C# is via the
typeof operator:

class A<T> {}
class A<T1,T2> {}
...

Type a1 = typeof (A<>);   // Unbound type (notice no type arguments).
Type a2 = typeof (A<,>);  // Use commas to indicate multiple type args.

Open generic types are used in conjunction with the Reflection API (Chapter 18).
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You can also use the typeof operator to specify a closed type:

Type a3 = typeof (A<int,int>);

Or, you can specify an open type (which is closed at runtime):

class B<T> { void X() { Type t = typeof (T); } }

The default Generic Value
You can use the default keyword to get the default value for a generic type parame‐
ter. The default value for a reference type is null, and the default value for a value
type is the result of bitwise-zeroing the value type’s fields:

static void Zap<T> (T[] array)
{
  for (int i = 0; i < array.Length; i++)
    array[i] = default(T);
}

From C# 7.1, you can omit the type argument for cases in which the compiler is able
to infer it. We could replace the last line of code with this:

    array[i] = default;

Generic Constraints
By default, you can substitute a type parameter with any type whatsoever. Con‐
straints can be applied to a type parameter to require more specific type arguments.
These are the possible constraints:

where T : base-class   // Base-class constraint
where T : interface    // Interface constraint
where T : class        // Reference-type constraint
where T : class?       // (See "Nullable Reference Types" in Chapter 4)
where T : struct       // Value-type constraint (excludes Nullable types)
where T : unmanaged    // Unmanaged constraint
where T : new()        // Parameterless constructor constraint
where U : T            // Naked type constraint
where T : notnull      // Non-nullable value type, or (from C# 8)
                       // a non-nullable reference type

In the following example, GenericClass<T,U> requires T to derive from (or be
identical to) SomeClass and implement Interface1, and requires U to provide a
parameterless constructor:

class     SomeClass {}
interface Interface1 {}

class GenericClass<T,U> where T : SomeClass, Interface1
                        where U : new()
{...}

You can apply constraints wherever type parameters are defined, in both methods
and type definitions.
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A constraint is a restriction; however, the main purpose of type
parameter constraints is to enable things that would otherwise
be prohibited.

For instance, the constraint T:Foo lets you treat instances of
T as Foo, and the constraint T:new() lets you construct new
instances of T.

A base-class constraint specifies that the type parameter must subclass (or match)
a particular class; an interface constraint specifies that the type parameter must
implement that interface. These constraints allow instances of the type parameter
to be implicitly converted to that class or interface. For example, suppose that we
want to write a generic Max method, which returns the maximum of two values. We
can take advantage of the generic interface defined in the System namespace called
IComparable<T>:

public interface IComparable<T>   // Simplified version of interface
{
  int CompareTo (T other);
}

CompareTo returns a positive number if this is greater than other. Using this
interface as a constraint, we can write a Max method as follows (to avoid distraction,
null checking is omitted):

static T Max <T> (T a, T b) where T : IComparable<T>
{
  return a.CompareTo (b) > 0 ? a : b;
}

The Max method can accept arguments of any type implementing IComparable<T>
(which includes most built-in types such as int and string):

int z = Max (5, 10);               // 10
string last = Max ("ant", "zoo");  // zoo

From C# 11, an interface constraint also lets you call static
virtual/abstract members on that interface (see “Static vir‐
tual/abstract interface members” on page 12). For example,
if interface IFoo defines a static abstract method called Bar,
the T:IFoo constraint makes it legal to call T.Bar(). We pick
up this topic again in “Static Polymorphism” on page 260.

The class constraint and struct constraint specify that T must be a reference type
or (non-nullable) value type. A great example of the struct constraint is the
System.Nullable<T> struct (we discuss this class in depth in “Nullable Value Types”
on page 210):

struct Nullable<T> where T : struct {...}

The unmanaged constraint (introduced in C# 7.3) is a stronger version of a struct
constraint: T must be a simple value type or a struct that is (recursively) free of any
reference types.
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The parameterless constructor constraint requires T to have a public parameterless
constructor. If this constraint is defined, you can call new() on T:

static void Initialize<T> (T[] array) where T : new()
{
  for (int i = 0; i < array.Length; i++)
    array[i] = new T();
}

The naked type constraint requires one type parameter to derive from (or match)
another type parameter. In this example, the method FilteredStack returns
another Stack, containing only the subset of elements where the type parameter
U is of the type parameter T:

class Stack<T>
{
  Stack<U> FilteredStack<U>() where U : T {...}
}

Subclassing Generic Types
A generic class can be subclassed just like a nongeneric class. The subclass can leave
the base class’s type parameters open, as in the following example:

class Stack<T>                   {...}
class SpecialStack<T> : Stack<T> {...}

Or, the subclass can close the generic type parameters with a concrete type:

class IntStack : Stack<int>  {...}

A subtype can also introduce fresh type arguments:

class List<T>                     {...}
class KeyedList<T,TKey> : List<T> {...}

Technically, all type arguments on a subtype are fresh: you
could say that a subtype closes and then reopens the base
type arguments. This means that a subclass can give new (and
potentially more meaningful) names to the type arguments
that it reopens:

class List<T> {...}
class KeyedList<TElement,TKey> : List<TElement> {...}

Self-Referencing Generic Declarations
A type can name itself as the concrete type when closing a type argument:

public interface IEquatable<T> { bool Equals (T obj); }

public class Balloon : IEquatable<Balloon>
{
  public string Color { get; set; }
  public int CC { get; set; }

  public bool Equals (Balloon b)
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  {
    if (b == null) return false;
    return b.Color == Color && b.CC == CC;
  }
}

The following are also legal:

class Foo<T> where T : IComparable<T> { ... }
class Bar<T> where T : Bar<T> { ... }

Static Data
Static data is unique for each closed type:

Console.WriteLine (++Bob<int>.Count);     // 1
Console.WriteLine (++Bob<int>.Count);     // 2
Console.WriteLine (++Bob<string>.Count);  // 1
Console.WriteLine (++Bob<object>.Count);  // 1

class Bob<T> { public static int Count; }

Type Parameters and Conversions
C#’s cast operator can perform several kinds of conversion, including the following:

• Numeric conversion•
• Reference conversion•
• Boxing/unboxing conversion•
• Custom conversion (via operator overloading; see Chapter 4)•

The decision as to which kind of conversion will take place happens at compile time,
based on the known types of the operands. This creates an interesting scenario with
generic type parameters, because the precise operand types are unknown at compile
time. If this leads to ambiguity, the compiler generates an error.

The most common scenario is when you want to perform a reference conversion:

StringBuilder Foo<T> (T arg)
{
  if (arg is StringBuilder)
    return (StringBuilder) arg;   // Will not compile
  ...
}

Without knowledge of T’s actual type, the compiler is concerned that you might
have intended this to be a custom conversion. The simplest solution is to instead
use the as operator, which is unambiguous because it cannot perform custom
conversions:

StringBuilder Foo<T> (T arg)
{
  StringBuilder sb = arg as StringBuilder;
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  if (sb != null) return sb;
  ...
}

A more general solution is to first cast to object. This works because conversions
to/from object are assumed not to be custom conversions, but reference or box‐
ing/unboxing conversions. In this case, StringBuilder is a reference type, so it
must be a reference conversion:

  return (StringBuilder) (object) arg;

Unboxing conversions can also introduce ambiguities. The following could be an
unboxing, numeric, or custom conversion:

int Foo<T> (T x) => (int) x;     // Compile-time error

The solution, again, is to first cast to object and then to int (which then unambig‐
uously signals an unboxing conversion in this case):

int Foo<T> (T x) => (int) (object) x;

Covariance
Assuming A is convertible to B, X has a covariant type parameter if X<A> is converti‐
ble to X<B>.

With C#’s notion of covariance (and contravariance), “conver‐
tible” means convertible via an implicit reference conversion—
such as A subclassing B, or A implementing B. Numeric conver‐
sions, boxing conversions, and custom conversions are not
included.

For instance, type IFoo<T> has a covariant T if the following is legal:

IFoo<string> s = ...;
IFoo<object> b = s;

Interfaces permit covariant type parameters (as do delegates; see Chapter 4), but
classes do not. Arrays also allow covariance (A[] can be converted to B[] if A has an
implicit reference conversion to B) and are discussed here for comparison.

Covariance and contravariance (or simply “variance”) are
advanced concepts. The motivation behind introducing and
enhancing variance in C# was to allow generic interface and
generic types (in particular, those defined in .NET, such as
IEnumerable<T>) to work more as you’d expect. You can
benefit from this without understanding the details behind
covariance and contravariance.

Variance is not automatic
To ensure static type safety, type parameters are not automatically variant. Consider
the following:
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class Animal {}
class Bear : Animal {}
class Camel : Animal {}

public class Stack<T>   // A simple Stack implementation
{
  int position;
  T[] data = new T[100];
  public void Push (T obj)  => data[position++] = obj;
  public T Pop()            => data[--position]; 
}

The following fails to compile:

Stack<Bear> bears = new Stack<Bear>();
Stack<Animal> animals = bears;            // Compile-time error

That restriction prevents the possibility of runtime failure with the following code:

animals.Push (new Camel());      // Trying to add Camel to bears

Lack of covariance, however, can hinder reusability. Suppose, for instance, that we
wanted to write a method to Wash a stack of animals:

public class ZooCleaner
{
  public static void Wash (Stack<Animal> animals) {...}
}

Calling Wash with a stack of bears would generate a compile-time error. One work‐
around is to redefine the Wash method with a constraint:

class ZooCleaner
{
  public static void Wash<T> (Stack<T> animals) where T : Animal { ... }
}

We can now call Wash as follows:

Stack<Bear> bears = new Stack<Bear>();
ZooCleaner.Wash (bears);

Another solution is to have Stack<T> implement an interface with a covariant type
parameter, as you’ll see shortly.

Arrays
For historical reasons, array types support covariance. This means that B[] can be
cast to A[] if B subclasses A (and both are reference types):

Bear[] bears = new Bear[3];
Animal[] animals = bears;     // OK

The downside of this reusability is that element assignments can fail at runtime:

animals[0] = new Camel();     // Runtime error
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Declaring a covariant type parameter
Type parameters on interfaces and delegates can be declared covariant by marking
them with the out modifier. This modifier ensures that, unlike with arrays, cova‐
riant type parameters are fully type-safe.

We can illustrate this with our Stack<T> class by having it implement the following
interface:

public interface IPoppable<out T> { T Pop(); }

The out modifier on T indicates that T is used only in output positions (e.g., return
types for methods). The out modifier flags the type parameter as covariant and
allows us to do this:

var bears = new Stack<Bear>();
bears.Push (new Bear());
// Bears implements IPoppable<Bear>. We can convert to IPoppable<Animal>:
IPoppable<Animal> animals = bears;   // Legal
Animal a = animals.Pop();

The conversion from bears to animals is permitted by the compiler—by virtue of
the type parameter being covariant. This is type-safe because the case the compiler
is trying to avoid—pushing a Camel onto the stack—can’t occur, because there’s no
way to feed a Camel into an interface where T can appear only in output positions.

Covariance (and contravariance) in interfaces is something
that you typically consume: it’s less common that you need to
write variant interfaces.

Curiously, method parameters marked as out are not eligible
for covariance, due to a limitation in the CLR.

We can leverage the ability to cast covariantly to solve the reusability problem
described earlier:

public class ZooCleaner
{
  public static void Wash (IPoppable<Animal> animals) { ... }
}

The IEnumerator<T> and IEnumerable<T> interfaces
described in Chapter 7 have a covariant T. This allows you
to cast IEnumerable<string> to IEnumerable<object>, for
instance.

The compiler will generate an error if you use a covariant type parameter in an
input position (e.g., a parameter to a method or a writable property).
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Covariance (and contravariance) works only for elements with
reference conversions—not boxing conversions. (This applies
both to type parameter variance and array variance.) So, if
you wrote a method that accepted a parameter of type IPoppa
ble<object>, you could call it with IPoppable<string> but
not IPoppable<int>.

Contravariance
We previously saw that, assuming that A allows an implicit reference conversion to
B, a type X has a covariant type parameter if X<A> allows a reference conversion to
X<B>. Contravariance is when you can convert in the reverse direction—from X<B>
to X<A>. This is supported if the type parameter appears only in input positions and
is designated with the in modifier. Extending our previous example, suppose the
Stack<T> class implements the following interface:

public interface IPushable<in T> { void Push (T obj); }

We can now legally do this:

IPushable<Animal> animals = new Stack<Animal>();
IPushable<Bear> bears = animals;    // Legal
bears.Push (new Bear());

No member in IPushable outputs a T, so we can’t get into trouble by casting
animals to bears (there’s no way to Pop, for instance, through that interface).

Our Stack<T> class can implement both IPushable<T> and
IPoppable<T>—despite T having opposing variance annota‐
tions in the two interfaces! This works because you must
exercise variance through the interface and not the class;
therefore, you must commit to the lens of either IPoppable
or IPushable before performing a variant conversion. This
lens then restricts you to the operations that are legal under
the appropriate variance rules.
This also illustrates why classes do not allow variant type
parameters: concrete implementations typically require data
to flow in both directions.

To give another example, consider the following interface, defined in the System
namespace:

public interface IComparer<in T>
{
  // Returns a value indicating the relative ordering of a and b
  int Compare (T a, T b);
}

Because the interface has a contravariant T, we can use an IComparer<object> to
compare two strings:
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var objectComparer = Comparer<object>.Default;
// objectComparer implements IComparer<object>
IComparer<string> stringComparer = objectComparer;
int result = stringComparer.Compare ("Brett", "Jemaine");

Mirroring covariance, the compiler will report an error if you try to use a contravar‐
iant type parameter in an output position (e.g., as a return value or in a readable
property).

C# Generics Versus C++ Templates
C# generics are similar in application to C++ templates, but they work very differ‐
ently. In both cases, a synthesis between the producer and consumer must take
place in which the placeholder types of the producer are filled in by the consumer.
However, with C# generics, producer types (i.e., open types such as List<T>) can
be compiled into a library (such as mscorlib.dll). This works because the synthesis
between the producer and the consumer that produces closed types doesn’t actually
happen until runtime. With C++ templates, this synthesis is performed at compile
time. This means that in C++ you don’t deploy template libraries as .dlls—they exist
only as source code. It also makes it difficult to dynamically inspect, let alone create,
parameterized types on the fly.

To dig deeper into why this is the case, consider again the Max method in C#:

static T Max <T> (T a, T b) where T : IComparable<T>
  => a.CompareTo (b) > 0 ? a : b;

Why couldn’t we have implemented it like this?

static T Max <T> (T a, T b)
  => (a > b ? a : b);             // Compile error

The reason is that Max needs to be compiled once and work for all possible values
of T. Compilation cannot succeed because there is no single meaning for > across
all values of T—in fact, not every T even has a > operator. In contrast, the following
code shows the same Max method written with C++ templates. This code will be
compiled separately for each value of T, taking on whatever semantics > has for a
particular T, and failing to compile if a particular T does not support the > operator:

template <class T> T Max (T a, T b)
{
  return a > b ? a : b;
}
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4
Advanced C#

In this chapter, we cover advanced C# topics that build on concepts explored in
Chapters 2 and 3. You should read the first four sections sequentially; you can read
the remaining sections in any order.

Delegates
A delegate is an object that knows how to call a method.

A delegate type defines the kind of method that delegate instances can call. Specif‐
ically, it defines the method’s return type and its parameter types. The following
defines a delegate type called Transformer:

delegate int Transformer (int x);

Transformer is compatible with any method with an int return type and a single
int parameter, such as this:

int Square (int x) { return x * x; }

Or, more tersely:

int Square (int x) => x * x;

Assigning a method to a delegate variable creates a delegate instance:

Transformer t = Square;

You can invoke a delegate instance in the same way as a method:

int answer = t(3);    // answer is 9

Here’s a complete example:

Transformer t = Square;          // Create delegate instance
int result = t(3);               // Invoke delegate
Console.WriteLine (result);      // 9

int Square (int x) => x * x;
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delegate int Transformer (int x);   // Delegate type declaration

A delegate instance literally acts as a delegate for the caller: the caller invokes the
delegate, and then the delegate calls the target method. This indirection decouples
the caller from the target method.

The statement:

Transformer t = Square;

is shorthand for:

Transformer t = new Transformer (Square);

Technically, we are specifying a method group when we refer
to Square without brackets or arguments. If the method is
overloaded, C# will pick the correct overload based on the
signature of the delegate to which it’s being assigned.

The expression

t(3)

is shorthand for

t.Invoke(3)

A delegate is similar to a callback, a general term that captures
constructs such as C function pointers.

Writing Plug-in Methods with Delegates
A delegate variable is assigned a method at runtime. This is useful for writing
plug-in methods. In this example, we have a utility method named Transform that
applies a transform to each element in an integer array. The Transform method has
a delegate parameter, which you can use for specifying a plug-in transform:

int[] values = { 1, 2, 3 };
Transform (values, Square);      // Hook in the Square method

foreach (int i in values)
  Console.Write (i + "  ");      // 1   4   9

void Transform (int[] values, Transformer t)
{
  for (int i = 0; i < values.Length; i++)
    values[i] = t (values[i]);
}

int Square (int x) => x * x;
int Cube (int x) => x * x * x;

delegate int Transformer (int x);
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We can change the transformation just by changing Square to Cube in the second
line of code.

Our Transform method is a higher-order function because it’s a function that takes
a function as an argument. (A method that returns a delegate would also be a
higher-order function.)

Instance and Static Method Targets
A delegate’s target method can be a local, static, or instance method. The following
illustrates a static target method:

Transformer t = Test.Square;
Console.WriteLine (t(10));      // 100

class Test { public static int Square (int x) => x * x; }

delegate int Transformer (int x);

The following illustrates an instance target method:

Test test = new Test();
Transformer t = test.Square;
Console.WriteLine (t(10));      // 100

class Test { public int Square (int x) => x * x; }

delegate int Transformer (int x);

When an instance method is assigned to a delegate object, the latter maintains a
reference not only to the method but also to the instance to which the method
belongs. The System.Delegate class’s Target property represents this instance (and
will be null for a delegate referencing a static method). Here’s an example:

MyReporter r = new MyReporter();
r.Prefix = "%Complete: ";
ProgressReporter p = r.ReportProgress;
p(99);                                 // %Complete: 99
Console.WriteLine (p.Target == r);     // True
Console.WriteLine (p.Method);          // Void ReportProgress(Int32)
r.Prefix = "";
p(99);                                 // 99

public delegate void ProgressReporter (int percentComplete);

class MyReporter
{
  public string Prefix = "";

  public void ReportProgress (int percentComplete)
    => Console.WriteLine (Prefix + percentComplete);
}

Because the instance is stored in the delegate’s Target property, its lifetime is
extended to (at least as long as) the delegate’s lifetime.
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Multicast Delegates
All delegate instances have multicast capability. This means that a delegate instance
can reference not just a single target method but also a list of target methods. The +
and += operators combine delegate instances:

SomeDelegate d = SomeMethod1;
d += SomeMethod2;

The last line is functionally the same as the following:

d = d + SomeMethod2;

Invoking d will now call both SomeMethod1 and SomeMethod2. Delegates are invoked
in the order in which they are added.

The - and -= operators remove the right delegate operand from the left delegate
operand:

d -= SomeMethod1;

Invoking d will now cause only SomeMethod2 to be invoked.

Calling + or += on a delegate variable with a null value works, and it is equivalent to
assigning the variable to a new value:

SomeDelegate d = null;
d += SomeMethod1;       // Equivalent (when d is null) to d = SomeMethod1;

Similarly, calling -= on a delegate variable with a single matching target is equivalent
to assigning null to that variable.

Delegates are immutable, so when you call += or -=, you’re in
fact creating a new delegate instance and assigning it to the
existing variable.

If a multicast delegate has a nonvoid return type, the caller receives the return value
from the last method to be invoked. The preceding methods are still called, but
their return values are discarded. For most scenarios in which multicast delegates
are used, they have void return types, so this subtlety does not arise.

All delegate types implicitly derive from System.MulticastDe
legate, which inherits from System.Delegate. C# compiles
+, -, +=, and -= operations made on a delegate to the static
Combine and Remove methods of the System.Delegate class.

Multicast delegate example
Suppose that you wrote a method that took a long time to execute. That method
could regularly report progress to its caller by invoking a delegate. In this example,
the HardWork method has a ProgressReporter delegate parameter, which it invokes
to indicate progress:
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public delegate void ProgressReporter (int percentComplete);

public class Util
{
  public static void HardWork (ProgressReporter p)
  {
    for (int i = 0; i < 10; i++)
    {
      p (i * 10);                           // Invoke delegate
      System.Threading.Thread.Sleep (100);  // Simulate hard work
    }
  }
}

To monitor progress, we can create a multicast delegate instance p, such that pro‐
gress is monitored by two independent methods:

ProgressReporter p = WriteProgressToConsole;
p += WriteProgressToFile;
Util.HardWork (p);

void WriteProgressToConsole (int percentComplete)
  => Console.WriteLine (percentComplete);

void WriteProgressToFile (int percentComplete)
  => System.IO.File.WriteAllText ("progress.txt",
                                   percentComplete.ToString());

Generic Delegate Types
A delegate type can contain generic type parameters:

public delegate T Transformer<T> (T arg);

With this definition, we can write a generalized Transform utility method that
works on any type:

int[] values = { 1, 2, 3 };
Util.Transform (values, Square);      // Hook in Square
foreach (int i in values)
  Console.Write (i + "  ");           // 1   4   9

int Square (int x) => x * x;

public class Util
{
  public static void Transform<T> (T[] values, Transformer<T> t)
  {
    for (int i = 0; i < values.Length; i++)
      values[i] = t (values[i]);
  }
}
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The Func and Action Delegates
With generic delegates, it becomes possible to write a small set of delegate types that
are so general they can work for methods of any return type and any (reasonable)
number of arguments. These delegates are the Func and Action delegates, defined
in the System namespace (the in and out annotations indicate variance, which we
cover in the context of delegates shortly):

delegate TResult Func <out TResult>                ();
delegate TResult Func <in T, out TResult>          (T arg);
delegate TResult Func <in T1, in T2, out TResult>  (T1 arg1, T2 arg2);
... and so on, up to T16

delegate void Action                 ();
delegate void Action <in T>          (T arg);
delegate void Action <in T1, in T2>  (T1 arg1, T2 arg2);
... and so on, up to T16

These delegates are extremely general. The Transformer delegate in our previous
example can be replaced with a Func delegate that takes a single argument of type T
and returns a same-typed value:

public static void Transform<T> (T[] values, Func<T,T> transformer)
{
  for (int i = 0; i < values.Length; i++)
    values[i] = transformer (values[i]);
}

The only practical scenarios not covered by these delegates are ref/out and pointer
parameters.

When C# was first introduced, the Func and Action delegates
did not exist (because generics did not exist). It’s for this his‐
torical reason that much of .NET uses custom delegate types
rather than Func and Action.

Delegates Versus Interfaces
A problem that you can solve with a delegate can also be solved with an inter‐
face. For instance, we can rewrite our original example with an interface called
ITransformer instead of a delegate:

int[] values = { 1, 2, 3 };
Util.TransformAll (values, new Squarer());
foreach (int i in values)
  Console.WriteLine (i);

public interface ITransformer
{
  int Transform (int x);
}

public class Util
{
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 public static void TransformAll (int[] values, ITransformer t)
 {
   for (int i = 0; i < values.Length; i++)
     values[i] = t.Transform (values[i]);
 }
}

class Squarer : ITransformer
{
  public int Transform (int x) => x * x;
}

A delegate design might be a better choice than an interface design if one or more of
these conditions are true:

• The interface defines only a single method.•
• Multicast capability is needed.•
• The subscriber needs to implement the interface multiple times.•

In the ITransformer example, we don’t need to multicast. However, the interface
defines only a single method. Furthermore, our subscriber might need to implement
ITransformer multiple times, to support different transforms, such as square or
cube. With interfaces, we’re forced into writing a separate type per transform
because a class can implement ITransformer only once. This is quite cumbersome:

int[] values = { 1, 2, 3 };
Util.TransformAll (values, new Cuber());
foreach (int i in values)
  Console.WriteLine (i);

class Squarer : ITransformer
{
  public int Transform (int x) => x * x;
}

class Cuber : ITransformer
{
  public int Transform (int x) => x * x * x;
}

Delegate Compatibility

Type compatibility
Delegate types are all incompatible with one another, even if their signatures are the
same:

D1 d1 = Method1;
D2 d2 = d1;                           // Compile-time error

void Method1() { }
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delegate void D1();
delegate void D2();

The following, however, is permitted:
D2 d2 = new D2 (d1);

Delegate instances are considered equal if they have the same method targets:

D d1 = Method1;
D d2 = Method1;
Console.WriteLine (d1 == d2);         // True

void Method1() { }
delegate void D();

Multicast delegates are considered equal if they reference the same methods in the
same order.

Parameter compatibility
When you call a method, you can supply arguments that have more specific types
than the parameters of that method. This is ordinary polymorphic behavior. For
the same reason, a delegate can have more specific parameter types than its method
target. This is called contravariance. Here’s an example:

StringAction sa = new StringAction (ActOnObject);
sa ("hello");

void ActOnObject (object o) => Console.WriteLine (o);   // hello

delegate void StringAction (string s);

(As with type parameter variance, delegates are variant only for reference
conversions.)

A delegate merely calls a method on someone else’s behalf. In this case, the String
Action is invoked with an argument of type string. When the argument is then
relayed to the target method, the argument is implicitly upcast to an object.

The standard event pattern is designed to help you utilize
contravariance through its use of the common EventArgs base
class. For example, you can have a single method invoked by
two different delegates, one passing a MouseEventArgs and the
other passing a KeyEventArgs.

Return type compatibility
If you call a method, you might get back a type that is more specific than what you
asked for. This is ordinary polymorphic behavior. For the same reason, a delegate’s
target method might return a more specific type than described by the delegate.
This is called covariance:
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ObjectRetriever o = new ObjectRetriever (RetrieveString);
object result = o();
Console.WriteLine (result);      // hello

string RetrieveString() => "hello";

delegate object ObjectRetriever();

ObjectRetriever expects to get back an object, but an object subclass will also do:
delegate return types are covariant.

Generic delegate type parameter variance
In Chapter 3, we saw how generic interfaces support covariant and contravariant
type parameters. The same capability exists for delegates, too.

If you’re defining a generic delegate type, it’s good practice to do the following:

• Mark a type parameter used only on the return value as covariant (out).•

• Mark any type parameters used only on parameters as contravariant (in).•

Doing so allows conversions to work naturally by respecting inheritance relation‐
ships between types.

The following delegate (defined in the System namespace) has a covariant TResult:

delegate TResult Func<out TResult>();

This allows:

Func<string> x = ...;
Func<object> y = x;

The following delegate (defined in the System namespace) has a contravariant T:

delegate void Action<in T> (T arg);

This allows:

Action<object> x = ...;
Action<string> y = x;

Events
When using delegates, two emergent roles commonly appear: broadcaster and sub‐
scriber.

The broadcaster is a type that contains a delegate field. The broadcaster decides
when to broadcast, by invoking the delegate.

The subscribers are the method target recipients. A subscriber decides when to start
and stop listening by calling += and -= on the broadcaster’s delegate. A subscriber
does not know about, or interfere with, other subscribers.
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Events are a language feature that formalizes this pattern. An event is a construct
that exposes just the subset of delegate features required for the broadcaster/sub‐
scriber model. The main purpose of events is to prevent subscribers from interfering
with one another.

The easiest way to declare an event is to put the event keyword in front of a delegate
member:

// Delegate definition
public delegate void PriceChangedHandler (decimal oldPrice,
                                          decimal newPrice);
public class Broadcaster
{
  // Event declaration
  public event PriceChangedHandler PriceChanged;
}

Code within the Broadcaster type has full access to PriceChanged and can treat it
as a delegate. Code outside of Broadcaster can perform only += and -= operations
on the PriceChanged event.

How Do Events Work on the Inside?
Three things happen under the hood when you declare an event as follows:

public class Broadcaster
{
  public event PriceChangedHandler PriceChanged;
}

First, the compiler translates the event declaration into something close to the
following:

PriceChangedHandler priceChanged;   // private delegate
public event PriceChangedHandler PriceChanged
{
  add    { priceChanged += value; }
  remove { priceChanged -= value; }
}

The add and remove keywords denote explicit event accessors—which act rather like
property accessors. We describe how to write these later.

Second, the compiler looks within the Broadcaster class for references to Price
Changed that perform operations other than += or -= and redirects them to the
underlying priceChanged delegate field.

Third, the compiler translates += and -= operations on the event to calls to the
event’s add and remove accessors. Interestingly, this makes the behavior of += and -=
unique when applied to events: unlike in other scenarios, it’s not simply a shortcut
for + and - followed by an assignment.
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Consider the following example. The Stock class fires its PriceChanged event every
time the Price of the Stock changes:

public delegate void PriceChangedHandler (decimal oldPrice,
                                          decimal newPrice);
public class Stock
{
  string symbol;
  decimal price;

  public Stock (string symbol) => this.symbol = symbol;

  public event PriceChangedHandler PriceChanged;

  public decimal Price
  {
    get => price;
    set
    {
      if (price == value) return;      // Exit if nothing has changed
      decimal oldPrice = price;
      price = value;
      if (PriceChanged != null)           // If invocation list not
        PriceChanged (oldPrice, price);   // empty, fire event.
    }
  }
}

If we remove the event keyword from our example so that PriceChanged becomes
an ordinary delegate field, our example would give the same results. However, Stock
would be less robust insomuch as subscribers could do the following things to
interfere with one another:

• Replace other subscribers by reassigning PriceChanged (instead of using the +=•
operator).

• Clear all subscribers (by setting PriceChanged to null).•
• Broadcast to other subscribers by invoking the delegate.•

Standard Event Pattern
In almost all cases for which events are defined in the .NET libraries, their defini‐
tion adheres to a standard pattern designed to provide consistency across library
and user code. At the core of the standard event pattern is System.EventArgs, a pre‐
defined .NET class with no members (other than the static Empty field). EventArgs
is a base class for conveying information for an event. In our Stock example, we
would subclass EventArgs to convey the old and new prices when a PriceChanged
event is fired:
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public class PriceChangedEventArgs : System.EventArgs
{
  public readonly decimal LastPrice;
  public readonly decimal NewPrice;

  public PriceChangedEventArgs (decimal lastPrice, decimal newPrice)
  {
    LastPrice = lastPrice;
    NewPrice = newPrice;
  }
}

For reusability, the EventArgs subclass is named according to the information it
contains (rather than the event for which it will be used). It typically exposes data as
properties or as read-only fields.

With an EventArgs subclass in place, the next step is to choose or define a delegate
for the event. There are three rules:

• It must have a void return type.•

• It must accept two arguments: the first of type object and the second a•
subclass of EventArgs. The first argument indicates the event broadcaster, and
the second argument contains the extra information to convey.

• Its name must end with EventHandler.•

.NET defines a generic delegate called System.EventHandler<> to help with this:

public delegate void EventHandler<TEventArgs> (object source, TEventArgs e)

Before generics existed in the language (prior to C# 2.0), we
would have had to instead write a custom delegate as follows:

public delegate void PriceChangedHandler
  (object sender, PriceChangedEventArgs e);

For historical reasons, most events within the .NET libraries
use delegates defined in this way.

The next step is to define an event of the chosen delegate type. Here, we use the
generic EventHandler delegate:

public class Stock
{
  ...
  public event EventHandler<PriceChangedEventArgs> PriceChanged;
}

Finally, the pattern requires that you write a protected virtual method that fires the
event. The name must match the name of the event, prefixed with the word “On,”
and then accept a single EventArgs argument:

public class Stock
{
  ...
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  public event EventHandler<PriceChangedEventArgs> PriceChanged;

  protected virtual void OnPriceChanged (PriceChangedEventArgs e)
  {
    if (PriceChanged != null) PriceChanged (this, e);
  }
}

To work robustly in multithreaded scenarios (Chapter 14),
you need to assign the delegate to a temporary variable before
testing and invoking it:

var temp = PriceChanged;
if (temp != null) temp (this, e);

We can achieve the same functionality without the temp vari‐
able with the null-conditional operator:

PriceChanged?.Invoke (this, e);

Being both thread-safe and succinct, this is the best general
way to invoke events.

This provides a central point from which subclasses can invoke or override the
event (assuming the class is not sealed).

Here’s the complete example:

using System;

Stock stock = new Stock ("THPW");
stock.Price = 27.10M;
// Register with the PriceChanged event
stock.PriceChanged += stock_PriceChanged;
stock.Price = 31.59M;

void stock_PriceChanged (object sender, PriceChangedEventArgs e)
{
  if ((e.NewPrice - e.LastPrice) / e.LastPrice > 0.1M)
    Console.WriteLine ("Alert, 10% stock price increase!");
}

public class PriceChangedEventArgs : EventArgs
{
  public readonly decimal LastPrice;
  public readonly decimal NewPrice;

  public PriceChangedEventArgs (decimal lastPrice, decimal newPrice)
  {
    LastPrice = lastPrice; NewPrice = newPrice;
  }
}

public class Stock
{
  string symbol;
  decimal price;
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  public Stock (string symbol) => this.symbol = symbol;

  public event EventHandler<PriceChangedEventArgs> PriceChanged;

  protected virtual void OnPriceChanged (PriceChangedEventArgs e)
  {
    PriceChanged?.Invoke (this, e);
  }

  public decimal Price
  {
    get => price;
    set
    {
      if (price == value) return;
      decimal oldPrice = price;
      price = value;
      OnPriceChanged (new PriceChangedEventArgs (oldPrice, price));
    }
  }
}

The predefined nongeneric EventHandler delegate can be used when an event
doesn’t carry extra information. In this example, we rewrite Stock such that the
PriceChanged event is fired after the price changes, and no information about
the event is necessary, other than it happened. We also make use of the Event
Args.Empty property in order to avoid unnecessarily instantiating an instance of
EventArgs:

public class Stock
{
  string symbol;
  decimal price;

  public Stock (string symbol) { this.symbol = symbol; }

  public event EventHandler PriceChanged;

  protected virtual void OnPriceChanged (EventArgs e)
  {
    PriceChanged?.Invoke (this, e);
  }

  public decimal Price
  {
    get { return price; }
    set
    {
      if (price == value) return;
      price = value;
      OnPriceChanged (EventArgs.Empty);
    }

186 | Chapter 4: Advanced C#



  }
}

Event Accessors
An event’s accessors are the implementations of its += and -= functions. By
default, accessors are implemented implicitly by the compiler. Consider this event
declaration:

public event EventHandler PriceChanged;

The compiler converts this to the following:

• A private delegate field•

• A public pair of event accessor functions (add_PriceChanged and•
remove_PriceChanged) whose implementations forward the += and -= opera‐
tions to the private delegate field

You can take over this process by defining explicit event accessors. Here’s a manual
implementation of the PriceChanged event from our previous example:

private EventHandler priceChanged;         // Declare a private delegate

public event EventHandler PriceChanged
{
  add    { priceChanged += value; }
  remove { priceChanged -= value; }
}

This example is functionally identical to C#’s default accessor implementation
(except that C# also ensures thread safety around updating the delegate via a lock-
free compare-and-swap algorithm; see http://albahari.com/threading). By defining
event accessors ourselves, we instruct C# not to generate default field and accessor
logic.

With explicit event accessors, you can apply more complex strategies to the storage
and access of the underlying delegate. There are three scenarios for which this is
useful:

• When the event accessors are merely relays for another class that is broadcast‐•
ing the event.

• When the class exposes many events, for which most of the time very few•
subscribers exist, such as a Windows control. In such cases, it is better to store
the subscriber’s delegate instances in a dictionary because a dictionary will
contain less storage overhead than dozens of null delegate field references.

• When explicitly implementing an interface that declares an event.•

Here is an example that illustrates the last point:
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public interface IFoo { event EventHandler Ev; }

class Foo : IFoo
{
  private EventHandler ev;

  event EventHandler IFoo.Ev
  {
    add    { ev += value; }
    remove { ev -= value; }
  }
}

The add and remove parts of an event are compiled to add_XXX
and remove_XXX methods.

Event Modifiers
Like methods, events can be virtual, overridden, abstract, or sealed. Events can also
be static:

public class Foo
{
  public static event EventHandler<EventArgs> StaticEvent;
  public virtual event EventHandler<EventArgs> VirtualEvent;
}

Lambda Expressions
A lambda expression is an unnamed method written in place of a delegate instance.
The compiler immediately converts the lambda expression to either of the follow‐
ing:

• A delegate instance.•

• An expression tree, of type Expression<TDelegate>, representing the code•
inside the lambda expression in a traversable object model. This allows the
lambda expression to be interpreted later at runtime (see “Building Query
Expressions” on page 466).

In the following example, x => x * x is a lambda expression:

Transformer sqr = x => x * x;
Console.WriteLine (sqr(3));    // 9

delegate int Transformer (int i);

Internally, the compiler resolves lambda expressions of this
type by writing a private method and then moving the expres‐
sion’s code into that method.

A lambda expression has the following form:
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(parameters) => expression-or-statement-block

For convenience, you can omit the parentheses if and only if there is exactly one
parameter of an inferable type.

In our example, there is a single parameter, x, and the expression is x * x:

x => x * x;

Each parameter of the lambda expression corresponds to a delegate parameter, and
the type of the expression (which may be void) corresponds to the return type of
the delegate.

In our example, x corresponds to parameter i, and the expression x * x corre‐
sponds to the return type int, therefore being compatible with the Transformer
delegate:

delegate int Transformer (int i);

A lambda expression’s code can be a statement block instead of an expression. We
can rewrite our example as follows:

x => { return x * x; };

Lambda expressions are used most commonly with the Func and Action delegates,
so you will most often see our earlier expression written as follows:

Func<int,int> sqr = x => x * x;

Here’s an example of an expression that accepts two parameters:

Func<string,string,int> totalLength = (s1, s2) => s1.Length + s2.Length;
int total = totalLength ("hello", "world");   // total is 10;

If you do not need to use the parameters, you can discard them with an underscore
(from C# 9):

Func<string,string,int> totalLength = (_,_) => ...

Here’s an example of an expression that takes zero arguments:

Func<string> greeter = () => "Hello, world";

From C# 10, the compiler permits implicit typing with lambda expressions that can
be resolved via the Func and Action delegates, so we can shorten this statement to:

var greeter = () => "Hello, world";

Explicitly Specifying Lambda Parameter and Return Types
The compiler can usually infer the type of lambda parameters contextually. When
this is not the case, you must specify the type of each parameter explicitly. Consider
the following two methods:

void Foo<T> (T x)         {}
void Bar<T> (Action<T> a) {}
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The following code will fail to compile, because the compiler cannot infer the type
of x:

Bar (x => Foo (x));     // What type is x?

We can fix this by explicitly specifying x’s type as follows:

Bar ((int x) => Foo (x));

This particular example is simple enough that it can be fixed in two other ways:

Bar<int> (x => Foo (x));   // Specify type parameter for Bar
Bar<int> (Foo);            // As above, but with method group

The following example illustrates another use for explicit parameter types (from C#
10):

var sqr = (int x) => x * x;

The compiler infers sqr to be of type Func<int,int>. (Without specifying int,
implicit typing would fail: the compiler would know that sqr should be Func<T,T>,
but it wouldn’t know what T should be.)

From C# 10, you can also specify the lambda return type:

var sqr = int (int x) => x;

Specifying a return type can improve compiler performance with complex nested
lambdas.

Default Lambda Parameters (C# 12)
Just as ordinary methods can have optional parameters:

void Print (string message = "") => Console.WriteLine (message);

so, too, can lambda expressions:

var print = (string message = "") => Console.WriteLine (message);

print ("Hello");
print ();

This feature is useful with libraries such as ASP.NET Minimal API.

Capturing Outer Variables
A lambda expression can reference any variables that are accessible where the
lambda expression is defined. These are called outer variables, and can include local
variables, parameters, and fields:

int factor = 2;
Func<int, int> multiplier = n => n * factor;
Console.WriteLine (multiplier (3));            // 6

Outer variables referenced by a lambda expression are called captured variables. A
lambda expression that captures variables is called a closure.
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Variables can also be captured by anonymous methods and
local methods. The rules for captured variables, in these cases,
are the same.

Captured variables are evaluated when the delegate is actually invoked, not when the
variables were captured:

int factor = 2;
Func<int, int> multiplier = n => n * factor;
factor = 10;
Console.WriteLine (multiplier (3));           // 30

Lambda expressions can themselves update captured variables:

int seed = 0;
Func<int> natural = () => seed++;
Console.WriteLine (natural());           // 0
Console.WriteLine (natural());           // 1
Console.WriteLine (seed);                // 2

Captured variables have their lifetimes extended to that of the delegate. In the
following example, the local variable seed would ordinarily disappear from scope
when Natural finished executing. But because seed has been captured, its lifetime is
extended to that of the capturing delegate, natural:

static Func<int> Natural()
{
  int seed = 0;
  return () => seed++;      // Returns a closure
}

static void Main()
{
  Func<int> natural = Natural();
  Console.WriteLine (natural());      // 0
  Console.WriteLine (natural());      // 1
}

A local variable instantiated within a lambda expression is unique per invocation of
the delegate instance. If we refactor our previous example to instantiate seed within
the lambda expression, we get a different (in this case, undesirable) result:

static Func<int> Natural()
{    
  return() => { int seed = 0; return seed++; };
}

static void Main()
{
  Func<int> natural = Natural();
  Console.WriteLine (natural());           // 0
  Console.WriteLine (natural());           // 0
}
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Capturing is internally implemented by “hoisting” the cap‐
tured variables into fields of a private class. When the method
is called, the class is instantiated and lifetime-bound to the
delegate instance.

Static lambdas
When you capture local variables, parameters, instance fields, or the this reference,
the compiler may need to create and instantiate a private class to store a reference to
the captured data. This incurs a small performance cost, because memory must be
allocated (and subsequently collected). In situations where performance is critical,
one micro-optimization strategy is to minimize the load on the garbage collector by
ensuring that code hot paths incur few or no allocations.

From C# 9, you can ensure that a lambda expression, local function, or anonymous
method doesn’t capture state by applying the static keyword. This can be useful
in micro-optimization scenarios to prevent unintentional memory allocations. For
example, we can apply the static modifier to a lambda expression as follows:

Func<int, int> multiplier = static n => n * 2;

If we later try to modify the lambda expression such that it captures a local variable,
the compiler will generate an error:

int factor = 2;
Func<int, int> multiplier = static n => n * factor;  // will not compile

The lambda itself evaluates to a delegate instance, which
requires a memory allocation. However, if the lambda doesn’t
capture variables, the compiler will reuse a single cached
instance across the life of the application, so there will be no
cost in practice.

This feature can also be used with local methods. In the following example, the
Multiply method cannot access the factor variable:

void Foo()
{
  int factor = 123;
  static int Multiply (int x) => x * 2;   // Local static method
}

Of course, the Multiply method could still explicitly allocate memory by calling
new. What this protects us from is a potential allocation by stealth. Applying static
here is also arguably useful as a documentation tool, indicating a reduced level of
coupling.

Static lambdas can still access static variables and constants (because these do not
require a closure).
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The static keyword acts merely as a check; it has no effect
on the IL that the compiler produces. Without the static
keyword, the compiler does not generate a closure unless it
needs to (and even then, it has tricks to mitigate the cost).

Capturing iteration variables
When you capture the iteration variable of a for loop, C# treats that variable
as though it were declared outside the loop. This means that the same variable
is captured in each iteration. The following program writes 333 instead of 012:

Action[] actions = new Action[3];

for (int i = 0; i < 3; i++)
  actions [i] = () => Console.Write (i);

foreach (Action a in actions) a();     // 333

Each closure (shown in boldface) captures the same variable, i. (This actually makes
sense when you consider that i is a variable whose value persists between loop
iterations; you can even explicitly change i within the loop body if you want.) The
consequence is that when the delegates are later invoked, each delegate sees i’s value
at the time of invocation—which is 3. We can illustrate this better by expanding the
for loop, as follows:

Action[] actions = new Action[3];
int i = 0;
actions[0] = () => Console.Write (i);
i = 1;
actions[1] = () => Console.Write (i);
i = 2;
actions[2] = () => Console.Write (i);
i = 3;
foreach (Action a in actions) a();    // 333

The solution, if we want to write 012, is to assign the iteration variable to a local
variable that’s scoped within the loop:

Action[] actions = new Action[3];
for (int i = 0; i < 3; i++)
{
  int loopScopedi = i;
  actions [i] = () => Console.Write (loopScopedi);
}
foreach (Action a in actions) a();     // 012

Because loopScopedi is freshly created on every iteration, each closure captures a
different variable.
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Prior to C# 5.0, foreach loops worked in the same way. This
caused considerable confusion: unlike with a for loop, the
iteration variable in a foreach loop is immutable, and so you
would expect it to be treated as local to the loop body. The
good news is that it’s now fixed and you can safely capture a
foreach loop’s iteration variable without surprises. 

Lambda Expressions Versus Local Methods
The functionality of local methods (see “Local methods” on page 106) overlaps with
that of lambda expressions. Local methods have the following three advantages:

• They can be recursive (they can call themselves) without ugly hacks.•
• They avoid the clutter of specifying a delegate type.•
• They incur slightly less overhead.•

Local methods are more efficient because they avoid the indirection of a delegate
(which costs some CPU cycles and a memory allocation). They can also access
local variables of the containing method without the compiler having to “hoist” the
captured variables into a hidden class.

However, in many cases you need a delegate—most commonly when calling a
higher-order function, that is, a method with a delegate-typed parameter:

public void Foo (Func<int,bool> predicate) { ... }

(You can see plenty more of these in Chapter 8). In such cases, you need a delegate
anyway, and it’s in precisely these cases that lambda expressions are usually terser
and cleaner.

Anonymous Methods
Anonymous methods are a C# 2.0 feature that was mostly subsumed by C# 3.0’s
lambda expressions. An anonymous method is like a lambda expression, but it lacks
the following features:

• Implicitly typed parameters•
• Expression syntax (an anonymous method must always be a statement block)•

• The ability to compile to an expression tree, by assigning to Expression<T>•

An anonymous method uses the delegate keyword followed (optionally) by a
parameter declaration and then a method body. For example:

Transformer sqr = delegate (int x) {return x * x;};
Console.WriteLine (sqr(3));                            // 9

delegate int Transformer (int i);
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The first line is semantically equivalent to the following lambda expression:

Transformer sqr =       (int x) => {return x * x;};

Or simply:

Transformer sqr =            x  => x * x;

Anonymous methods capture outer variables in the same way lambda expressions
do, and can be preceded by the static keyword to make them behave like static
lambdas.

A unique feature of anonymous methods is that you can
omit the parameter declaration entirely—even if the delegate
expects it. This can be useful in declaring events with a default
empty handler:

public event EventHandler Clicked = delegate { };

This avoids the need for a null check before firing the event.
The following is also legal:

// Notice that we omit the parameters:
Clicked += delegate { Console.WriteLine ("clicked"); };

try Statements and Exceptions
A try statement specifies a code block subject to error-handling or cleanup code.
The try block must be followed by one or more catch blocks and/or a finally
block, or both. The catch block executes when an error is thrown in the try block.
The finally block executes after execution leaves the try block (or, if present,
the catch block) to perform cleanup code, regardless of whether an exception was
thrown.

A catch block has access to an Exception object that contains information about
the error. You use a catch block to either compensate for the error or rethrow the
exception. You rethrow an exception if you merely want to log the problem or if you
want to rethrow a new, higher-level exception type.

A finally block adds determinism to your program: the CLR endeavors to always
execute it. It’s useful for cleanup tasks such as closing network connections.

A try statement looks like this:

try
{
  ... // exception may get thrown within execution of this block
}
catch (ExceptionA ex)
{
  ... // handle exception of type ExceptionA
}
catch (ExceptionB ex)
{
  ... // handle exception of type ExceptionB

try Statements and Exceptions | 195

A
d

vanced
 C

#



}
finally
{
  ... // cleanup code
}

Consider the following program:

int y = Calc (0);
Console.WriteLine (y);

int Calc (int x) => 10 / x;

Because x is zero, the runtime throws a DivideByZeroException and our program
terminates. We can prevent this by catching the exception as follows:

try
{
  int y = Calc (0);
  Console.WriteLine (y);
}
catch (DivideByZeroException ex)
{
  Console.WriteLine ("x cannot be zero");
}
Console.WriteLine ("program completed");

int Calc (int x) => 10 / x;

Here’s the output:

x cannot be zero
program completed

This is a simple example to illustrate exception handling. We
could deal with this particular scenario better in practice by
checking explicitly for the divisor being zero before calling
Calc.
Checking for preventable errors is preferable to relying on
try/catch blocks because exceptions are relatively expensive
to handle, taking hundreds of clock cycles or more.

When an exception is thrown within a try statement, the CLR performs a test:

Does the try statement have any compatible catch blocks?

• If so, execution jumps to the compatible catch block, followed by the finally•
block (if present), and then execution continues normally.

• If not, execution jumps directly to the finally block (if present), then the CLR•
looks up the call stack for other try blocks; if found, it repeats the test.

If no function in the call stack takes responsibility for the exception, the program
terminates.
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The catch Clause
A catch clause specifies what type of exception to catch. This must either be
System.Exception or a subclass of System.Exception.

Catching System.Exception catches all possible errors. This is useful in the follow‐
ing circumstances:

• Your program can potentially recover regardless of the specific exception type.•
• You plan to rethrow the exception (perhaps after logging it).•
• Your error handler is the last resort, prior to termination of the program.•

More typically, though, you catch specific exception types in order to avoid having
to deal with circumstances for which your handler wasn’t designed (e.g., an OutOfMe
moryException).

You can handle multiple exception types with multiple catch clauses (again, this
example could be written with explicit argument checking rather than exception
handling):

class Test
{
  static void Main (string[] args)
  {
    try
    {
      byte b = byte.Parse (args[0]);
      Console.WriteLine (b);
    }
    catch (IndexOutOfRangeException)
    {
      Console.WriteLine ("Please provide at least one argument");
    }
    catch (FormatException)
    {
      Console.WriteLine ("That's not a number!");
    }
    catch (OverflowException)
    {
      Console.WriteLine ("You've given me more than a byte!");
    }
  }
}

Only one catch clause executes for a given exception. If you want to include a safety
net to catch more general exceptions (such as System.Exception), you must put the
more-specific handlers first.

An exception can be caught without specifying a variable, if you don’t need to access
its properties:
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catch (OverflowException)   // no variable
{
  ...
}

Furthermore, you can omit both the variable and the type (meaning that all excep‐
tions will be caught):

catch { ... }

Exception filters
You can specify an exception filter in a catch clause by adding a when clause:

catch (WebException ex) when (ex.Status == WebExceptionStatus.Timeout)
{
  ...
}

If a WebException is thrown in this example, the Boolean expression following the
when keyword is then evaluated. If the result is false, the catch block in question is
ignored and any subsequent catch clauses are considered. With exception filters, it
can be meaningful to catch the same exception type again:

catch (WebException ex) when (ex.Status == WebExceptionStatus.Timeout)
{ ... }
catch (WebException ex) when (ex.Status == WebExceptionStatus.SendFailure)
{ ... }

The Boolean expression in the when clause can be side-effecting, such as a method
that logs the exception for diagnostic purposes.

The finally Block
A finally block always executes—regardless of whether an exception is thrown
and whether the try block runs to completion. You typically use finally blocks for
cleanup code.

A finally block executes after any of the following:

• A catch block finishes (or throws a new exception).•

• The try block finishes (or throws an exception for which there’s no catch•
block).

• Control leaves the try block because of a jump statement (e.g., return or goto).•

The only things that can defeat a finally block are an infinite loop or the process
ending abruptly.

A finally block helps add determinism to a program. In the following example, the
file that we open always gets closed, regardless of whether:
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• The try block finishes normally.•

• Execution returns early because the file is empty (EndOfStream).•

• An IOException is thrown while reading the file:•

void ReadFile()
{
  StreamReader reader = null;    // In System.IO namespace
  try
  {
    reader = File.OpenText ("file.txt");
    if (reader.EndOfStream) return;
    Console.WriteLine (reader.ReadToEnd());
  }
  finally
  {
    if (reader != null) reader.Dispose();
  }
}

In this example, we closed the file by calling Dispose on the StreamReader. Calling
Dispose on an object, within a finally block, is a standard convention and is
supported explicitly in C# through the using statement.

The using statement
Many classes encapsulate unmanaged resources, such as file handles, graphics han‐
dles, or database connections. These classes implement System.IDisposable, which
defines a single parameterless method named Dispose to clean up these resources.
The using statement provides an elegant syntax for calling Dispose on an IDisposa
ble object within a finally block.

Thus

using (StreamReader reader = File.OpenText ("file.txt"))
{
  ...
}

is precisely equivalent to the following:

{
  StreamReader reader = File.OpenText ("file.txt");
  try
  {
    ...
  }
  finally
  {
    if (reader != null)
      ((IDisposable)reader).Dispose();
  }
}
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using declarations
If you omit the brackets and statement block following a using statement (C# 8+),
it becomes a using declaration. The resource is then disposed when execution falls
outside the enclosing statement block:

if (File.Exists ("file.txt"))
{
  using var reader = File.OpenText ("file.txt");
  Console.WriteLine (reader.ReadLine());
  ...
}

In this case, reader will be disposed when execution falls outside the if statement
block.

Throwing Exceptions
Exceptions can be thrown either by the runtime or in user code. In this example,
Display throws a System.ArgumentNullException:

try { Display (null); }
catch (ArgumentNullException ex)
{
  Console.WriteLine ("Caught the exception");
}

void Display (string name)
{
  if (name == null)
    throw new ArgumentNullException (nameof (name));

  Console.WriteLine (name);
}

Because null-checking an argument and throwing an Argu
mentNullException is such a common code path, there’s
actually a shortcut for it, from .NET 6:

void Display (string name)
{
  ArgumentNullException.ThrowIfNull (name);
  Console.WriteLine (name);
}

Notice that we didn’t need to specify the name of the parame‐
ter. We’ll explain why later, in “CallerArgumentExpression” on
page 247.

throw expressions
throw can also appear as an expression in expression-bodied functions:

public string Foo() => throw new NotImplementedException();

A throw expression can also appear in a ternary conditional expression:
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string ProperCase (string value) =>
  value == null ? throw new ArgumentException ("value") :
  value == "" ? "" :
  char.ToUpper (value[0]) + value.Substring (1);

Rethrowing an exception
You can capture and rethrow an exception as follows:

try {  ...  }
catch (Exception ex)
{
  // Log error
  ...
  throw;          // Rethrow same exception
}

If we replaced throw with throw ex, the example would still
work, but the StackTrace property of the newly propagated
exception would no longer reflect the original error.

Rethrowing in this manner lets you log an error without swallowing it. It also lets
you back out of handling an exception should circumstances turn out to be beyond
what you expected. The other common scenario is to rethrow a more specific
exception type:

try
{
  ... // Parse a DateTime from XML element data
}
catch (FormatException ex)
{
  throw new XmlException ("Invalid DateTime", ex);
}

Notice that when we constructed XmlException, we passed in the original excep‐
tion, ex, as the second argument. This argument populates the InnerException
property of the new exception and aids debugging. Nearly all types of exception
offer a similar constructor.

Rethrowing a less-specific exception is something you might do when crossing a
trust boundary, so as not to leak technical information to potential hackers.

Key Properties of System.Exception
The most important properties of System.Exception are the following:

StackTrace

A string representing all the methods that are called from the origin of the
exception to the catch block.

Message

A string with a description of the error.
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InnerException

The inner exception (if any) that caused the outer exception. This, itself, can
have another InnerException.

All exceptions in C# are runtime exceptions—there is no
equivalent to Java’s compile-time checked exceptions.

Common Exception Types
The following exception types are used widely throughout the CLR and .NET libra‐
ries. You can throw these yourself or use them as base classes for deriving custom
exception types:

System.ArgumentException

Thrown when a function is called with a bogus argument. This generally
indicates a program bug.

System.ArgumentNullException

Subclass of ArgumentException that’s thrown when a function argument is
(unexpectedly) null.

System.ArgumentOutOfRangeException

Subclass of ArgumentException that’s thrown when a (usually numeric) argu‐
ment is too big or too small. For example, this is thrown when passing a
negative number into a function that accepts only positive values.

System.InvalidOperationException

Thrown when the state of an object is unsuitable for a method to successfully
execute, regardless of any particular argument values. Examples include read‐
ing an unopened file or getting the next element from an enumerator for which
the underlying list has been modified partway through the iteration.

System.NotSupportedException

Thrown to indicate that a particular functionality is not supported. A good
example is calling the Add method on a collection for which IsReadOnly
returns true.

System.NotImplementedException

Thrown to indicate that a function has not yet been implemented.

System.ObjectDisposedException

Thrown when the object upon which the function is called has been disposed.

Another commonly encountered exception type is NullReferenceException. The
CLR throws this exception when you attempt to access a member of an object
whose value is null (indicating a bug in your code). You can throw a NullReferen
ceException directly (for testing purposes) as follows:

throw null;
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The TryXXX Method Pattern
When writing a method, you have a choice, when something goes wrong, to return
some kind of failure code or throw an exception. In general, you throw an exception
when the error is outside the normal workflow—or if you expect that the immediate
caller won’t be able to cope with it. Occasionally, though, it can be best to offer
both choices to the consumer. An example of this is the int type, which defines two
versions of its Parse method:

public int Parse     (string input);
public bool TryParse (string input, out int returnValue);

If parsing fails, Parse throws an exception; TryParse returns false.

You can implement this pattern by having the XXX method call the TryXXX method
as follows:

public return-type XXX (input-type input)
{
  return-type returnValue;
  if (!TryXXX (input, out returnValue))
    throw new YYYException (...)
  return returnValue;
}

Alternatives to Exceptions
As with int.TryParse, a function can communicate failure by sending an error
code back to the calling function via a return type or parameter. Although this can
work with simple and predictable failures, it becomes clumsy when extended to
unusual or unpredictable errors, polluting method signatures and creating unneces‐
sary complexity and clutter.

It also cannot generalize to functions that are not methods, such as operators
(e.g., the division operator) or properties. An alternative is to place the error in a
common place where all functions in the call stack can see it (e.g., a static method
that stores the current error per thread). This, though, requires each function to
participate in an error-propagation pattern, which is cumbersome and, ironically,
itself error prone.

Enumeration and Iterators
Enumeration
An enumerator is a read-only, forward-only cursor over a sequence of values. C#
treats a type as an enumerator if it does any of the following:

• Has a public parameterless method named MoveNext and property called•
Current

• Implements System.Collections.Generic.IEnumerator<T>•
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• Implements System.Collections.IEnumerator•

The foreach statement iterates over an enumerable object. An enumerable object is
the logical representation of a sequence. It is not itself a cursor but an object that
produces cursors over itself. C# treats a type as enumerable if it does any of the
following (the check is performed in this order):

• Has a public parameterless method named GetEnumerator that returns an•
enumerator

• Implements System.Collections.Generic.IEnumerable<T>•

• Implements System.Collections.IEnumerable•

• (From C# 9) Can bind to an extension method named GetEnumerator that•
returns an enumerator (see “Extension Methods” on page 217)

The enumeration pattern is as follows:

class Enumerator   // Typically implements IEnumerator or IEnumerator<T>
{
  public IteratorVariableType Current { get {...} }
  public bool MoveNext() {...}
}

class Enumerable   // Typically implements IEnumerable or IEnumerable<T>
{
  public Enumerator GetEnumerator() {...}
}

Here is the high-level way of iterating through the characters in the word “beer”
using a foreach statement:

foreach (char c in "beer")
  Console.WriteLine (c);

Here is the low-level way of iterating through the characters in “beer” without using
a foreach statement:

using (var enumerator = "beer".GetEnumerator())
  while (enumerator.MoveNext())
  {
    var element = enumerator.Current;
    Console.WriteLine (element);
  }

If the enumerator implements IDisposable, the foreach statement also acts as a
using statement, implicitly disposing the enumerator object.

Chapter 7 explains the enumeration interfaces in further detail.
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Collection Initializers and Collection Expressions
You can instantiate and populate an enumerable object in a single step via a collec‐
tion initializer:

using System.Collections.Generic;

var list = new List<int> {1, 2, 3};

From C# 12, you can shorten this further with a collection expression (note the
square brackets):

using System.Collections.Generic;

List<int> list = [1, 2, 3];

Collection expressions are target-typed, meaning that the type
of [1,2,3] depends on the type to which it’s assigned (in this
case, List<int>). In the following example, the target types
are int[] and Span<int> (which we cover in Chapter 23):

int[] array = [1, 2, 3];
Span<int> span = [1, 2, 3];

Target typing means that you can omit the type in other
scenarios where the compiler can infer it, such as when calling
methods:

Foo ([1, 2, 3]);

void Foo (List<int> numbers) { ... }

The compiler translates this to the following:

using System.Collections.Generic;

List<int> list = new List<int>();
list.Add (1);
list.Add (2);
list.Add (3);

This requires that the enumerable object implements the System.Collec

tions.IEnumerable interface, and that it has an Add method that has the appropri‐
ate number of parameters for the call. (With collection expressions, the compiler
also supports other patterns to allow for the creation of read-only collections.)

You can similarly initialize dictionaries (see “Dictionaries” on page 394) as follows:

var dict = new Dictionary<int, string>()
{
  { 5, "five" },
  { 10, "ten" }
};
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Or, more succinctly:

var dict = new Dictionary<int, string>()
{
  [3] = "three",
  [10] = "ten"
};

The latter is valid not only with dictionaries but also with any type for which an
indexer exists.

Iterators
Whereas a foreach statement is a consumer of an enumerator, an iterator is a
producer of an enumerator. In this example, we use an iterator to return a sequence
of Fibonacci numbers (where each number is the sum of the previous two):

using System;
using System.Collections.Generic;

foreach (int fib in Fibs(6))
  Console.Write (fib + "  ");
}

IEnumerable<int> Fibs (int fibCount)
{
  for (int i = 0, prevFib = 1, curFib = 1; i < fibCount; i++)
  {
    yield return prevFib;
    int newFib = prevFib+curFib;
    prevFib = curFib;
    curFib = newFib;
  }
}

OUTPUT: 1  1  2  3  5  8

Whereas a return statement expresses, “Here’s the value you asked me to return
from this method,” a yield return statement expresses, “Here’s the next element
you asked me to yield from this enumerator.” On each yield statement, control is
returned to the caller, but the callee’s state is maintained so that the method can
continue executing as soon as the caller enumerates the next element. The lifetime
of this state is bound to the enumerator such that the state can be released when the
caller has finished enumerating.
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The compiler converts iterator methods into private classes
that implement IEnumerable<T> and/or IEnumerator<T>. The
logic within the iterator block is “inverted” and spliced into
the MoveNext method and Current property on the compiler-
written enumerator class. This means that when you call an
iterator method, all you’re doing is instantiating the compiler-
written class; none of your code actually runs! Your code runs
only when you start enumerating over the resultant sequence,
typically with a foreach statement.

Iterators can be local methods (see “Local methods” on page 106).

Iterator Semantics
An iterator is a method, property, or indexer that contains one or more yield
statements. An iterator must return one of the following four interfaces (otherwise,
the compiler will generate an error):

// Enumerable interfaces
System.Collections.IEnumerable
System.Collections.Generic.IEnumerable<T>

// Enumerator interfaces
System.Collections.IEnumerator
System.Collections.Generic.IEnumerator<T>

An iterator has different semantics, depending on whether it returns an enumerable
interface or an enumerator interface. We describe this in Chapter 7.

Multiple yield statements are permitted:

foreach (string s in Foo())
  Console.WriteLine(s);         // Prints "One","Two","Three"

IEnumerable<string> Foo()
{
  yield return "One";
  yield return "Two";
  yield return "Three";
}

yield break
A return statement is illegal in an iterator block; instead you must use the yield
break statement to indicate that the iterator block should exit early, without return‐
ing more elements. We can modify Foo as follows to demonstrate:

IEnumerable<string> Foo (bool breakEarly)
{
  yield return "One";
  yield return "Two";

  if (breakEarly)
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    yield break;

  yield return "Three";
}

Iterators and try/catch/finally blocks
A yield return statement cannot appear in a try block that has a catch clause:

IEnumerable<string> Foo()
{
  try { yield return "One"; }    // Illegal
  catch { ... }
}

Nor can yield return appear in a catch or finally block. These restrictions
are due to the fact that the compiler must translate iterators into ordinary classes
with MoveNext, Current, and Dispose members, and translating exception-handling
blocks would create excessive complexity.

You can, however, yield within a try block that has (only) a finally block:

IEnumerable<string> Foo()
{
  try { yield return "One"; }    // OK
  finally { ... }
}

The code in the finally block executes when the consuming enumerator reaches
the end of the sequence or is disposed. A foreach statement implicitly disposes the
enumerator if you break early, making this a safe way to consume enumerators.
When working with enumerators explicitly, a trap is to abandon enumeration early
without disposing it, circumventing the finally block. You can avoid this risk by
wrapping explicit use of enumerators in a using statement:

string firstElement = null;
var sequence = Foo();
using (var enumerator = sequence.GetEnumerator())
  if (enumerator.MoveNext())
    firstElement = enumerator.Current;

Composing Sequences
Iterators are highly composable. We can extend our example, this time to output
even Fibonacci numbers only:

using System;
using System.Collections.Generic;

foreach (int fib in EvenNumbersOnly (Fibs(6)))
  Console.WriteLine (fib);

IEnumerable<int> Fibs (int fibCount)
{
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  for (int i = 0, prevFib = 1, curFib = 1; i < fibCount; i++)
  {
    yield return prevFib;
    int newFib = prevFib+curFib;
    prevFib = curFib;
    curFib = newFib;
  }
}

IEnumerable<int> EvenNumbersOnly (IEnumerable<int> sequence)
{
  foreach (int x in sequence)
    if ((x % 2) == 0)
      yield return x;
}

Each element is not calculated until the last moment—when requested by a Move
Next() operation. Figure 4-1 shows the data requests and data output over time.

Figure 4-1. Composing sequences

The composability of the iterator pattern is extremely useful in LINQ; we discuss
the subject again in Chapter 8.
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Nullable Value Types
Reference types can represent a nonexistent value with a null reference. Value types,
however, cannot ordinarily represent null values:

string s = null;       // OK, Reference Type
int i = null;          // Compile Error, Value Type cannot be null

To represent null in a value type, you must use a special construct called a nullable
type. A nullable type is denoted with a value type followed by the ? symbol:

int? i = null;                     // OK, Nullable Type
Console.WriteLine (i == null);     // True

Nullable<T> Struct
T? translates into System.Nullable<T>, which is a lightweight immutable structure,
having only two fields, to represent Value and HasValue. The essence of System.Nul
lable<T> is very simple:

public struct Nullable<T> where T : struct
{
  public T Value {get;}
  public bool HasValue {get;}
  public T GetValueOrDefault();
  public T GetValueOrDefault (T defaultValue);
  ...
}

The code

int? i = null;
Console.WriteLine (i == null);              // True

translates to the following:

Nullable<int> i = new Nullable<int>();
Console.WriteLine (! i.HasValue);           // True

Attempting to retrieve Value when HasValue is false throws an InvalidOperation
Exception. GetValueOrDefault() returns Value if HasValue is true; otherwise, it
returns new T() or a specified custom default value.

The default value of T? is null.

Implicit and Explicit Nullable Conversions
The conversion from T to T? is implicit, whereas from T? to T the conversion is
explicit:

int? x = 5;        // implicit
int y = (int)x;    // explicit

The explicit cast is directly equivalent to calling the nullable object’s Value property.
Hence, an InvalidOperationException is thrown if HasValue is false.
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Boxing and Unboxing Nullable Values
When T? is boxed, the boxed value on the heap contains T, not T?. This optimiza‐
tion is possible because a boxed value is a reference type that can already express
null.

C# also permits the unboxing of nullable value types with the as operator. The
result will be null if the cast fails:

object o = "string";
int? x = o as int?;
Console.WriteLine (x.HasValue);   // False

Operator Lifting
The Nullable<T> struct does not define operators such as <, >, or even ==. Despite
this, the following code compiles and executes correctly:

int? x = 5;
int? y = 10;
bool b = x < y;      // true

This works because the compiler borrows or “lifts” the less-than operator from
the underlying value type. Semantically, it translates the preceding comparison
expression into this:

bool b = (x.HasValue && y.HasValue) ? (x.Value < y.Value) : false;

In other words, if both x and y have values, it compares via int’s less-than operator;
otherwise, it returns false.

Operator lifting means that you can implicitly use T’s operators on T?. You can
define operators for T? in order to provide special-purpose null behavior, but in
the vast majority of cases, it’s best to rely on the compiler automatically applying
systematic nullable logic for you. Here are some examples:

int? x = 5;
int? y = null;

// Equality operator examples
Console.WriteLine (x == y);    // False
Console.WriteLine (x == null); // False
Console.WriteLine (x == 5);    // True
Console.WriteLine (y == null); // True
Console.WriteLine (y == 5);    // False
Console.WriteLine (y != 5);    // True

// Relational operator examples
Console.WriteLine (x < 6);     // True
Console.WriteLine (y < 6);     // False
Console.WriteLine (y > 6);     // False

// All other operator examples
Console.WriteLine (x + 5);     // 10
Console.WriteLine (x + y);     // null (prints empty line)
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The compiler performs null logic differently depending on the category of operator.
The following sections explain these different rules.

Equality operators (== and !=)
Lifted equality operators handle nulls just like reference types do. This means that
two null values are equal:

Console.WriteLine (       null ==        null);   // True
Console.WriteLine ((bool?)null == (bool?)null);   // True

Further:

• If exactly one operand is null, the operands are unequal.•

• If both operands are non-null, their Values are compared.•

Relational operators (<, <=, >=, >)
The relational operators work on the principle that it is meaningless to compare
null operands. This means that comparing a null value to either a null or a non-null
value returns false:

bool b = x < y;    // Translation:

bool b = (x.HasValue && y.HasValue) 
         ? (x.Value < y.Value)
         : false;

// b is false (assuming x is 5 and y is null)

All other operators (+, −, *, /, %, &, |, ^, <<, >>, +, ++, --, !, ~)
These operators return null when any of the operands are null. This pattern should
be familiar to SQL users:

int? c = x + y;   // Translation:

int? c = (x.HasValue && y.HasValue)
         ? (int?) (x.Value + y.Value) 
         : null;

// c is null (assuming x is 5 and y is null)

An exception is when the & and | operators are applied to bool?, which we discuss
shortly.

Mixing nullable and non-nullable types
You can mix and match nullable and non-nullable value types (this works because
there is an implicit conversion from T to T?):
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int? a = null;
int b = 2;
int? c = a + b;   // c is null - equivalent to a + (int?)b

bool? with & and | Operators
When supplied operands of type bool? the & and | operators treat null as an
unknown value. So, null | true is true because:

• If the unknown value is false, the result would be true.•
• If the unknown value is true, the result would be true.•

Similarly, null & false is false. This behavior should be familiar to SQL users. The
following example enumerates other combinations:

bool? n = null;
bool? f = false;
bool? t = true;
Console.WriteLine (n | n);    // (null)
Console.WriteLine (n | f);    // (null)
Console.WriteLine (n | t);    // True
Console.WriteLine (n & n);    // (null)
Console.WriteLine (n & f);    // False
Console.WriteLine (n & t);    // (null)

Nullable Value Types and Null Operators
Nullable value types work particularly well with the ?? operator (see “Null-
Coalescing Operator” on page 83), as illustrated in this example:

int? x = null;
int y = x ?? 5;        // y is 5

int? a = null, b = 1, c = 2;
Console.WriteLine (a ?? b ?? c);  // 1 (first non-null value)

Using ?? on a nullable value type is equivalent to calling GetValueOrDefault with
an explicit default value except that the expression for the default value is never
evaluated if the variable is not null.

Nullable value types also work well with the null-conditional operator (see “Null-
Conditional Operator” on page 83). In the following example, length evaluates to
null:

System.Text.StringBuilder sb = null;
int? length = sb?.ToString().Length;

We can combine this with the null-coalescing operator to evaluate to zero instead of
null:

int length = sb?.ToString().Length ?? 0;  // Evaluates to 0 if sb is null
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Scenarios for Nullable Value Types
One of the most common scenarios for nullable value types is to represent
unknown values. This frequently occurs in database programming, where a class
is mapped to a table with nullable columns. If these columns are strings (e.g., an
EmailAddress column on a Customer table), there is no problem because string is
a reference type in the CLR, which can be null. However, most other SQL column
types map to CLR struct types, making nullable value types very useful when
mapping SQL to the CLR:

// Maps to a Customer table in a database
public class Customer
{
  ...
  public decimal? AccountBalance;
}

A nullable type can also be used to represent the backing field of what’s sometimes
called an ambient property. An ambient property, if null, returns the value of its
parent:

public class Row
{
  ...
  Grid parent;
  Color? color;

  public Color Color
  {
    get { return color ?? parent.Color; }
    set { color = value == parent.Color ? (Color?)null : value; }
  }
}

Alternatives to Nullable Value Types
Before nullable value types were part of the C# language (i.e., before C# 2.0), there
were many strategies to deal with them, examples of which still appear in the .NET
libraries for historical reasons. One of these strategies is to designate a particular
non-null value as the “null value”; an example is in the string and array classes.
String.IndexOf returns the magic value of −1 when the character is not found:

int i = "Pink".IndexOf ('b');
Console.WriteLine (i);         // −1

However, Array.IndexOf returns −1 only if the index is 0-bounded. The more
general formula is that IndexOf returns one less than the lower bound of the array.
In the next example, IndexOf returns 0 when an element is not found:
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// Create an array whose lower bound is 1 instead of 0:

Array a = Array.CreateInstance (typeof (string),
                                new int[] {2}, new int[] {1});
a.SetValue ("a", 1);
a.SetValue ("b", 2);
Console.WriteLine (Array.IndexOf (a, "c"));  // 0

Nominating a “magic value” is problematic for several reasons:

• It means that each value type has a different representation of null. In contrast,•
nullable value types provide one common pattern that works for all value types.

• There might be no reasonable designated value. In the previous example, −1•
could not always be used. The same is true for our earlier example representing
an unknown account balance.

• Forgetting to test for the magic value results in an incorrect value that might•
go unnoticed until later in execution—when it pulls an unintended magic trick.
Forgetting to test HasValue on a null value, however, throws an InvalidOpera
tionException on the spot.

• The ability for a value to be null is not captured in the type. Types communicate•
the intention of a program, allow the compiler to check for correctness, and
enable a consistent set of rules enforced by the compiler.

Nullable Reference Types
Whereas nullable value types bring nullability to value types, nullable reference types
(C# 8+) do the opposite. When enabled, they bring (a degree of) non-nullability to
reference types, with the purpose of helping to avoid NullReferenceExceptions.

Nullable reference types introduce a level of safety that’s enforced purely by the
compiler, in the form of warnings when it detects code that’s at risk of generating a
NullReferenceException.

To enable nullable reference types, you must either add the Nullable element to
your .csproj project file (if you want to enable it for the entire project):

<PropertyGroup>
  <Nullable>enable</Nullable>
</PropertyGroup>

or/and use the following directives in your code, in the places where it should take
effect:

#nullable enable   // enables nullable reference types from this point on
#nullable disable  // disables nullable reference types from this point on
#nullable restore  // resets nullable reference types to project setting

After being enabled, the compiler makes non-nullability the default: if you want a
reference type to accept nulls without the compiler generating a warning, you must
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apply the ? suffix to indicate a nullable reference type. In the following example, s1 is
non-nullable, whereas s2 is nullable:

#nullable enable    // Enable nullable reference types

string s1 = null;   // Generates a compiler warning!
string? s2 = null;  // OK: s2 is nullable reference type

Because nullable reference types are compile-time constructs,
there’s no runtime difference between string and string?.
In contrast, nullable value types introduce something concrete
into the type system, namely the Nullable<T> struct.

The following also generates a warning because x is not initialized:

class Foo { string x; }

The warning disappears if you initialize x, either via a field initializer or via code in
the constructor.

The Null-Forgiving Operator
The compiler also warns you upon dereferencing a nullable reference type, if it
thinks a NullReferenceException might occur. In the following example, accessing
the string’s Length property generates a warning:

void Foo (string? s) => Console.Write (s.Length);

You can remove the warning with the null-forgiving operator (!):

void Foo (string? s) => Console.Write (s!.Length);

Our use of the null-forgiving operator in this example is dangerous in that we could
end up throwing the very NullReferenceException we were trying to avoid in the
first place. We could fix it as follows:

void Foo (string? s)
{
  if (s != null) Console.Write (s.Length);
}

Notice now that we don’t need the null-forgiving operator. This is because the
compiler performs static flow analysis and is smart enough to infer—at least in
simple cases—when a dereference is safe and there’s no chance of a NullReferen
ceException.

The compiler’s ability to detect and warn is not bulletproof, and there are also limits
to what’s possible in terms of coverage. For instance, it’s unable to know whether
an array’s elements have been populated, and so the following does not generate a
warning:

var strings = new string[10];
Console.WriteLine (strings[0].Length);
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Separating the Annotation and Warning Contexts
Enabling nullable reference types via the #nullable enable directive (or the <Nul
lable>enable</Nullable> project setting) does two things:

• It enables the nullable annotation context, which tells the compiler to treat all•
reference-type variable declarations as non-nullable unless suffixed by the ?
symbol.

• It enables the nullable warning context, which tells the compiler to gener‐•
ate warnings upon encountering code at risk of throwing a NullReference
Exception.

It can sometimes be useful to separate these two concepts and enable just the
annotation context, or (less usefully) just the warning context:

#nullable enable annotations    // Enable the annotation context
// OR:
#nullable enable warnings       // Enable the warning context

(The same trick works with #nullable disable and #nullable restore.)

You can also do it via the project file:

<Nullable>annotations</Nullable>
<!-- OR -->
<Nullable>warnings</Nullable>

Enabling just the annotation context for a particular class or assembly can be a
good first step in introducing nullable reference types into a legacy codebase. By
correctly annotating public members, you ensure your class or assembly can act as
a “good citizen” to other classes or assemblies—so that they can benefit fully from
nullable reference types—without having to deal with warnings in your own class or
assembly.

Treating Nullable Warnings as Errors
In greenfield projects, it makes sense to fully enable the nullable context from the
outset. You might want to take the additional step of treating nullable warnings
as errors so that your project cannot compile until all null warnings have been
resolved:

<PropertyGroup>
  <Nullable>enable</Nullable>
  <WarningsAsErrors>CS8600;CS8602;CS8603</WarningsAsErrors>
</PropertyGroup>

Extension Methods
Extension methods allow an existing type to be extended with new methods without
altering the definition of the original type. An extension method is a static method
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of a static class, where the this modifier is applied to the first parameter. The type
of the first parameter will be the type that is extended:

public static class StringHelper
{
  public static bool IsCapitalized (this string s)
  {
    if (string.IsNullOrEmpty(s)) return false;
    return char.IsUpper (s[0]);
  }
}

The IsCapitalized extension method can be called as though it were an instance
method on a string, as follows:

Console.WriteLine ("Perth".IsCapitalized());

An extension method call, when compiled, is translated back into an ordinary static
method call:

Console.WriteLine (StringHelper.IsCapitalized ("Perth"));

The translation works as follows:

arg0.Method (arg1, arg2, ...);              // Extension method call
StaticClass.Method (arg0, arg1, arg2, ...); // Static method call

Interfaces can be extended, too:

public static T First<T> (this IEnumerable<T> sequence)
{
  foreach (T element in sequence)
    return element;

  throw new InvalidOperationException ("No elements!");
}
...
Console.WriteLine ("Seattle".First());   // S

Extension Method Chaining
Extension methods, like instance methods, provide a tidy way to chain functions.
Consider the following two functions:

public static class StringHelper
{
  public static string Pluralize (this string s) {...}
  public static string Capitalize (this string s) {...}
}

x and y are equivalent, and both evaluate to "Sausages", but x uses extension
methods, whereas y uses static methods:

string x = "sausage".Pluralize().Capitalize();
string y = StringHelper.Capitalize (StringHelper.Pluralize ("sausage"));
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Ambiguity and Resolution

Namespaces
An extension method cannot be accessed unless its class is in scope, typically by its
namespace being imported. Consider the extension method IsCapitalized in the
following example:

using System;

namespace Utils
{
  public static class StringHelper
  {
    public static bool IsCapitalized (this string s)
    {
      if (string.IsNullOrEmpty(s)) return false;
      return char.IsUpper (s[0]);
    }
  }
}

To use IsCapitalized, the following application must import Utils in order to
avoid a compile-time error:

namespace MyApp
{
  using Utils;

  class Test
  {
    static void Main() => Console.WriteLine ("Perth".IsCapitalized());
  }
}

Extension methods versus instance methods
Any compatible instance method will always take precedence over an extension
method. In the following example, Test’s Foo method will always take precedence,
even when called with an argument x of type int:

class Test
{
  public void Foo (object x) { }    // This method always wins
}

static class Extensions
{
  public static void Foo (this Test t, int x) { }
}

The only way to call the extension method in this case is via normal static syntax, in
other words, Extensions.Foo(...).
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Extension methods versus extension methods
If two extension methods have the same signature, the extension method must
be called as an ordinary static method to disambiguate the method to call. If one
extension method has more specific arguments, however, the more specific method
takes precedence.

To illustrate, consider the following two classes:

static class StringHelper
{
  public static bool IsCapitalized (this string s) {...}
}
static class ObjectHelper
{
  public static bool IsCapitalized (this object s) {...}
}

The following code calls StringHelper’s IsCapitalized method:

bool test1 = "Perth".IsCapitalized();

Classes and structs are considered more specific than interfaces.

Demoting an extension method
An interesting scenario can arise when Microsoft adds an extension method to
a .NET runtime library that conflicts with an extension method in some existing
third-party library. As the author of the third-party library, you might want to
“withdraw” your extension method, but without removing it and without breaking
binary compatibility with existing consumers.

Fortunately, this is easy to accomplish, simply by removing the this keyword from
your extension method’s definition. This demotes your extension method to an
ordinary static method. The beauty of this solution is that any assembly that was
compiled against your old library will continue to work (and bind to your method,
as before). The reason is that extension method calls are converted to static method
calls during compilation.

Consumers will be affected by your demotion only when they recompile, at which
time calls to your former extension method will bind to Microsoft’s version (if the
namespace has been imported). Should the consumer still want to call your method,
they can do so by invoking it as a static method.

Anonymous Types
An anonymous type is a simple class created by the compiler on the fly to store a set
of values. To create an anonymous type, use the new keyword followed by an object
initializer, specifying the properties and values the type will contain; for example:

var dude = new { Name = "Bob", Age = 23 };

The compiler translates this to (approximately) the following:
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internal class AnonymousGeneratedTypeName
{
  private string name;  // Actual field name is irrelevant
  private int    age;   // Actual field name is irrelevant

  public AnonymousGeneratedTypeName (string name, int age)
  {
    this.name = name; this.age = age;
  }

  public string  Name => name;
  public int     Age  => age;

  // The Equals and GetHashCode methods are overridden (see Chapter 6).
  // The ToString method is also overridden.
}
...

var dude = new AnonymousGeneratedTypeName ("Bob", 23);

You must use the var keyword to reference an anonymous type because it doesn’t
have a name.

The property name of an anonymous type can be inferred from an expression that
is itself an identifier (or ends with one); thus

int Age = 23;
var dude = new { Name = "Bob", Age, Age.ToString().Length };

is equivalent to the following:

var dude = new { Name = "Bob", Age = Age, Length = Age.ToString().Length };

Two anonymous type instances declared within the same assembly will have the
same underlying type if their elements are named and typed identically:

var a1 = new { X = 2, Y = 4 };
var a2 = new { X = 2, Y = 4 };
Console.WriteLine (a1.GetType() == a2.GetType());   // True

Additionally, the Equals method is overridden to perform structural equality com‐
parison (comparison of the data):

Console.WriteLine (a1.Equals (a2));   // True

Whereas the equality operator (==) performs referential comparison:

Console.WriteLine (a1 == a2);         // False

You can create arrays of anonymous types as follows:

var dudes = new[]
{
  new { Name = "Bob", Age = 30 },
  new { Name = "Tom", Age = 40 }
};
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A method cannot (usefully) return an anonymously typed object, because it is illegal
to write a method whose return type is var:

var Foo() => new { Name = "Bob", Age = 30 };  // Not legal!

(In the following sections, we will describe records and tuples, which offer alterna‐
tive approaches for returning multiple values from a method.)

Anonymous types are immutable, so instances cannot be modified after creation.
However, from C# 10, you can use the with keyword to create a copy with variations
(nondestructive mutation):

var a1 = new { A = 1, B = 2, C = 3, D = 4, E = 5 };
var a2 = a1 with { E = 10 }; 
Console.WriteLine (a2);      // { A = 1, B = 2, C = 3, D = 4, E = 10 }

Anonymous types are particularly useful when writing LINQ queries (see Chap‐
ter 8).

Tuples
Like anonymous types, tuples provide a simple way to store a set of values. Tuples
were introduced into C# with the main purpose of allowing methods to return
multiple values without resorting to out parameters (something you cannot do with
anonymous types). Since then, however, records have been introduced, offering a
concise typed approach that we will describe in the following section.

Tuples do almost everything that anonymous types do and
have the potential advantage of being value types, but they
suffer—as you’ll see soon—from runtime type erasure with
named elements.

The simplest way to create a tuple literal is to list the desired values in parentheses.
This creates a tuple with unnamed elements, which you refer to as Item1, Item2, and
so on:

var bob = ("Bob", 23);    // Allow compiler to infer the element types

Console.WriteLine (bob.Item1);   // Bob
Console.WriteLine (bob.Item2);   // 23

Tuples are value types, with mutable (read/write) elements:

var joe = bob;                 // joe is a *copy* of bob
joe.Item1 = "Joe";             // Change joe’s Item1 from Bob to Joe
Console.WriteLine (bob);       // (Bob, 23)
Console.WriteLine (joe);       // (Joe, 23)

Unlike with anonymous types, you can specify a tuple type explicitly. Just list each of
the element types in parentheses:

(string,int) bob  = ("Bob", 23);
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This means that you can usefully return a tuple from a method:

(string,int) person = GetPerson();  // Could use 'var' instead if we want
Console.WriteLine (person.Item1);   // Bob
Console.WriteLine (person.Item2);   // 23

(string,int) GetPerson() => ("Bob", 23);

Tuples play well with generics, so the following types are all legal:

Task<(string,int)>
Dictionary<(string,int),Uri>
IEnumerable<(int id, string name)>   // See below for naming elements

Naming Tuple Elements
You can optionally give meaningful names to elements when creating tuple literals:

var tuple = (name:"Bob", age:23);

Console.WriteLine (tuple.name);     // Bob
Console.WriteLine (tuple.age);      // 23

You can do the same when specifying tuple types:

var person = GetPerson();
Console.WriteLine (person.name);    // Bob
Console.WriteLine (person.age);     // 23

(string name, int age) GetPerson() => ("Bob", 23);

In “Records” on page 227, we’ll show how you can define
simple classes or structs noiselessly, making it effortless to
define a formal return type:

var person = GetPerson();
Console.WriteLine (person.Name);    // Bob
Console.WriteLine (person.Age);     // 23

Person GetPerson() => new ("Bob", 23); 
record Person (string Name, int Age);

Unlike with tuples, a record’s properties (Name and Age) are
strongly typed and so can easily be refactored. This approach
also reduces code duplication and encourages good design in
a couple of ways. First, the process of deciding on a simple
noncontrived name for the type helps validate your design
(an inability to do so can indicate lack of a single cohesive
purpose). Second, it’s likely that you’ll end up adding methods
or other code to the record (well-named types tend to attract
code), and moving code to the data is a core principle of good
object-oriented design.

Note that you can still treat the elements as unnamed and refer to them as Item1,
Item2, etc. (although Visual Studio hides these fields from IntelliSense).
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Element names are automatically inferred from property or field names:

var now = DateTime.Now;
var tuple = (now.Day, now.Month, now.Year);
Console.WriteLine (tuple.Day);               // OK

Tuples are type compatible with one another if their element types match up (in
order). Their element names need not:

(string name, int age, char sex)  bob1 = ("Bob", 23, 'M');
(string age,  int sex, char name) bob2 = bob1;   // No error!

Our particular example leads to confusing results:

Console.WriteLine (bob2.name);    // M
Console.WriteLine (bob2.age);     // Bob
Console.WriteLine (bob2.sex);     // 23

Type erasure
We stated previously that the C# compiler handles anonymous types by building
custom classes with named properties for each of the elements. With tuples, C#
works differently and uses a preexisting family of generic structs:

public struct ValueTuple<T1>
public struct ValueTuple<T1,T2>
public struct ValueTuple<T1,T2,T3>
...

Each of the ValueTuple<> structs has fields named Item1, Item2, and so on.

Hence, (string,int) is an alias for ValueTuple<string,int>, and this means that
named tuple elements have no corresponding property names in the underlying
types. Instead, the names exist only in the source code, and in the imagination
of the compiler. At runtime, the names mostly disappear, so if you decompile a
program that refers to named tuple elements, you’ll see just references to Item1,
Item2, and so on. Further, when you examine a tuple variable in a debugger after
having assigned it to an object (or Dump it in LINQPad), the element names
are not there. And for the most part, you cannot use reflection (Chapter 18) to
determine a tuple’s element names at runtime. This means that with APIs such as
System.Net.Http.HttpClient, tuples cannot replace anonymous types in scenarios
such as the following:

// Create JSON payload:
var json = JsonContent.Create (new { id = 123, name = "Test" })

We said that the names mostly disappear because there’s an
exception. With methods/properties that return named tuple
types, the compiler emits the element names by applying
a custom attribute called TupleElementNamesAttribute (see
“Attributes” on page 243) to the member’s return type. This
allows named elements to work when calling methods in a
different assembly (for which the compiler does not have the
source code).

224 | Chapter 4: Advanced C#



Aliasing Tuples (C# 12)
From C# 12, you can leverage the using directive to define aliases for tuples:

using Point = (int, int);
Point p = (3, 4);

This feature also works with tuples that have named elements:

using Point = (int X, int Y);    // Legal (but not necessarily *good*!)
Point p = (3, 4);

Again, we’ll see shortly how records offer a fully typed solution with the same level
of conciseness:

Point p = new (3, 4);
record Point (int X, int Y);

ValueTuple.Create
You can also create tuples via a factory method on the (nongeneric) ValueTuple
type:

ValueTuple<string,int> bob1 = ValueTuple.Create ("Bob", 23);
(string,int)           bob2 = ValueTuple.Create ("Bob", 23);
(string name, int age) bob3 = ValueTuple.Create ("Bob", 23);

Deconstructing Tuples
Tuples implicitly support the deconstruction pattern (see “Deconstructors” on page
110), so you can easily deconstruct a tuple into individual variables. Consider the
following:

var bob = ("Bob", 23);

string name = bob.Item1;
int age = bob.Item2;

With the tuple’s deconstructor, you can simplify the code to this:

var bob = ("Bob", 23);

(string name, int age) = bob;   // Deconstruct the bob tuple into
                                // separate variables (name and age).
Console.WriteLine (name);
Console.WriteLine (age);

The syntax for deconstruction is confusingly similar to the syntax for declaring a
tuple with named elements. The following highlights the difference:

(string name, int age)      = bob;   // Deconstructing a tuple
(string name, int age) bob2 = bob;   // Declaring a new tuple

Here’s another example, this time when calling a method, and with type inference
(var):
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var (name, age, sex) = GetBob();
Console.WriteLine (name);        // Bob
Console.WriteLine (age);         // 23
Console.WriteLine (sex);         // M

string, int, char) GetBob() => ( "Bob", 23, 'M');

You can also deconstruct directly into fields and properties, which provides a nice
shortcut for populating multiple fields or properties in a constructor:

class Point
{
  public readonly int X, Y;
  public Point (int x, int y) => (X, Y) = (x, y);
}

Equality Comparison
As with anonymous types, the Equals method performs structural equality compar‐
ison. This means that it compares the underlying data rather than the reference:

var t1 = ("one", 1);
var t2 = ("one", 1);
Console.WriteLine (t1.Equals (t2));    // True

In addition, ValueTuple<> overloads the == and != operators:

Console.WriteLine (t1 == t2);    // True (from C# 7.3)

Tuples also override the GetHashCode method, making it practical to use tuples as
keys in dictionaries. We cover equality comparison in detail in “Equality Compari‐
son” on page 344, and dictionaries in Chapter 7.

The ValueTuple<> types also implement IComparable (see “Order Comparison” on
page 355), making it possible to use tuples as a sorting key.

The System.Tuple classes
You’ll find another family of generic types in the System namespace called Tuple
(rather than ValueTuple). These were introduced back in 2010 and were defined as
classes (whereas the ValueTuple types are structs). Defining tuples as classes was
in retrospect considered a mistake: in the scenarios in which tuples are commonly
used, structs have a slight performance advantage (in that they avoid unnecessary
memory allocations), with almost no downside. Hence, when Microsoft added
language support for tuples in C# 7, it ignored the existing Tuple types in favor of
the new ValueTuple. You might still come across the Tuple classes in code written
prior to C# 7. They have no special language support and are used as follows:

Tuple<string,int> t = Tuple.Create ("Bob", 23);  // Factory method 
Console.WriteLine (t.Item1);       // Bob
Console.WriteLine (t.Item2);       // 23
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Records
A record is a special kind of class or struct that’s designed to work well with immut‐
able (read-only) data. Its most useful feature is nondestructive mutation; however,
records are also useful in creating types that just combine or hold data. In simple
cases, they eliminate boilerplate code while honoring the equality semantics most
suitable for immutable types.

Records are purely a C# compile-time construct. At runtime, the CLR sees them
just as classes or structs (with a bunch of extra “synthesized” members added by the
compiler).

Background
Writing immutable types (whose fields cannot be modified after initialization) is a
popular strategy for simplifying software and reducing bugs. It’s also a core aspect of
functional programming, where mutable state is avoided and functions are treated
as data. LINQ is inspired by this principle.

In order to “modify” an immutable object, you must create a new one and copy over
the data while incorporating your modifications (this is called nondestructive muta‐
tion). In terms of performance, this is not as inefficient as you might expect, because
a shallow copy will always suffice (a deep copy, where you also copy subobjects and
collections, is unnecessary when data is immutable). But in terms of coding effort,
implementing nondestructive mutation can be very inefficient, especially when
there are many properties. Records solve this problem via a language-supported
pattern.

A second issue is that programmers—particularly functional programmers—some‐
times use immutable types just to combine data (without adding behavior). Defin‐
ing such types is more work than it should be, requiring a constructor to assign
each parameter to each public property (a deconstructor may also be useful). With
records, the compiler can do this work for you.

Finally, one of the consequences of an object being immutable is that its identity
cannot change, which means that it’s more useful for such types to implement struc‐
tural equality than referential equality. Structural equality means that two instances
are the same if their data is the same (as with tuples). Records give you structural
equality by default—regardless of whether the underlying type is a class or struct—
without any boilerplate code.

Defining a Record
A record definition is like a class or struct definition, and can contain the same
kinds of members, including fields, properties, methods, and so on. Records can
implement interfaces, and (class-based) records can subclass other (class-based)
records.
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By default, the underlying type of a record is a class:

record Point { }          // Point is a class

From C# 10, the underlying type of a record can also be a struct:

record struct Point { }   // Point is a struct

(record class is also legal and has the same meaning as record.)

A simple record might contain just a bunch of init-only properties, and perhaps a
constructor:

record Point
{
  public Point (double x, double y) => (X, Y) = (x, y);

  public double X { get; init; }
  public double Y { get; init; }    
}

Our constructor employs a shortcut that we described in the
preceding section.

(X, Y) = (x, y);

is equivalent (in this case) to the following:
{ this.X = x; this.Y = y; }

Upon compilation, C# transforms the record definition into a class (or struct) and
performs the following additional steps:

• It writes a protected copy constructor (and a hidden Clone method) to facilitate•
nondestructive mutation.

• It overrides/overloads the equality-related functions to implement structural•
equality.

• It overrides the ToString() method (to expand the record’s public properties,•
as with anonymous types).

The preceding record declaration expands into something like this:

class Point
{  
  public Point (double x, double y) => (X, Y) = (x, y);

  public double X { get; init; }
  public double Y { get; init; }    

  protected Point (Point original)    // “Copy constructor”
  {
    this.X = original.X; this.Y = original.Y
  }

  // This method has a strange compiler-generated name:
  public virtual Point <Clone>$() => new Point (this);   // Clone method
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  // Additional code to override Equals, ==, !=, GetHashCode, ToString()
  // ...
}

While there’s nothing to stop you from putting optional
parameters into the constructor, a good pattern (at least in
public libraries) is to leave them out of the constructor and
expose them purely as init-only properties:

new Foo (123, 234) { Optional2 = 345 };

record Foo
{
  public Foo (int required1, int required2) { ... }

  public int Required1 { get; init; }
  public int Required2 { get; init; }

  public int Optional1 { get; init; }
  public int Optional2 { get; init; }
}

The advantage of this pattern is that you can safely add init-
only properties later without breaking binary compatibility
with consumers who have compiled against older versions of
your assembly.

Parameter lists
A record definition can be shortened through the use of a parameter list:

record Point (double X, double Y)
{
  // You can optionally define additional class members here...
}

Parameters can include the in and params modifiers, but not out or ref. If a
parameter list is specified, the compiler performs the following extra steps:

• It writes an init-only property per parameter.•
• It writes a primary constructor to populate the properties.•
• It writes a deconstructor.•

This means that if we declare our Point record simply as:

record Point (double X, double Y);

the compiler will end up generating (almost) exactly what we listed in the preceding
expansion. A minor difference is that the parameter names in the primary construc‐
tor will end up as X and Y instead of x and y:

  public Point (double X, double Y)   // “Primary constructor”
  {
    this.X = X; this.Y = Y;
  }
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Also, due to being a primary constructor, parameters X and Y
become magically available to any field or property initializers
in your record. We discuss the subtleties of this later, in “Pri‐
mary Constructors” on page 235.

Another difference, when you define a parameter list, is that the compiler also
generates a deconstructor:

  public void Deconstruct (out double X, out double Y)   // Deconstructor
  {
    X = this.X; Y = this.Y;
  }

Records with parameter lists can be subclassed using the following syntax:

record Point3D (double X, double Y, double Z) : Point (X, Y);

The compiler then emits a primary constructor as follows:

class Point3D : Point
{
  public double Z { get; init; }

  public Point3D (double X, double Y, double Z) : base (X, Y) 
    => this.Z = Z;
}

Parameter lists offer a nice shortcut when you need a class that
simply groups together a bunch of values (a product type in
functional programming) and can also be useful for prototyp‐
ing. As we’ll see later, they’re not so helpful when you need to
add logic to the init accessors (such as argument validation).

Mutability with Record Structs
When you define a parameter list in a record struct, the compiler emits writable
properties instead of init-only properties, unless you prefix the record declaration
with readonly:

readonly record struct Point (double X, double Y);

The rationale is that in typical use cases, the safety benefits of immutability arise not
from a struct being immutable but from its home being immutable. In the following
example, we are unable to mutate field X, even though X is writable:

var test = new Immutable();
test.Field.X++;  // Prohibited, because Field is readonly
test.Prop.X++;   // Prohibited, because Prop is {get;} only

class Immutable
{
  public readonly Mutable Field;
  public Mutable Prop { get; }
}

struct Mutable { public int X, Y; }
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And while we could do the following:

var test = new Immutable();
Mutable m = test.Prop;
m.X++;

all that we would achieve is to mutate a local variable (a copy of test.Prop). Mutat‐
ing a local variable can be a useful optimization and doesn’t invalidate the benefits of
an immutable type system.

Conversely, if we made Field a writable field, and Prop a writable property, we could
simply replace their contents—regardless of how the Mutable struct was declared.

Nondestructive Mutation
The most important step that the compiler performs with all records is to write
a copy constructor (and a hidden Clone method). This enables nondestructive muta‐
tion via the with keyword:

Point p1 = new Point (3, 3);
Point p2 = p1 with { Y = 4 };
Console.WriteLine (p2);       // Point { X = 3, Y = 4 }

record Point (double X, double Y);

In this example, p2 is a copy of p1, but with its Y property set to 4. The benefit is
more apparent when there are more properties:

Test t1 = new Test (1, 2, 3, 4, 5, 6, 7, 8);
Test t2 = t1 with { A = 10, C = 30 };
Console.WriteLine (t2);

record Test (int A, int B, int C, int D, int E, int F, int G, int H);

Here’s the output:

Test { A = 10, B = 2, C = 30, D = 4, E = 5, F = 6, G = 7, H = 8 }

Nondestructive mutation occurs in two phases:

1. First, the copy constructor clones the record. By default, it copies each of1.
the record’s underlying fields, creating a faithful replica while bypassing (the
overhead of) any logic in the init accessors. All fields are included (public and
private, as well as the hidden fields that back automatic properties).

2. Then, each property in the member initializer list is updated (this time using2.
the init accessors).

The compiler translates

Test t2 = t1 with { A = 10, C = 30 };

into something functionally equivalent to the following:
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Test t2 = new Test(t1);  // Use copy constructor to clone t1 field by field
t2.A = 10;               // Update property A
t2.C = 30;               // Update property C

(The same code would not compile if you wrote it explicitly because A and C
are init-only properties. Furthermore, the copy constructor is protected; C# works
around this by invoking it via a public hidden method that it writes into the record
called <Clone>$.)

If necessary, you can define your own copy constructor. C# will then use your
definition instead of writing one itself:

protected Point (Point original)
{
  this.X = original.X; this.Y = original.Y;
}

Writing a custom copy constructor might be useful if your record contains mutable
subobjects or collections that you wish to clone, or if there are computed fields
that you wish to clear. Unfortunately, you can only replace, not enhance, the default
implementation.

When subclassing another record, the copy constructor is
responsible for copying only its own fields. To copy the base
record’s fields, delegate to the base:

protected Point (Point original) : base (original)
{
  ...
}

Property Validation
With explicit properties, you can write validation logic into the init accessors. In
the following example, we ensure that X can never be NaN (Not a Number):

record Point
{
  // Notice that we assign x to the X property (and not the _x field):
  public Point (double x, double y) => (X, Y) = (x, y);

  double _x;
  public double X
  { 
    get => _x;
    init
    {
      if (double.IsNaN (value))
        throw new ArgumentException ("X Cannot be NaN");
      _x = value;
    }
  }
  public double Y { get; init; }    
}
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Our design ensures that validation occurs both during construction and when the
object is nondestructively mutated:

Point p1 = new Point (2, 3);
Point p2 = p1 with { X = double.NaN };   // throws an exception

Recall that the automatically generated copy constructor copies over all fields and
automatic properties. This means that the generated copy constructor will now look
like this:

protected Point (Point original)
 {
   _x = original._x; Y = original.Y;
 }

Notice that the copying of the _x field circumvents the X property accessor. How‐
ever, this cannot break anything, because it’s faithfully copying an object that will
have already been safely populated via X’s init accessor.

Calculated Fields and Lazy Evaluation
A popular functional programming pattern that works well with immutable types is
lazy evaluation, where a value is not computed until required and then is cached for
reuse. Suppose, for instance, that we want to define a property in our Point record
that returns the distance from the origin (0, 0):

record Point (double X, double Y)
{
  public double DistanceFromOrigin => Math.Sqrt (X*X + Y*Y);
}

Let’s now try to refactor this to avoid the cost of recomputing DistanceFromOrigin
every time the property is accessed. We’ll start by removing the property list and
defining X, Y, and DistanceFromOrigin as read-only properties. Then we can calcu‐
late the latter in the constructor:

record Point
{
  public double X { get; }
  public double Y { get; }
  public double DistanceFromOrigin { get; }

  public Point (double x, double y) =>
    (X, Y, DistanceFromOrigin) = (x, y, Math.Sqrt (x*x + y*y));
}

This works, but it doesn’t allow for nondestructive mutation (changing X and Y
to init-only properties would break the code because DistanceFromOrigin would
become stale after the init accessors execute). It’s also suboptimal in that the calcu‐
lation is always performed, regardless of whether the DistanceFromOrigin property
is ever read. The optimal solution is to cache its value in a field and populate it lazily
(on first use):
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record Point
{
  ...

  double? _distance;
  public double DistanceFromOrigin
  {
    get
    {
      if (_distance == null) 
        _distance = Math.Sqrt (X*X + Y*Y);

      return _distance.Value;
    }
  }
}

Technically, we mutate _distance in this code. It’s still fair,
though, to call Point an immutable type. Mutating a field
purely to populate a lazy value does not invalidate the prin‐
ciples or benefits of immutability, and can even be masked
through the use of the Lazy<T> type that we describe in Chap‐
ter 21.

With C#’s null-coalescing assignment operator (??=), we can reduce the entire prop‐
erty declaration to one line of code:

  public double DistanceFromOrigin => _distance ??= Math.Sqrt (X*X + Y*Y);

(This says, return _distance if it’s non-null; otherwise, return Math.Sqrt (X*X +
Y*Y) while assigning it to _distance.)

To make this work with init-only properties, we need one further step, which is to
clear the cached _distance field when X or Y is updated via the init accessor. Here’s
the complete code:

record Point
{
  public Point (double x, double y) => (X, Y) = (x, y);

  double _x, _y;
  public double X { get => _x; init { _x = value; _distance = null; } }
  public double Y { get => _y; init { _y = value; _distance = null; } }
    
  double? _distance;
  public double DistanceFromOrigin => _distance ??= Math.Sqrt (X*X + Y*Y);
}

Point can now be mutated nondestructively:

Point p1 = new Point (2, 3);
Console.WriteLine (p1.DistanceFromOrigin);   // 3.605551275463989
Point p2 = p1 with { Y = 4 };
Console.WriteLine (p2.DistanceFromOrigin);   // 4.47213595499958
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A nice bonus is that the autogenerated copy constructor copies over the cached
_distance field. This means that should a record have other properties that aren’t
involved in the calculation, a nondestructive mutation of those properties wouldn’t
trigger an unnecessary loss of the cached value. If you don’t care for this bonus,
an alternative to clearing the cached value in the init accessors is to write a
custom copy constructor that ignores the cached field. This is more concise because
it works with parameter lists, and the custom copy constructor can leverage the
deconstructor:

record Point (double X, double Y)
{
  double? _distance;
  public double DistanceFromOrigin => _distance ??= Math.Sqrt (X*X + Y*Y);

  protected Point (Point other) => (X, Y) = other;
}

Note that with either solution, the addition of lazy calculated fields breaks the
default structural equality comparison (because such fields may or may not be
populated), although we’ll see shortly that it’s relatively easy to fix.

Primary Constructors
When you define a record with a parameter list, the compiler generates property
declarations automatically, as well as a primary constructor (and a deconstructor).
As we’ve seen, this works well in simple cases, and in more complex cases you
can omit the parameter list and write the property declarations and constructor
manually.

C# also offers a mildly useful intermediate option—if you’re willing to deal with
the curious semantics of primary constructors—which is to define a parameter list
while writing some or all of the property declarations yourself:

record Student (string ID, string LastName, string GivenName)
{
  public string ID { get; } = ID;
}

In this case, we “took over” the ID property definition, defining it as read-only
(instead of init-only), preventing it from partaking in nondestructive mutation.
If you never need to nondestructively mutate a particular property, making it
read-only lets you store computed data in the record without having to code up a
refresh mechanism.

Notice that we needed to include a property initializer (in boldface):

  public string ID { get; } = ID;

When you “take over” a property declaration, you become responsible for initial‐
izing its value; the primary constructor no longer does this automatically. (This
exactly matches the behavior when defining primary constructors on classes or
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structs.) Also note that the ID in boldface refers to the primary constructor parame‐
ter, not the ID property.

With record structs, it’s legal to redefine a property as a field:
record struct Student (string ID)
{
  public string ID = ID;
}

In keeping with the semantics of primary constructors on classes and structs (see
“Primary Constructors” on page 235), the primary constructor parameters (ID,
LastName, and GivenName in this case) are magically visible to all field and property
initializers. We can illustrate this by extending our example as follows:

record Student (string ID, string LastName, string FirstName)
{
  public string ID { get; } = ID;
  readonly int _enrollmentYear = int.Parse (ID.Substring (0, 4));
}

Again, the ID in boldface refers to the primary constructor parameter, not the
property. (The reason for there not being an ambiguity is that it’s illegal to access
properties from initializers.)

In this example, we calculated _enrollmentYear from the first four digits of the ID.
While it’s safe to store this in a read-only field (because the ID property is read-only
and so cannot be nondestructively mutated), this code would not work so well in
the real world. The reason is that without an explicit constructor, there’s no central
place in which to validate ID and throw a meaningful exception should it be invalid
(a common requirement).

Validation is also a good reason for needing to write explicit init-only accessors
(as we discussed in “Property Validation” on page 232). Unfortunately, primary
constructors do not play well in this scenario. To illustrate, consider the following
record, where an init accessor performs a null validation check:

record Person (string Name)
{
  string _name = Name;
  public string Name
  {
    get  => _name;
    init => _name = value ?? throw new ArgumentNullException ("Name");
  }
}

Because Name is not an automatic property, it cannot define an initializer. The best
we can do is put the initializer on the backing field (in boldface). Unfortunately,
doing so bypasses the null check:

var p = new Person (null);    // Succeeds! (bypasses the null check)
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The difficulty is that there’s no way to assign a primary constructor parameter to a
property without writing the constructor ourselves. While there are workarounds
(such as factoring the init validation logic into a separate static method that we call
twice), the simplest workaround is to avoid the parameter list altogether and write
an ordinary constructor manually (and deconstructor, should you need it):

record Person
{
  public Person (string name) => Name = name;  // Assign to *PROPERTY*

  string _name;
  public string Name { get => _name; init => ... }
}

Records and Equality Comparison
Just as with structs, anonymous types, and tuples, records provide structural equal‐
ity out of the box, meaning that two records are equal if their fields (and automatic
properties) are equal:

var p1 = new Point (1, 2);
var p2 = new Point (1, 2);
Console.WriteLine (p1.Equals (p2));   // True

record Point (double X, double Y);

The equality operator also works with records (as it does with tuples):

Console.WriteLine (p1 == p2);         // True

The default equality implementation for records is unavoidably fragile. In particular,
it breaks if the record contains lazy values, transient values, arrays, or collection
types (which require special handling for equality comparison). Fortunately, it’s
relatively easy to fix (should you need equality to work), and doing so is less work
than adding full equality behavior to classes or structs.

Unlike with classes and structs, you do not (and cannot) override the
object.Equals method; instead, you define a public Equals method with the
following signature:

record Point (double X, double Y)
{
  double _someOtherField;
  public virtual bool Equals (Point other) =>
    other != null && X == other.X && Y == other.Y;
}

The Equals method must be virtual (not override), and it must be strongly typed
such that it accepts the actual record type (Point in this case, not object). Once you
get the signature right, the compiler will automatically patch in your method.

In our example, we changed the equality logic such that we compare only X and Y
(and ignore _someOtherField).
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Should you subclass another record, you can call the base.Equals method:

  public virtual bool Equals (Point other) => base.Equals (other) && ...

As with any type, if you take over equality comparison, you should also override
GetHashCode(). A nice feature of records is that you don’t overload != or ==; nor
do you implement IEquatable<T>: this is all done for you. We cover this topic of
equality comparison fully in “Equality Comparison” on page 344.

Patterns
In Chapter 3, we demonstrated how to use the is operator to test whether a
reference conversion will succeed:

if (obj is string)
  Console.WriteLine (((string)obj).Length);

Or, more concisely:

if (obj is string s)
  Console.WriteLine (s.Length);

This shortcut employs one kind of pattern called a type pattern. The is operator
also supports other patterns that were introduced in recent versions of C#, such as
the property pattern:

if (obj is string { Length:4 })
  Console.WriteLine ("A string with 4 characters");

Patterns are supported in the following contexts:

• After the is operator (variable is pattern)•
• In switch statements•
• In switch expressions•

We’ve already covered the type pattern (and briefly, the tuple pattern) in “Switching
on types” on page 89 and “The is operator” on page 130. In this section, we cover
more advanced patterns that were introduced in recent versions of C#.

Some of the more specialized patterns are intended mostly for use in switch state‐
ments/expressions. Here, they reduce the need for when clauses and let you use
switches where you couldn’t previously.

The patterns in this section are mildly to moderately useful in
some scenarios. Remember that you can always replace highly
patterned switch expressions with simple if statements—
or, in some cases, the ternary conditional operator—often
without much extra code.
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Constant Pattern
The constant pattern lets you match directly to a constant, and is useful when
working with the object type:

void Foo (object obj) 
{
  if (obj is 3) ...
}

This expression in boldface is equivalent to the following:

obj is int && (int)obj == 3

(Being a static operator, C# won’t let you use == to compare an object directly to a
constant, because the compiler needs to know the types in advance.)

On its own, this pattern is only marginally useful in that there’s a reasonable
alternative:

if (3.Equals (obj)) ...

As we’ll see soon, the constant pattern becomes much more useful with pattern
combinators.

Relational Patterns
From C# 9, you can use the <, >, <=, and >= operators in patterns:

if (x is > 100) Console.WriteLine ("x is greater than 100");

This becomes meaningfully useful in a switch:

string GetWeightCategory (decimal bmi) => bmi switch
{
  < 18.5m => "underweight",
  < 25m => "normal",
  < 30m => "overweight",
  _ => "obese"
};

Relational patterns become even more useful in conjunction with pattern combina‐
tors.

The relational pattern also works when the variable has a
compile-time type of object, but you have to be extremely
careful with your use of numeric constants. In the following
example, the last line prints False because we are attempting to
match a decimal value to an integer literal:

object obj = 2m;                  // obj is decimal
Console.WriteLine (obj is < 3m);  // True
Console.WriteLine (obj is < 3);   // False
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Pattern Combinators
From C# 9, you can use the and, or, and not keywords to combine patterns:

bool IsJanetOrJohn (string name) => name.ToUpper() is "JANET" or "JOHN";

bool IsVowel (char c) => c is 'a' or 'e' or 'i' or 'o' or 'u';

bool Between1And9 (int n) => n is >= 1 and <= 9;

bool IsLetter (char c) => c is >= 'a' and <= 'z'
                            or >= 'A' and <= 'Z';

As with the && and || operators, and has higher precedence than or. You can
override this with parentheses.

A nice trick is to combine the not combinator with the type pattern to test whether
an object is (not) a type:

if (obj is not string) ...

This looks nicer than:

if (!(obj is string)) ...

var Pattern
The var pattern is a variation of the type pattern whereby you replace the type name
with the var keyword. The conversion always succeeds, so its purpose is merely to
let you reuse the variable that follows:

bool IsJanetOrJohn (string name) => 
  name.ToUpper() is var upper && (upper == "JANET" || upper == "JOHN");

This is equivalent to:

bool IsJanetOrJohn (string name)
{
  string upper = name.ToUpper();
  return upper == "JANET" || upper == "JOHN";
}

The ability to introduce and reuse an intermediate variable (upper, in this case)
in an expression-bodied method is convenient—particularly in lambda expressions.
Unfortunately, it tends to be useful only when the method in question has a bool
return type.

Tuple and Positional Patterns
The tuple pattern (introduced in C# 8) matches tuples:

var p = (2, 3);
Console.WriteLine (p is (2, 3));   // True

You can use this to switch on multiple values:
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int AverageCelsiusTemperature (Season season, bool daytime) =>
  (season, daytime) switch
  {
    (Season.Spring, true) => 20,
    (Season.Spring, false) => 16,
    (Season.Summer, true) => 27,
    (Season.Summer, false) => 22,
    (Season.Fall, true) => 18,
    (Season.Fall, false) => 12,
    (Season.Winter, true) => 10,
    (Season.Winter, false) => -2,
    _ => throw new Exception ("Unexpected combination")
};

enum Season { Spring, Summer, Fall, Winter };

The tuple pattern can be considered a special case of the positional pattern (C# 8+),
which matches any type that exposes a Deconstruct method (see “Deconstructors”
on page 110). In the following example, we leverage the Point record’s compiler-
generated deconstructor:

var p = new Point (2, 2);
Console.WriteLine (p is (2, 2));  // True

record Point (int X, int Y);      // Has compiler-generated deconstructor

You can deconstruct as you match, using the following syntax:

Console.WriteLine (p is (var x, var y) && x == y);   // True

Here’s a switch expression that combines a type pattern with a positional pattern:

string Print (object obj) => obj switch 
{
  Point (0, 0)                      => "Empty point",
  Point (var x, var y) when x == y  => "Diagonal"
  ...
};

Property Patterns
A property pattern (C# 8+) matches on one or more of an object’s property values.
We gave a simple example previously in the context of the is operator:

if (obj is string { Length:4 }) ...

However, this doesn’t save much over the following:

if (obj is string s && s.Length == 4) ...

With switch statements and expressions, property patterns are more useful. Con‐
sider the System.Uri class, which represents a URI. It has properties that include
Scheme, Host, Port, and IsLoopback. In writing a firewall, we could decide whether
to allow or block a URI by employing a switch expression that uses property
patterns:
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bool ShouldAllow (Uri uri) => uri switch
{
  { Scheme: "http",  Port: 80  } => true,
  { Scheme: "https", Port: 443 } => true,
  { Scheme: "ftp",   Port: 21  } => true,
  { IsLoopback: true           } => true,
  _ => false
};

You can nest properties, making the following clause legal:

  { Scheme: { Length: 4 }, Port: 80 } => true,

which, from C# 10, can be simplified to:

  { Scheme.Length: 4, Port: 80 } => true,

You can use other patterns inside property patterns, including the relational pattern:

  { Host: { Length: < 1000 }, Port: > 0 } => true,

More elaborate conditions can be expressed with a when clause:

  { Scheme: "http" } when string.IsNullOrWhiteSpace (uri.Query) => true,

You can also combine the property pattern with the type pattern:

bool ShouldAllow (object uri) => uri switch
{
  Uri { Scheme: "http",  Port: 80  } => true,
  Uri { Scheme: "https", Port: 443 } => true,
  ...

As you might expect with type patterns, you can introduce a variable at the end of a
clause and then consume that variable:

  Uri { Scheme: "http", Port: 80 } httpUri => httpUri.Host.Length < 1000,

You can also use that variable in a when clause:

  Uri { Scheme: "http", Port: 80 } httpUri 
                                   when httpUri.Host.Length < 1000 => true,

A somewhat bizarre twist with property patterns is that you can also introduce
variables at the property level:

  { Scheme: "http", Port: 80, Host: string host } => host.Length < 1000,

Implicit typing is permitted, so you can substitute string with var. Here’s a com‐
plete example:

bool ShouldAllow (Uri uri) => uri switch
{
  { Scheme: "http",  Port: 80, Host: var host } => host.Length < 1000,
  { Scheme: "https", Port: 443                } => true,
  { Scheme: "ftp",   Port: 21                 } => true,
  { IsLoopback: true                          } => true,
  _ => false
};
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It’s difficult to invent examples for which this saves more than a few characters. In
our case, the alternative is actually shorter:

  { Scheme: "http", Port: 80 } => uri.Host.Length < 1000 => ...

Or:

  { Scheme: "http", Port: 80, Host: { Length: < 1000 } } => ...

List Patterns
List patterns (from C# 11) work with any collection type that is countable (with
a Count or Length property) and indexable (with an indexer of type int or Sys
tem.Index).

A list pattern matches a series of elements in square brackets:

int[] numbers = { 0, 1, 2, 3, 4 };
Console.Write (numbers is [0, 1, 2, 3, 4]);   // True

An underscore matches a single element of any value:

Console.Write (numbers is [0, 1, _, _, 4]);   // True

The var pattern also works in matching a single element:

Console.Write (numbers is [0, 1, var x, 3, 4] && x > 1);   // True

Two dots indicate a slice. A slice matches zero or more elements:

Console.Write (numbers is [0, .., 4]);    // True

With arrays and other types that support indices and ranges (see “Indices and
Ranges” on page 63), you can follow a slice with a var pattern:

Console.Write (numbers is [0, .. var mid, 4] && mid.Contains (2)); // True

A list pattern can include at most one slice.

Attributes
You’re already familiar with the notion of attributing code elements of a program
with modifiers, such as virtual or ref. These constructs are built into the language.
Attributes are an extensible mechanism for adding custom information to code
elements (assemblies, types, members, return values, parameters, and generic type
parameters). This extensibility is useful for services that integrate deeply into the
type system, without requiring special keywords or constructs in the C# language.

Attribute Classes
An attribute is defined by a class that inherits (directly or indirectly) from the
abstract class System.Attribute. To attach an attribute to a code element, specify
the attribute’s type name in square brackets, before the code element. For example,
the following attaches the ObsoleteAttribute to the Foo class:
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[ObsoleteAttribute]
public class Foo {...}

This particular attribute is recognized by the compiler and will cause compiler
warnings if a type or member marked as obsolete is referenced. By convention, all
attribute types end in the word “Attribute.” C# recognizes this and allows you to
omit the suffix when attaching an attribute:

[Obsolete]
public class Foo {...}

ObsoleteAttribute is a type declared in the System namespace as follows (simpli‐
fied for brevity):

public sealed class ObsoleteAttribute : Attribute {...}

The .NET libraries include many predefined attributes. We describe how to write
your own attributes in Chapter 18.

Named and Positional Attribute Parameters
Attributes can have parameters. In the following example, we apply XmlTypeAttri
bute to a class. This attribute instructs the XML serializer (in System.Xml.Seriali
zation) as to how an object is represented in XML and accepts several attribute
parameters. The following attribute maps the CustomerEntity class to an XML
element named Customer, which belongs to the http://oreilly.com namespace:

[XmlType ("Customer", Namespace="http://oreilly.com")]
public class CustomerEntity { ... }

(We cover XML and JSON serialization in the online supplement at http://www.alba
hari.com/nutshell.)

Attribute parameters fall into one of two categories: positional or named. In the
preceding example, the first argument is a positional parameter; the second is a
named parameter. Positional parameters correspond to parameters of the attribute
type’s public constructors. Named parameters correspond to public fields or public
properties on the attribute type.

When specifying an attribute, you must include positional parameters that corre‐
spond to one of the attribute’s constructors. Named parameters are optional.

In Chapter 18, we describe the valid parameter types and rules for their evaluation.

Applying Attributes to Assemblies and Backing Fields
Implicitly, the target of an attribute is the code element it immediately precedes,
which is typically a type or type member. You can also attach attributes, however,
to an assembly. This requires that you explicitly specify the attribute’s target. Here
is how you can use the AssemblyFileVersion attribute to attach a version to the
assembly:

[assembly: AssemblyFileVersion ("1.2.3.4")]
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With the field: prefix, you can apply an attribute to the backing fields of an
automatic property. This is useful in special cases, such as when applying the
(now-deprecated) NonSerialized attribute:

[field:NonSerialized]
public int MyProperty { get; set; }

Applying Attributes to Lambda Expressions
From C# 10, you can apply attributes to the method, parameters, and return value
of a lambda expression:

Action<int> a = [Description ("Method")]
                [return: Description ("Return value")]
                ([Description ("Parameter")]int x) => Console.Write (x);

This is useful when working with frameworks—such as
ASP.NET—that rely on you placing attributes on methods that
you write. With this feature, you can avoid having to create
named methods for simple operations.

These attributes are applied to the compiler-generated method to which the delegate
points. In Chapter 18, we’ll describe how to reflect over attributes in code. For now,
here’s the extra code you need to resolve that indirection:

var methodAtt = a.GetMethodInfo().GetCustomAttributes();
var paramAtt = a.GetMethodInfo().GetParameters()[0].GetCustomAttributes();
var returnAtt = a.GetMethodInfo().ReturnParameter.GetCustomAttributes();

To avoid syntactical ambiguity when applying attributes to a parameter on a
lambda expression, parentheses are always required. Attributes are not permitted
on expression-tree lambdas.

Specifying Multiple Attributes
You can specify multiple attributes for a single code element. You can list each
attribute either within the same pair of square brackets (separated by a comma) or
in separate pairs of square brackets (or a combination of the two). The following
three examples are semantically identical:

[Serializable, Obsolete, CLSCompliant(false)]
public class Bar {...}

[Serializable] [Obsolete] [CLSCompliant(false)]
public class Bar {...}

[Serializable, Obsolete]
[CLSCompliant(false)]
public class Bar {...}
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Caller Info Attributes
You can tag optional parameters with one of three caller info attributes, which
instruct the compiler to feed information obtained from the caller’s source code into
the parameter’s default value:

• [CallerMemberName] applies the caller’s member name.•

• [CallerFilePath] applies the path to the caller’s source code file.•

• [CallerLineNumber] applies the line number in the caller’s source code file.•

The Foo method in the following program demonstrates all three:

using System;
using System.Runtime.CompilerServices;

class Program
{
  static void Main() => Foo();

  static void Foo (
    [CallerMemberName] string memberName = null,
    [CallerFilePath] string filePath = null,
    [CallerLineNumber] int lineNumber = 0)
  {
    Console.WriteLine (memberName);
    Console.WriteLine (filePath);
    Console.WriteLine (lineNumber);
  }
}

Assuming that our program resides in c:\source\test\Program.cs, the output would
be:

Main
c:\source\test\Program.cs
6

As with standard optional parameters, the substitution is done at the calling site.
Hence, our Main method is syntactic sugar for this:

static void Main() => Foo ("Main", @"c:\source\test\Program.cs", 6);

Caller info attributes are useful for logging—and for implementing patterns such
as firing a single change notification event whenever any property on an object
changes. In fact, there’s a standard interface for this in the System.ComponentModel
namespace, called INotifyPropertyChanged:

public interface INotifyPropertyChanged
{
  event PropertyChangedEventHandler PropertyChanged;
}

public delegate void PropertyChangedEventHandler
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  (object sender, PropertyChangedEventArgs e);

public class PropertyChangedEventArgs : EventArgs
{
  public PropertyChangedEventArgs (string propertyName);
  public virtual string PropertyName { get; }
}

Notice that PropertyChangedEventArgs requires the name of the property that
changed. By applying the [CallerMemberName] attribute, however, we can imple‐
ment this interface and invoke the event without ever specifying property names:

public class Foo : INotifyPropertyChanged
{
  public event PropertyChangedEventHandler PropertyChanged = delegate { };

  void RaisePropertyChanged ([CallerMemberName] string propertyName = null)
    => PropertyChanged (this, new PropertyChangedEventArgs (propertyName));

  string customerName;
  public string CustomerName
  {  
    get => customerName;
    set  
    {  
      if (value == customerName) return;
      customerName = value;
      RaisePropertyChanged();
      // The compiler converts the above line to:
      // RaisePropertyChanged ("CustomerName");
    } 
  }
}

CallerArgumentExpression
A method parameter to which you apply the [CallerArgumentExpression]
attribute (from C# 10) captures an argument expression from the call site:

Print (Math.PI * 2);

void Print (double number,
           [CallerArgumentExpression("number")] string expr = null)
  => Console.WriteLine (expr);

// Output: Math.PI * 2

The compiler feeds in the calling expression’s source code literally, including
comments:

Print (Math.PI /*(π)*/ * 2);

// Output:  Math.PI /*(π)*/ * 2
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The main application for this feature is when writing validation and assertion
libraries. In the following example, an exception is thrown, whose message includes
the text “2 + 2 == 5”. This aids in debugging:

Assert (2 + 2 == 5);

void Assert (bool condition,
            [CallerArgumentExpression ("condition")] string message = null)
{
  if (!condition) throw new Exception ("Assertion failed: " + message);
}

Another example is the static ThrowIfNull method on the ArgumentNullException
class. This method was introduced in .NET 6 and is defined as follows:

public static void ThrowIfNull (object argument,
  [CallerArgumentExpression("argument")] string paramName = null)
{
  if (argument == null)
    throw new ArgumentNullException (paramName);
}

It is used as follows:

void Print (string message)
{
  ArgumentNullException.ThrowIfNull (message); 
  ...
}

You can use [CallerArgumentExpression] multiple times, to capture multiple
argument expressions.

Dynamic Binding
Dynamic binding defers binding—the process of resolving types, members, and
operators—from compile time to runtime. Dynamic binding is useful when at
compile time you know that a certain function, member, or operation exists, but
the compiler does not. This commonly occurs when you are interoperating with
dynamic languages (such as IronPython) and COM as well as for scenarios in which
you might otherwise use reflection.

A dynamic type is declared with the contextual keyword dynamic:

dynamic d = GetSomeObject();
d.Quack();

A dynamic type tells the compiler to relax. We expect the runtime type of d to have
a Quack method. We just can’t prove it statically. Because d is dynamic, the compiler
defers binding Quack to d until runtime. To understand what this means requires
distinguishing between static binding and dynamic binding.
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Static Binding Versus Dynamic Binding
The canonical binding example is mapping a name to a specific function when
compiling an expression. To compile the following expression, the compiler needs
to find the implementation of the method named Quack:

d.Quack();

Let’s suppose that the static type of d is Duck:

Duck d = ...
d.Quack();

In the simplest case, the compiler does the binding by looking for a parameterless
method named Quack on Duck. Failing that, the compiler extends its search to meth‐
ods taking optional parameters, methods on base classes of Duck, and extension
methods that take Duck as its first parameter. If no match is found, you’ll get a
compilation error. Regardless of what method is bound, the bottom line is that
the binding is done by the compiler, and the binding utterly depends on statically
knowing the types of the operands (in this case, d). This makes it static binding.

Now let’s change the static type of d to object:

object d = ...
d.Quack();

Calling Quack gives us a compilation error, because although the value stored in d
can contain a method called Quack, the compiler cannot know it, because the only
information it has is the type of the variable, which in this case is object. But let’s
now change the static type of d to dynamic:

dynamic d = ...
d.Quack();

A dynamic type is like object—it’s equally nondescriptive about a type. The dif‐
ference is that it lets you use it in ways that aren’t known at compile time. A
dynamic object binds at runtime based on its runtime type, not its compile-time
type. When the compiler sees a dynamically bound expression (which in general is
an expression that contains any value of type dynamic), it merely packages up the
expression such that the binding can be done later at runtime.

At runtime, if a dynamic object implements IDynamicMetaObjectProvider, that
interface is used to perform the binding. If not, binding occurs in almost the same
way as it would have had the compiler known the dynamic object’s runtime type.
These two alternatives are called custom binding and language binding.

Custom Binding
Custom binding occurs when a dynamic object implements IDynamicMetaObject
Provider (IDMOP). Although you can implement IDMOP on types that you write
in C#, and that is useful to do, the more common case is that you have acquired
an IDMOP object from a dynamic language that is implemented in .NET on the
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Dynamic Language Runtime (DLR), such as IronPython or IronRuby. Objects from
those languages implicitly implement IDMOP as a means to directly control the
meanings of operations performed on them.

We discuss custom binders in greater detail in Chapter 19, but for now, let’s write a
simple one to demonstrate the feature:

using System;
using System.Dynamic;

dynamic d = new Duck();
d.Quack();                  // Quack method was called
d.Waddle();                 // Waddle method was called

public class Duck : DynamicObject
{
  public override bool TryInvokeMember (
    InvokeMemberBinder binder, object[] args, out object result)
  {
    Console.WriteLine (binder.Name + " method was called");
    result = null;
    return true;
  }
}

The Duck class doesn’t actually have a Quack method. Instead, it uses custom bind‐
ing to intercept and interpret all method calls.

Language Binding
Language binding occurs when a dynamic object does not implement IDynamic
MetaObjectProvider. It is useful when working around imperfectly designed types
or inherent limitations in the .NET type system (we explore more scenarios in
Chapter 19). A typical problem when using numeric types is that they have no
common interface. We have seen that we can bind methods dynamically; the same
is true for operators:

int x = 3, y = 4;
Console.WriteLine (Mean (x, y));

dynamic Mean (dynamic x, dynamic y) => (x + y) / 2;

The benefit is obvious—you don’t need to duplicate code for each numeric
type. However, you lose static type safety, risking runtime exceptions rather than
compile-time errors.

Dynamic binding circumvents static type safety, but not run‐
time type safety. Unlike with reflection (Chapter 18), you can’t
circumvent member accessibility rules with dynamic binding.

By design, language runtime binding behaves as similarly as possible to static
binding, had the runtime types of the dynamic objects been known at compile time.
In our previous example, the behavior of our program would be identical if we
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hardcoded Mean to work with the int type. The most notable exception in parity
between static and dynamic binding is for extension methods, which we discuss in
“Uncallable Functions” on page 255.

Dynamic binding also incurs a performance hit. Because of
the DLR’s caching mechanisms, however, repeated calls to the
same dynamic expression are optimized—allowing you to effi‐
ciently call dynamic expressions in a loop. This optimization
brings the typical overhead for a simple dynamic expression
on today’s hardware down to less than 100 ns.

RuntimeBinderException
If a member fails to bind, a RuntimeBinderException is thrown. You can think of
this like a compile-time error at runtime:

dynamic d = 5;
d.Hello();                  // throws RuntimeBinderException

The exception is thrown because the int type has no Hello method.

Runtime Representation of Dynamic
There is a deep equivalence between the dynamic and object types. The runtime
treats the following expression as true:

typeof (dynamic) == typeof (object)

This principle extends to constructed types and array types:

typeof (List<dynamic>) == typeof (List<object>)
typeof (dynamic[]) == typeof (object[])

Like an object reference, a dynamic reference can point to an object of any type
(except pointer types):

dynamic x = "hello";
Console.WriteLine (x.GetType().Name);  // String

x = 123;  // No error (despite same variable)
Console.WriteLine (x.GetType().Name);  // Int32

Structurally, there is no difference between an object reference and a dynamic
reference. A dynamic reference simply enables dynamic operations on the object
it points to. You can convert from object to dynamic to perform any dynamic
operation you want on an object:

object o = new System.Text.StringBuilder();
dynamic d = o;
d.Append ("hello");
Console.WriteLine (o);   // hello
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Reflecting on a type exposing (public) dynamic members
reveals that those members are represented as annotated
objects. For example,

public class Test
{
  public dynamic Foo;
}

is equivalent to:
public class Test
{
  [System.Runtime.CompilerServices.DynamicAttribute]
  public object Foo;
}

This allows consumers of that type to know that Foo should
be treated as dynamic while allowing languages that don’t
support dynamic binding to fall back to object.

Dynamic Conversions
The dynamic type has implicit conversions to and from all other types:

int i = 7;
dynamic d = i;
long j = d;        // No cast required (implicit conversion)

For the conversion to succeed, the runtime type of the dynamic object must be
implicitly convertible to the target static type. The preceding example worked
because an int is implicitly convertible to a long.

The following example throws a RuntimeBinderException because an int is not
implicitly convertible to a short:

int i = 7;
dynamic d = i;
short j = d;      // throws RuntimeBinderException

var Versus dynamic
The var and dynamic types bear a superficial resemblance, but the difference is
deep:

var says, “Let the compiler figure out the type.”
dynamic says, “Let the runtime figure out the type.”

To illustrate:

dynamic x = "hello";  // Static type is dynamic, runtime type is string
var y = "hello";      // Static type is string, runtime type is string
int i = x;            // Runtime error      (cannot convert string to int)
int j = y;            // Compile-time error (cannot convert string to int)

The static type of a variable declared with var can be dynamic:
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dynamic x = "hello";
var y = x;            // Static type of y is dynamic
int z = y;            // Runtime error (cannot convert string to int)

Dynamic Expressions
Fields, properties, methods, events, constructors, indexers, operators, and conver‐
sions can all be called dynamically.

Trying to consume the result of a dynamic expression with a void return type is
prohibited—just as with a statically typed expression. The difference is that the
error occurs at runtime:

dynamic list = new List<int>();
var result = list.Add (5);         // RuntimeBinderException thrown

Expressions involving dynamic operands are typically themselves dynamic because
the effect of absent type information is cascading:

dynamic x = 2;
var y = x * 3;       // Static type of y is dynamic

There are a couple of obvious exceptions to this rule. First, casting a dynamic
expression to a static type yields a static expression:

dynamic x = 2;
var y = (int)x;      // Static type of y is int

Second, constructor invocations always yield static expressions—even when called
with dynamic arguments. In this example, x is statically typed to a StringBuilder:

dynamic capacity = 10;
var x = new System.Text.StringBuilder (capacity);

In addition, there are a few edge cases for which an expression containing a
dynamic argument is static, including passing an index to an array and delegate
creation expressions.

Dynamic Calls Without Dynamic Receivers
The canonical use case for dynamic involves a dynamic receiver. This means that a
dynamic object is the receiver of a dynamic function call:

dynamic x = ...;
x.Foo();          // x is the receiver

However, you can also call statically known functions with dynamic arguments.
Such calls are subject to dynamic overload resolution, and can include the follow‐
ing:

• Static methods•
• Instance constructors•
• Instance methods on receivers with a statically known type•
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In the following example, the particular Foo that gets dynamically bound is depen‐
dent on the runtime type of the dynamic argument:

class Program
{
  static void Foo (int x)    => Console.WriteLine ("int");
  static void Foo (string x) => Console.WriteLine ("string");

  static void Main()
  {
    dynamic x = 5;
    dynamic y = "watermelon";

    Foo (x);    // int
    Foo (y);    // string
  }
}

Because a dynamic receiver is not involved, the compiler can statically perform
a basic check to see whether the dynamic call will succeed. It checks whether a
function with the correct name and number of parameters exists. If no candidate is
found, you get a compile-time error:

class Program
{
  static void Foo (int x)    => Console.WriteLine ("int");
  static void Foo (string x) => Console.WriteLine ("string");

  static void Main()
  {
    dynamic x = 5;
    Foo (x, x);        // Compiler error - wrong number of parameters
    Fook (x);          // Compiler error - no such method name
  }
}

Static Types in Dynamic Expressions
It’s obvious that dynamic types are used in dynamic binding. It’s not so obvious that
static types are also used—wherever possible—in dynamic binding. Consider the
following:

class Program
{
  static void Foo (object x, object y) { Console.WriteLine ("oo"); }
  static void Foo (object x, string y) { Console.WriteLine ("os"); }
  static void Foo (string x, object y) { Console.WriteLine ("so"); }
  static void Foo (string x, string y) { Console.WriteLine ("ss"); }

  static void Main()
  {
    object o = "hello";
    dynamic d = "goodbye";
    Foo (o, d);               // os
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  }
}

The call to Foo(o,d) is dynamically bound because one of its arguments, d, is
dynamic. But because o is statically known, the binding—even though it occurs
dynamically—will make use of that. In this case, overload resolution will pick the
second implementation of Foo due to the static type of o and the runtime type of d.
In other words, the compiler is “as static as it can possibly be.”

Uncallable Functions
Some functions cannot be called dynamically. You cannot call the following:

• Extension methods (via extension method syntax)•
• Members of an interface, if you need to cast to that interface to do so•
• Base members hidden by a subclass•

Understanding why this is so is useful in understanding dynamic binding.

Dynamic binding requires two pieces of information: the name of the function to
call and the object upon which to call the function. However, in each of the three
uncallable scenarios, an additional type is involved, which is known only at compile
time. As of this writing, there’s no way to specify these additional types dynamically.

When calling extension methods, that additional type is implicit. It’s the static
class on which the extension method is defined. The compiler searches for it
given the using directives in your source code. This makes extension methods
compile-time-only concepts because using directives melt away upon compilation
(after they’ve done their job in the binding process in mapping simple names to
namespace-qualified names).

When calling members via an interface, you specify that additional type via an
implicit or explicit cast. There are two scenarios for which you might want to
do this: when calling explicitly implemented interface members and when calling
interface members implemented in a type internal to another assembly. We can
illustrate the former with the following two types:

interface IFoo   { void Test();        }
class Foo : IFoo { void IFoo.Test() {} }

To call the Test method, we must cast to the IFoo interface. This is easy with static
typing:

IFoo f = new Foo();   // Implicit cast to interface
f.Test();

Now consider the situation with dynamic typing:

IFoo f = new Foo();
dynamic d = f;
d.Test();             // Exception thrown
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The implicit cast shown in bold tells the compiler to bind subsequent member calls
on f to IFoo rather than Foo—in other words, to view that object through the lens
of the IFoo interface. However, that lens is lost at runtime, so the DLR cannot
complete the binding. The loss is illustrated as follows:

Console.WriteLine (f.GetType().Name);    // Foo

A similar situation arises when calling a hidden base member: you must specify an
additional type via either a cast or the base keyword—and that additional type is
lost at runtime.

Should you need to invoke interface members dynamically, a
workaround is to use the Uncapsulator open source library,
available on NuGet and GitHub. Uncapsulator was written
by the author to address this problem, and leverages custom
binding to provide a better dynamic than dynamic:

IFoo f = new Foo();
dynamic uf = f.Uncapsulate();
uf.Test();

Uncapsulator also lets you cast to base types and interfaces by
name, dynamically call static members, and access nonpublic
members of a type.

Operator Overloading
You can overload operators to provide more natural syntax for custom types. Oper‐
ator overloading is most appropriately used for implementing custom structs that
represent fairly primitive data types. For example, a custom numeric type is an
excellent candidate for operator overloading.

The following symbolic operators can be overloaded:

+ (unary) - (unary) ! ˜ ++

-- + - * /

% & | ^ <<

>> == != > <

>= <=

The following operators are also overloadable:

• Implicit and explicit conversions (with the implicit and explicit keywords)•

• The true and false operators (not literals)•

256 | Chapter 4: Advanced C#



The following operators are indirectly overloaded:

• The compound assignment operators (e.g., +=, /=) are implicitly overridden by•
overriding the noncompound operators (e.g., +, /).

• The conditional operators && and || are implicitly overridden by overriding•
the bitwise operators & and |.

Operator Functions
You overload an operator by declaring an operator function. An operator function
has the following rules:

• The name of the function is specified with the operator keyword followed by•
an operator symbol.

• The operator function must be marked static and public.•
• The parameters of the operator function represent the operands.•
• The return type of an operator function represents the result of an expression.•
• At least one of the operands must be the type in which the operator function is•

declared.

In the following example, we define a struct called Note representing a musical note
and then overload the + operator:

public struct Note
{
  int value;
  public Note (int semitonesFromA) { value = semitonesFromA; }
  public static Note operator + (Note x, int semitones)
  {
    return new Note (x.value + semitones);
  }
}

This overload allows us to add an int to a Note:

Note B = new Note (2);
Note CSharp = B + 2;

Overloading an operator automatically overloads the corresponding compound
assignment operator. In our example, because we overrode +, we can use +=, too:

CSharp += 2;

Just as with methods and properties, C# allows operator functions comprising a
single expression to be written more tersely with expression-bodied syntax:

public static Note operator + (Note x, int semitones)
                               => new Note (x.value + semitones);
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Checked operators
From C# 11, when you declare an operator function, you can also declare a checked
version:

public static Note operator + (Note x, int semitones)
  => new Note (x.value + semitones);

public static Note operator checked + (Note x, int semitones)
  => checked (new Note (x.value + semitones));

The checked version will be called inside checked expressions or blocks:

Note B = new Note (2);
Note other = checked (B + int.MaxValue);  // throws OverflowException

Overloading Equality and Comparison Operators
Equality and comparison operators are sometimes overridden when writing structs,
and in rare cases when writing classes. Special rules and obligations come with
overloading the equality and comparison operators, which we explain in Chapter 6.
A summary of these rules is as follows:

Pairing
The C# compiler enforces operators that are logical pairs to both be defined.
These operators are (== !=), (< >), and (<= >=).

Equals and GetHashCode
In most cases, if you overload (==) and (!=), you must override the Equals and
GetHashCode methods defined on object in order to get meaningful behavior.
The C# compiler will give a warning if you do not do this. (See “Equality
Comparison” on page 226 for more details.)

IComparable and IComparable<T>
If you overload (< >) and (<= >=), you should implement IComparable and
IComparable<T>.

Custom Implicit and Explicit Conversions
Implicit and explicit conversions are overloadable operators. These conversions are
typically overloaded to make converting between strongly related types (such as
numeric types) concise and natural.

To convert between weakly related types, the following strategies are more suitable:

• Write a constructor that has a parameter of the type to convert from.•

• Write ToXXX and (static) FromXXX methods to convert between types.•
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As explained in the discussion on types, the rationale behind implicit conversions is
that they are guaranteed to succeed and not lose information during the conversion.
Conversely, an explicit conversion should be required either when runtime circum‐
stances will determine whether the conversion will succeed or if information might
be lost during the conversion.

In this example, we define conversions between our musical Note type and a double
(which represents the frequency in hertz of that note):

...
// Convert to hertz
public static implicit operator double (Note x)
  => 440 * Math.Pow (2, (double) x.value / 12 );

// Convert from hertz (accurate to the nearest semitone)
public static explicit operator Note (double x)
  => new Note ((int) (0.5 + 12 * (Math.Log (x/440) / Math.Log(2) ) ));
...

Note n = (Note)554.37;  // explicit conversion
double x = n;           // implicit conversion

Following our own guidelines, this example might be better
implemented with a ToFrequency method (and a static From
Frequency method) instead of implicit and explicit operators.

Custom conversions are ignored by the as and is operators:
Console.WriteLine (554.37 is Note);   // False
Note n = 554.37 as Note;              // Error

Overloading true and false
The true and false operators are overloaded in the extremely rare case of types
that are Boolean “in spirit” but do not have a conversion to bool. An example is a
type that implements three-state logic: by overloading true and false, such a type
can work seamlessly with conditional statements and operators—namely, if, do,
while, for, &&, ||, and ?:. The System.Data.SqlTypes.SqlBoolean struct provides
this functionality:

SqlBoolean a = SqlBoolean.Null;
if (a)
  Console.WriteLine ("True");
else if (!a)
  Console.WriteLine ("False");
else
  Console.WriteLine ("Null");

OUTPUT:
Null

The following code is a reimplementation of the parts of SqlBoolean necessary to
demonstrate the true and false operators:
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public struct SqlBoolean
{
  public static bool operator true (SqlBoolean x)
    => x.m_value == True.m_value;

  public static bool operator false (SqlBoolean x)
    => x.m_value == False.m_value;  

  public static SqlBoolean operator ! (SqlBoolean x)
  {
    if (x.m_value == Null.m_value)  return Null;
    if (x.m_value == False.m_value) return True;
    return False;
  }

  public static readonly SqlBoolean Null =  new SqlBoolean(0);
  public static readonly SqlBoolean False = new SqlBoolean(1);
  public static readonly SqlBoolean True =  new SqlBoolean(2);

  private SqlBoolean (byte value) { m_value = value; }
  private byte m_value;
}

Static Polymorphism
In “Calling Static Virtual/Abstract Interface Members” on page 826, we introduced
an advanced feature whereby an interface can define static virtual or static
abstract members, which are then implemented as static members by classes and
structs. Later, in “Generic Constraints” on page 163 we showed that applying an
interface constraint to a type parameter gives a method access to that interface’s
members. In this section, we’ll demonstrate how this enables static polymorphism,
allowing for features such as generic math.

To illustrate, consider the following interface, which defines a static method to
create a random instance of some type T:

interface ICreateRandom<T>
{
  static abstract T CreateRandom();  // Create a random instance of T
}

Suppose that we wish to implement this interface in the following record:

record Point (int X, int Y);

With the help of the System.Random class (whose Next method generates a random
integer), we can implement the static CreateRandom method as follows:

record Point (int X, int Y) : ICreateRandom<Point>
{
  static Random rnd = new();
  public static Point CreateRandom() => new Point (rnd.Next(), rnd.Next());
}
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To call this method via the interface, we use a constrained type parameter. The
following method creates an array of test data using this approach:

T[] CreateTestData<T> (int count) where T : ICreateRandom<T>
{
  T[] result = new T[count];
  for (int i = 0; i < count; i++)
    result [i] = T.CreateRandom();
  return result;
}

This line of code demonstrates its use:

Point[] testData = CreateTestData<Point>(50);  // Create 50 random Points.

Our call to the static CreateRandom method in CreateTestData is polymorphic
because it works not just with Point, but with any type that implements ICreateRan
dom<T>. This is different from instance polymorphism, because we don’t need an
instance of ICreateRandom<T> on which to call CreateRandom; we call CreateRandom
on the type itself.

Polymorphic Operators
Because operators are essentially static functions (see “Operator Overloading” on
page 256), operators can also be declared as static virtual interface members:

interface IAddable<T> where T : IAddable<T>
{
   abstract static T operator + (T left, T right);
}

The self-referencing type constraint in this interface definition
is necessary to satisfy the compiler’s rules for operator over‐
loading. Recall that when defining an operator function, at
least one of the operands must be the type in which the
operator function is declared. In this example, our operands
are of type T, whereas the containing type is IAddable<T>, so
we require a self-referencing type constraint to allow T to be
treated as IAddable<T>.

Here’s how we can implement the interface:

record Point (int X, int Y) : IAddable<Point>
{
  public static Point operator + (Point left, Point right) =>
    new Point (left.X + right.X, left.Y + right.Y);
}

With a constrained type parameter, we can then write a method that calls our
addition operator polymorphically (with edge-case handling omitted for brevity):

T Sum<T> (params T[] values) where T : IAddable<T>
{
  T total = values[0];
  for (int i = 1; i < values.Length; i++)
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    total += values[i];
  return total;
}

Our call to the + operator (via the += operator) is polymorphic because it binds
to IAddable<T>, not Point. Hence, our Sum method works with all types that
implement IAddable<T>.

Of course, an interface such as IAddable<T> would be much more useful if it
were defined in the .NET runtime, and if all .NET numeric types implemented it.
Fortunately, this is indeed the case from .NET 7: the System.Numerics namespace
includes (a more sophisticated version of) IAddable, along with many other arith‐
metic interfaces—most of which are encompassed by INumber<TSelf>.

Generic Math
Before .NET 7, code that performed arithmetic had to be hardcoded to a particular
numeric type:

int Sum (params int[] numbers)   // Works only with int.
{                                // Cannot use with double, decimal, etc.
    int total = 0;
    foreach (int n in numbers)
        total += n;
    return total;
}

.NET 7 introduced the INumber<TSelf> interface to unify arithmetic operations
across numeric types. This means that you can now write a generic version of the
preceding method:

T Sum<T> (params T[] numbers) where T : INumber<T>
{
  T total = T.Zero;
  foreach (T n in numbers)
    total += n;      // Invokes addition operator for any numeric type
  return total;
}

int intSum = Sum (3, 5, 7);
double doubleSum = Sum (3.2, 5.3, 7.1);
decimal decimalSum = Sum (3.2m, 5.3m, 7.1m);

INumber<TSelf> is implemented by all real and integral numeric types in .NET (as
well as char) and can be thought of as an umbrella interface, comprising other more
granular interfaces for each kind of arithmetic operation (addition, subtraction,
multiplication, division, modulus calculation, comparison, and so on), as well as
interfaces for parsing and formatting. Here’s one such interface:

public interface IAdditionOperators<TSelf, TOther, TResult>
  where TSelf : IAdditionOperators<TSelf, TOther, TResult>?
{
  static abstract TResult operator + (TSelf left, TOther right);
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  public static virtual TResult operator checked + 
    (TSelf left, TOther right) => left + right;  // Call operator above
}

The static abstract + operator is what allows the += operator to work inside our
Sum method. Also note the use of static virtual on the checked operator: this
provides a default fallback behavior for implementors that don’t provide a checked
version of the addition operator.

The System.Numerics namespace also contains interfaces that are not part of INum
ber for operations specific to certain kinds of numbers (such as floating-point).
To compute a root mean square, for instance, we can add the IRootFunctions<T>
interface to the constraint list to expose its static RootN method to T:

T RMS<T> (params T[] values) where T : INumber<T>, IRootFunctions<T>
{
  T total = T.Zero;
  for (int i = 0; i < values.Length; i++)
    total += values [i] * values [i];
  // Use T.CreateChecked to convert values.Length (type int) to T.
  T count = T.CreateChecked (values.Length);
  return T.RootN (total / count, 2);   // Calculate square root
}

Unsafe Code and Pointers
C# supports direct memory manipulation via pointers within blocks of code
marked as unsafe. Pointer types are useful for interoperating with native APIs,
for accessing memory outside the managed heap, and in implementing micro-
optimizations in performance-critical hotspots.

Projects that include unsafe code must specify <AllowUnsafeBlocks>true</Allow
UnsafeBlocks> in the project file.

Pointer Basics
For every value type or reference type V, there is a corresponding pointer type V*. A
pointer instance holds the address of a variable. Pointer types can be (unsafely) cast
to any other pointer type. Following are the main pointer operators:

Operator Meaning

& The address-of operator returns a pointer to the address of a variable.

* The dereference operator returns the variable at the address of a pointer.

-> The pointer-to-member operator is a syntactic shortcut, in which x->y is equivalent to (*x).y.

In keeping with C, adding (or subtracting) an integer offset to a pointer generates
another pointer. Subtracting one pointer from another generates a 64-bit integer
(on both 64-bit and 32-bit platforms).
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Unsafe Code
By marking a type, type member, or statement block with the unsafe keyword,
you’re permitted to use pointer types and perform C style pointer operations on
memory within that scope. Here is an example of using pointers to quickly process a
bitmap:

unsafe void BlueFilter (int[,] bitmap)
{
  int length = bitmap.Length;
  fixed (int* b = bitmap)
  {
    int* p = b;
    for (int i = 0; i < length; i++)
      *p++ &= 0xFF;
  }
}

Unsafe code can run faster than a corresponding safe implementation. In this case,
the code would have required a nested loop with array indexing and bounds check‐
ing. An unsafe C# method can also be faster than calling an external C function
given that there is no overhead associated with leaving the managed execution
environment.

The fixed Statement
The fixed statement is required to pin a managed object, such as the bitmap in the
previous example. During the execution of a program, many objects are allocated
and deallocated from the heap. To avoid unnecessary waste or fragmentation of
memory, the garbage collector moves objects around. Pointing to an object is futile
if its address could change while referencing it, so the fixed statement tells the
garbage collector to “pin” the object and not move it around. This can have an
impact on the efficiency of the runtime, so you should use fixed blocks only briefly,
and you should avoid heap allocation within the fixed block.

Within a fixed statement, you can get a pointer to any value type, an array of value
types, or a string. In the case of arrays and strings, the pointer will actually point to
the first element, which is a value type.

Value types declared inline within reference types require the reference type to be
pinned, as follows:

Test test = new Test();
unsafe
{
  fixed (int* p = &test.X)   // Pins test
  {
    *p = 9;
  }
  Console.WriteLine (test.X);
}

class Test { public int X; }
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We describe the fixed statement further in “Mapping a Struct to Unmanaged
Memory” on page 997.

The Pointer-to-Member Operator
In addition to the & and * operators, C# also provides the C++ style -> operator,
which you can use on structs:

Test test = new Test();
unsafe
{
  Test* p = &test;
  p->X = 9;
  System.Console.WriteLine (test.X);
}

struct Test { public int X; }

The stackalloc Keyword
You can allocate memory in a block on the stack explicitly by using the stackalloc
keyword. Because it is allocated on the stack, its lifetime is limited to the execution
of the method, just as with any other local variable (whose life hasn’t been extended
by virtue of being captured by a lambda expression, iterator block, or asynchronous
function). The block can use the [] operator to index into memory:

int* a = stackalloc int [10];
for (int i = 0; i < 10; ++i)
   Console.WriteLine (a[i]);

In Chapter 23, we describe how you can use Span<T> to manage stack-allocated
memory without using the unsafe keyword:

Span<int> a = stackalloc int [10];
for (int i = 0; i < 10; ++i)
  Console.WriteLine (a[i]);

Fixed-Size Buffers
The fixed keyword has another use, which is to create fixed-size buffers within
structs (this can be useful when calling an unmanaged function; see Chapter 24):

new UnsafeClass ("Christian Troy");

unsafe struct UnsafeUnicodeString
{
  public short Length;
  public fixed byte Buffer[30];   // Allocate block of 30 bytes
}

unsafe class UnsafeClass
{
  UnsafeUnicodeString uus;
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  public UnsafeClass (string s)
  {
    uus.Length = (short)s.Length;
    fixed (byte* p = uus.Buffer)
      for (int i = 0; i < s.Length; i++)
        p[i] = (byte) s[i];
  }
}

Fixed-size buffers are not arrays: if Buffer were an array, it would consist of a
reference to an object stored on the (managed) heap, rather than 30 bytes within the
struct itself.

The fixed keyword is also used in this example to pin the object on the heap
that contains the buffer (which will be the instance of UnsafeClass). Hence, fixed
means two different things: fixed in size and fixed in place. The two are often used
together, in that a fixed-size buffer must be fixed in place to be used.

void*
A void pointer (void*) makes no assumptions about the type of the underlying data
and is useful for functions that deal with raw memory. An implicit conversion exists
from any pointer type to void*. A void* cannot be dereferenced, and arithmetic
operations cannot be performed on void pointers. Here’s an example:

short[] a = { 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 };
unsafe
{
  fixed (short* p = a)
  {
    //sizeof returns size of value-type in bytes
    Zap (p, a.Length * sizeof (short));
  }
}
foreach (short x in a)
  Console.WriteLine (x);   // Prints all zeros

unsafe void Zap (void* memory, int byteCount)
{
  byte* b = (byte*)memory;
  for (int i = 0; i < byteCount; i++)
    *b++ = 0;
}

Native-Sized Integers
The nint and nuint native-sized integer types (introduced in C# 9) are sized to
match the address space of the process at runtime (in practice, 32 or 64 bits).
Native-sized integers behave like standard integers, with full support for arithmetic
operations and overflow checking:
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nint x = 123, y = 234;
checked
{
  nint sum = x + y, product = x * y;
  Console.WriteLine (product);
}

Native-sized integers can be assigned 32-bit integer constants (but not 64-bit integer
constants, because these might overflow at runtime). You can use an explicit cast to
convert to or from other integral types.

You can use native-sized integers to represent memory addresses or offsets without
the use of pointers. nuint is also a natural type for representing the length of a
memory block.

When working with pointers, native-sized integers can improve efficiency because
the result of subtracting two pointers in C# is always a 64-bit integer (long), which
is inefficient on 32-bit platforms. By first casting the pointers to nint, the result of a
subtraction is also nint (which will be 32 bits on a 32-bit platform):

unsafe nint AddressDif (char* x, char* y) => (nint)x - (nint)y;

A good example of the real-world use of nint and nuint
in conjunction with pointers is in the implementation of
Buffer.MemoryCopy. You can see this in the .NET source code
for Buffer.cs on GitHub, or by decompiling the method in
ILSpy. A simplified version has also been included in the
LINQPad samples for C# 12 in a Nutshell.

Runtime handling when targeting .NET 7+
For projects that target .NET 7 or above, nint and nuint act as synonyms for the
underlying .NET types System.IntPtr and System.UIntPtr (in the same way that
int acts as a synonym for System.Int32). This works because the IntPtr and
UIntPtr types (which have existed since .NET Framework 1.0, but with limited
functionality) were enhanced in .NET 7 to enable full arithmetic capabilities and
overflow checking with the C# compiler.

The addition of checked arithmetic capability to IntPtr/
UIntPtr is technically a breaking change. However, the effects
are limited, because legacy code that relies on IntPtr not
honoring checked blocks will not break when merely run
under .NET 7+; to break, the project must also be recompiled
with a .NET 7+ target. This means that library authors need
not worry about the breaking change until they release a new
version that specifically targets .NET 7 or later.

Runtime handling when targeting .NET 6 or below
For projects that target .NET 6 or below (or .NET Standard), nint and nuint still
use IntPtr and UIntPtr as their underlying runtime types. However, because the
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legacy IntPtr and UIntPtr types lack support for most arithmetic operations, the
compiler fills in the gaps, making the nint/nuint types behave as they would
in .NET 7+ (including allowing checked operations). You can think of an nint/
nuint variable as an IntPtr/UIntPtr wearing a special hat. This hat is recognized
by the compiler to mean “please treat me as a modern IntPtr/UIntPtr.” This hat is
naturally lost should you later cast to an IntPtr/UIntPtr:

nint x = 123;
Console.WriteLine (x * x);   // OK: multiplication supported

IntPtr y = x;
Console.WriteLine (y * y);   // Compiler error: operator * not supported

Function Pointers
A function pointer (from C# 9) is like a delegate, but without the indirection of a
delegate instance; instead, it points directly to a method. A function pointer can
point only to static methods, lacks multicast capability, and requires an unsafe con‐
text (because it bypasses runtime type safety). Its main purpose is to simplify and
optimize interop with unmanaged APIs (see “Callbacks from Unmanaged Code” on
page 991).

A function pointer type is declared as follows (with the return type appearing last):

delegate*<int, char, string, void>   // (void refers to the return type)

This matches a function with this signature:

void SomeFunction (int x, char y, string z)

The & operator creates a function pointer from a method group. Here’s a complete
example:

unsafe
{
  delegate*<string, int> functionPointer = &GetLength;
  int length = functionPointer ("Hello, world");

  static int GetLength (string s) => s.Length;
}

In this example, functionPointer is not an object upon which you can call a
method such as Invoke (or with a reference to a Target object). Instead, it’s a
variable that points directly to the target method’s address in memory:

Console.WriteLine ((IntPtr)functionPointer);

Like any other pointer, it’s not subject to runtime type checking. The following
treats our function’s return value as a decimal (which, being longer than an int,
means that we incorporate some random memory into the output):

var pointer2 = (delegate*<string, decimal>) (IntPtr) functionPointer;
Console.WriteLine (pointer2 ("Hello, unsafe world"));
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[SkipLocalsInit]
When C# compiles a method, it emits a flag that instructs the runtime to initial‐
ize the method’s local variables to their default values (by zeroing the memory).
From C# 9, you can ask the compiler not to emit this flag by applying the [Skip
LocalsInit] attribute to a method (in the System.Runtime.CompilerServices
namespace):

[SkipLocalsInit]
void Foo() ...

You can also apply this attribute to a type—which is equivalent to applying it to all
of the type’s methods—or even an entire module (the container for an assembly):

[module: System.Runtime.CompilerServices.SkipLocalsInit]

In normal safe scenarios, [SkipLocalsInit] has little effect on functionality or
performance, because C#’s definite assignment policy requires that you explicitly
assign local variables before they can be read. This means that the JIT optimizer is
likely to emit the same machine code, whether or not the attribute is applied.

In an unsafe context, however, use of [SkipLocalsInit] can usefully save the
CLR from the overhead of initializing value-typed local variables, creating a small
performance gain with methods that make extensive use of the stack (through
a large stackalloc). The following example prints uninitialized memory when
[SkipLocalsInit] is applied (instead of all zeros):

[SkipLocalsInit]
unsafe void Foo()
{
  int local;
  int* ptr = &local;
  Console.WriteLine (*ptr);

  int* a = stackalloc int [100];
  for (int i = 0; i < 100; ++i) Console.WriteLine (a [i]);
}

Interestingly, you can achieve the same result in a “safe” context through the use of
Span<T>:

[SkipLocalsInit]
void Foo()
{
  Span<int> a = stackalloc int [100];
  for (int i = 0; i < 100; ++i) Console.WriteLine (a [i]);
}

Consequently, use of [SkipLocalsInit] requires that you compile your project
with <AllowUnsafeBlocks> set to true—even if none of your methods are marked
as unsafe.
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Preprocessor Directives
Preprocessor directives supply the compiler with additional information about
regions of code. The most common preprocessor directives are the conditional
directives, which provide a way to include or exclude regions of code from
compilation:

#define DEBUG
class MyClass
{
  int x;
  void Foo()
  {
    #if DEBUG
    Console.WriteLine ("Testing: x = {0}", x);
    #endif
  }
  ...
}

In this class, the statement in Foo is compiled as conditionally dependent upon the
presence of the DEBUG symbol. If we remove the DEBUG symbol, the statement is not
compiled. You can define preprocessor symbols within a source file (as we have
done) or at a project level in the .csproj file:

<PropertyGroup>
  <DefineConstants>DEBUG;ANOTHERSYMBOL</DefineConstants>
</PropertyGroup>

With the #if and #elif directives, you can use the ||, &&, and ! operators to
perform or, and, and not operations on multiple symbols. The following directive
instructs the compiler to include the code that follows if the TESTMODE symbol is
defined and the DEBUG symbol is not defined:

#if TESTMODE && !DEBUG
  ...

Keep in mind, however, that you’re not building an ordinary C# expression, and the
symbols upon which you operate have absolutely no connection to variables—static
or otherwise.

The #error and #warning symbols prevent accidental misuse of conditional direc‐
tives by making the compiler generate a warning or error given an undesirable set of
compilation symbols. Table 4-1 lists the preprocessor directives.

Table 4-1. Preprocessor directives

Preprocessor directive Action

#define symbol Defines symbol

#undef symbol Undefines symbol
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Preprocessor directive Action

#if symbol 

[operator symbol2]...

symbol to test

operators are ==, !=, &&, and || followed by #else,
#elif, and #endif

#else Executes code to subsequent #endif

#elif symbol 

[operator symbol2]

Combines #else branch and #if test

#endif Ends conditional directives

#warning text text of the warning to appear in compiler output

#error text text of the error to appear in compiler output

#error version Reports the compiler version and exits

#pragma warning 

[disable | restore]

Disables/restores compiler warning(s)

#line [ number ["file"] | 

hidden]

number specifies the line in source code (a column can also
be specified from C# 10); file is the filename to appear in
computer output; hidden instructs debuggers to skip over
code from this point until the next #line directive

#region name Marks the beginning of an outline

#endregion Ends an outline region

#nullable option See “Nullable reference types” on page 22

Conditional Attributes
An attribute decorated with the Conditional attribute will be compiled only if a
given preprocessor symbol is present:

// file1.cs
#define DEBUG
using System;
using System.Diagnostics;
[Conditional("DEBUG")]
public class TestAttribute : Attribute {}

// file2.cs
#define DEBUG
[Test]
class Foo
{
  [Test]
  string s;
}

The compiler will incorporate the [Test] attributes only if the DEBUG symbol is in
scope for file2.cs.
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Pragma Warning
The compiler generates a warning when it spots something in your code that seems
unintentional. Unlike errors, warnings don’t ordinarily prevent your application
from compiling.

Compiler warnings can be extremely valuable in spotting bugs. Their usefulness,
however, is undermined when you get false warnings. In a large application, main‐
taining a good signal-to-noise ratio is essential if the “real” warnings are to be
noticed.

To this effect, the compiler allows you to selectively suppress warnings by using the
#pragma warning directive. In this example, we instruct the compiler not to warn us
about the field Message not being used:

public class Foo
{
  static void Main() { }

  #pragma warning disable 414
  static string Message = "Hello";
  #pragma warning restore 414
}

Omitting the number in the #pragma warning directive disables or restores all
warning codes.

If you are thorough in applying this directive, you can compile with the /warnaser
ror switch—this instructs the compiler to treat any residual warnings as errors.

XML Documentation
A documentation comment is a piece of embedded XML that documents a type or
member. A documentation comment comes immediately before a type or member
declaration and starts with three slashes:

/// <summary>Cancels a running query.</summary>
public void Cancel() { ... }

Multiline comments can be done like this:

/// <summary>
/// Cancels a running query
/// </summary>
public void Cancel() { ... }

Or like this (notice the extra star at the start):

/** 
    <summary> Cancels a running query. </summary>
*/
public void Cancel() { ... }
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If you add the following option to your .csproj file:

<PropertyGroup>
  <DocumentationFile>SomeFile.xml</DocumentationFile>
</PropertyGroup>

the compiler extracts and collates documentation comments into the specified XML
file. This has two main uses:

• If placed in the same folder as the compiled assembly, tools such as Visual•
Studio and LINQPad automatically read the XML file and use the information
to provide IntelliSense member listings to consumers of the assembly of the
same name.

• Third-party tools (such as Sandcastle and NDoc) can transform the XML file•
into an HTML help file.

Standard XML Documentation Tags
Here are the standard XML tags that Visual Studio and documentation generators
recognize:

<summary>
<summary>...</summary>

Indicates the tool tip that IntelliSense should display for the type or member;
typically a single phrase or sentence.

<remarks>
<remarks>...</remarks>

Additional text that describes the type or member. Documentation generators
pick this up and merge it into the bulk of a type or member’s description.

<param>
<param name="name">...</param>

Explains a parameter on a method.

<returns>
<returns>...</returns>

Explains the return value for a method.

<exception>
<exception [cref="type"]>...</exception>

Lists an exception that a method can throw (cref refers to the exception type).
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<example>
<example>...</example>

Denotes an example (used by documentation generators). This usually contains
both description text and source code (source code is typically within a <c> or
<code> tag).

<c>
<c>...</c>

Indicates an inline code snippet. This tag is usually used within an <example>
block.

<code>
<code>...</code>

Indicates a multiline code sample. This tag is usually used within an <example>
block.

<see>
<see cref="member">...</see>

Inserts an inline cross-reference to another type or member. HTML documen‐
tation generators typically convert this to a hyperlink. The compiler emits a
warning if the type or member name is invalid. To refer to generic types, use
curly braces; for example, cref="Foo{T,U}".

<seealso>
<seealso cref="member">...</seealso>

Cross-references another type or member. Documentation generators typically
write this into a separate “See Also” section at the bottom of the page.

<paramref>
<paramref name="name"/>

References a parameter from within a <summary> or <remarks> tag.

<list>
<list type=[ bullet | number | table ]>
  <listheader>
    <term>...</term>
    <description>...</description>
  </listheader>
  <item>
    <term>...</term>
    <description>...</description>
  </item>
</list>

Instructs documentation generators to emit a bulleted, numbered, or table-
style list.
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<para>
<para>...</para>

Instructs documentation generators to format the contents into a separate
paragraph.

<include>
<include file='filename' path='tagpath[@name="id"]'>...</include>

Merges an external XML file that contains documentation. The path attribute
denotes an XPath query to a specific element in that file.

User-Defined Tags
Little is special about the predefined XML tags recognized by the C# compiler,
and you are free to define your own. The only special processing done by the
compiler is on the <param> tag (in which it verifies the parameter name and that all
the parameters on the method are documented) and the cref attribute (in which
it verifies that the attribute refers to a real type or member and expands it to a
fully qualified type or member ID). You can also use the cref attribute in your
own tags; it is verified and expanded just as it is in the predefined <exception>,
<permission>, <see>, and <seealso> tags.

Type or Member Cross-References
Type names and type or member cross-references are translated into IDs that
uniquely define the type or member. These names are composed of a prefix that
defines what the ID represents and a signature of the type or member. Following are
the member prefixes:

XML type prefix ID prefixes applied to…

N Namespace

T Type (class, struct, enum, interface, delegate)

F Field

P Property (includes indexers)

M Method (includes special methods)

E Event

! Error

The rules describing how the signatures are generated are well documented,
although fairly complex.

Here is an example of a type and the IDs that are generated:

// Namespaces do not have independent signatures
namespace NS
{
  /// T:NS.MyClass
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  class MyClass
  {
    /// F:NS.MyClass.aField
    string aField;

    /// P:NS.MyClass.aProperty
    short aProperty {get {...} set {...}}

    /// T:NS.MyClass.NestedType
    class NestedType {...};

    /// M:NS.MyClass.X()
    void X() {...}

    /// M:NS.MyClass.Y(System.Int32,System.Double@,System.Decimal@)
    void Y(int p1, ref double p2, out decimal p3) {...}

    /// M:NS.MyClass.Z(System.Char[ ],System.Single[0:,0:])
    void Z(char[ ] p1, float[,] p2) {...}

    /// M:NS.MyClass.op_Addition(NS.MyClass,NS.MyClass)
    public static MyClass operator+(MyClass c1, MyClass c2) {...}

    /// M:NS.MyClass.op_Implicit(NS.MyClass)˜System.Int32
    public static implicit operator int(MyClass c) {...}

    /// M:NS.MyClass.#ctor
    MyClass() {...}

    /// M:NS.MyClass.Finalize
    ˜MyClass() {...}

    /// M:NS.MyClass.#cctor
    static MyClass() {...}
  }
}
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5
.NET Overview

Almost all of the capabilities of the .NET 8 runtime are exposed via a vast set
of managed types. These types are organized into hierarchical namespaces and
packaged into a set of assemblies.

Some of the .NET types are used directly by the CLR and are essential for
the managed hosting environment. These types reside in an assembly called
System.Private.CoreLib.dll (mscorlib.dll in .NET Framework) and include C#’s built-
in types as well as the basic collection classes, and types for stream processing,
serialization, reflection, threading, and native interoperability.

At a level above this are additional types that “flesh out” the CLR-level functional‐
ity, providing features such as XML, JSON, networking, and Language-Integrated
Query. These comprise the Base Class Library (BCL). Sitting above this are applica‐
tion layers, which provide APIs for developing particular kinds of applications such
as web or rich client.

In this chapter, we provide the following:

• An overview of the BCL (which we cover in the rest of the book)•
• A high-level summary of the application layers•
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What’s New in .NET 7 and .NET 8
The Base Class Libraries in .NET 7 and .NET 8 include numerous new features and
performance improvements. In particular:

• The Tar archive format, popular on Unix systems, is now supported via types•
in the new System.Formats.Tar namespace (see “Working with Tar Files” on
page 722). The ZipFile class has also been enhanced to allow folders of files to
be zipped directly into or from a stream.

• The Stream class now exposes ReadExactly and ReadAtLeast methods to sim‐•
plify reading from streams (see “Reading and Writing” on page 697).

• There’s now support for working with Unix file permissions (see “Unix file•
security” on page 727).

• Support for Span<T> and ReadOnlySpan<T> has been extended. In particular,•
numeric and other simple types now support UTF-8 formatting and parsing
directly into Span<byte> via new IUtf8SpanFormattable and IUtf8SpanParsa
ble<TSelf> interfaces, and the MemoryExtensions class contains additional
extension methods to help with searching for values within spans (see “Search‐
ing in Spans” on page 977).

• The Random class now includes a GetItems method to pick random items from a•
collection, and a Shuffle method to randomly shuffle items (see “Random” on
page 338).

• .NET’s date and time types now expose Microsecond and Nanosecond proper‐•
ties.

• The JsonNode class has a number of new methods, including GetValueKind,•
DeepEquals, DeepClone, and ReplaceWith (see “JsonNode” on page 575).

• There are two new read-only collection types, FrozenDictionary<K,V> and•
FrozenSet<T>. These are like the existing ImmutableDictionary<K,V> and Immu
tableHashSet<T> types but are optimized purely for reading, without methods
for nondestructive mutation (see “Frozen Collections” on page 410).

• RegEx now supports RegexOptions.NonBacktracking to help avoid denial-of-•
service attacks with user-supplied expressions (see “RegexOptions” on page
1013). The regular expressions engine is also now faster.

• Types for SHA-3 hashing are now available, subject to operating system sup‐•
port (see “Hash Algorithms in .NET” on page 878).

The JSON serialization engine has also been improved, with new features and better
performance.
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Runtime Targets and TFMs
Within a project file, the <TargetFramework> element determines which runtime
the project is built against (its framework target or runtime target) and is denoted by
a Target Framework Moniker (TFM). Valid values include net8.0, net7.0, net6.0,
net5.0 (for .NET versions 8, 7, 6, and 5), netcoreapp3.1 (for .NET Core 3.1), net48
(for .NET Framework 4.8), and netstandard2.0 (which we cover in the following
section). For example, this is how you target .NET 8:

  <PropertyGroup>
    <TargetFramework>net8.0</TargetFramework>
  <PropertyGroup>

You can target multiple runtimes by instead specifying a <TargetFrameworks>
element (plural). Each TFM is separated by a semicolon:

    <TargetFrameworks>net8.0;net48</TargetFrameworks>

When you multitarget, the compiler generates a separate output assembly for each
target.

The runtime target is encoded into the output assembly via the TargetFramework
attribute. An assembly can run on a newer (but not older) runtime than its target.

.NET Standard
The wealth of public libraries that are available on NuGet wouldn’t be as valuable
if they supported only .NET 8. When writing a library, you’ll often want to support
a variety of platforms and runtime versions. To achieve that goal without creating
a separate build for each runtime (multitargeting), you must target the lowest
common denominator. This is relatively easy if you wish to support only .NET
8’s direct predecessors: for example, if your project targets .NET 6 (net6.0), your
library will run on .NET 6, .NET 7, and .NET 8.

The situation becomes messier if you also want to support .NET Framework (or
legacy runtimes such as Xamarin). The reason is that each of these runtimes has a
CLR and BCL with overlapping features—no one runtime is a pure subset of the
others.

.NET Standard solves this problem by defining artificial subsets that work across an
entire range of runtimes. By targeting .NET Standard, you can easily write libraries
with extensive reach.

.NET Standard is not a runtime; it’s merely a specification
describing a minimum baseline of functionality (types and
members) that guarantees compatibility with a certain set of
runtimes. The concept is similar to C# interfaces: .NET Stan‐
dard is like an interface that concrete types (runtimes) can
implement.

Runtime Targets and TFMs | 279

.N
E

T O
verview



.NET Standard 2.0
The most useful version is .NET Standard 2.0. A library that targets .NET Stan‐
dard 2.0 instead of a specific runtime will run without modification on both
modern .NET (.NET 8/7/6/5, down to .NET Core 2) and .NET Framework (4.6.1+).
It also supports the legacy UWP (from 10.0.16299+) and Mono 5.4+ (the CLR/BCL
used by older versions of Xamarin).

To target .NET Standard 2.0, add the following to your .csproj file:

  <PropertyGroup>
    <TargetFramework>netstandard2.0</TargetFramework>
  <PropertyGroup>

Most of the APIs described in this book are supported by .NET Standard 2.0 (and of
those that are not, most are available as NuGet packages).

Other .NET Standards
NET Standard 2.1 is a superset of .NET Standard 2.0 that supports (only) the
following platforms:

• .NET Core 3+•
• Mono 6.4+•

.NET Standard 2.1 is not supported by any version of .NET Framework, making it
much less useful than .NET Standard 2.0.

There are also older .NET Standards such as 1.1, 1.2, 1.3, and 1.6, whose compatibil‐
ity extends to archaic runtimes such as .NET Core 1.0 or .NET Framework 4.5. The
1.x standards lack thousands of APIs that are present in 2.0 (including much of
what we describe in this book) and are effectively defunct.

.NET Framework and .NET 8 Compatibility
Because .NET Framework has existed for so long, it’s not uncommon to
encounter libraries that are available only for .NET Framework (with no .NET Stan‐
dard, .NET Core, or .NET 8 equivalent). To help mitigate this situation, .NET 5+
and .NET Core projects are permitted to reference .NET Framework assemblies,
with the following provisos:

• An exception is thrown should the .NET Framework assembly call an API•
that’s unsupported.

• Nontrivial dependencies might (and often do) fail to resolve.•

In practice, it’s most likely to work in simple cases, such as an assembly that wraps
an unmanaged DLL.
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Reference Assemblies
When you target .NET Standard, your project implicitly references an assembly
called netstandard.dll, which contains all of the allowable types and members for
your chosen version of .NET Standard. This is called a reference assembly because
it exists only for the benefit of the compiler and contains no compiled code. At
runtime, the “real” assemblies are identified through assembly redirection attributes
(the choice of assemblies will depend on which runtime and platform the assembly
eventually runs on).

Interestingly, a similar thing happens when you target .NET 8. Your project implic‐
itly references a set of reference assemblies whose types mirror what’s in the
runtime assemblies for the chosen .NET version. This helps with versioning and
cross-platform compatibility, and also allows you to target a different .NET version
than what is installed on your machine.

Runtime and C# Language Versions
By default, your project’s runtime target determines which C# language version is
used:

Runtime target C# version

.NET 8 C# 12

.NET 7 C# 11

.NET 6 C# 10

.NET 5 C# 9

.NET Core 3.x & 2.x C# 8

.NET Framework C# 7.3

.NET Standard 2.0 C# 7.3

This is because later versions of C# include features that rely on types that were
introduced in later runtimes.

You can override the language version in your project file with the <LangVersion>
element. Using an older runtime (such as .NET Framework) with a later language
version (such as C# 12) means that the language features that rely on newer .NET
types will not work (although in some cases, you can define those types yourself, or
import them from a NuGet package).

The CLR and BCL
Note to the indexer: Please skip everything in this section (apart from the Level 1
heading). Everything in this section is covered in more detail later in the book.
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System Types
The most fundamental types live directly in the System namespace. These include
C#’s built-in types; the Exception base class; the Enum, Array, and Delegate base
classes; and Nullable, Type, DateTime, TimeSpan, and Guid. The System name‐
space also includes types for performing mathematical functions (Math), generating
random numbers (Random), and converting between various types (Convert and
BitConverter).

Chapter 6 describes these types as well as the interfaces that define standard pro‐
tocols used across .NET for such tasks as formatting (IFormattable) and order
comparison (IComparable).

The System namespace also defines the IDisposable interface and the GC class for
interacting with the garbage collector, which we cover in Chapter 12.

Text Processing
The System.Text namespace contains the StringBuilder class (the editable or
mutable cousin of string) and the types for working with text encodings, such as
UTF-8 (Encoding and its subtypes). We cover this in Chapter 6.

The System.Text.RegularExpressions namespace contains types that perform
advanced pattern-based search-and-replace operations; we describe these in Chap‐
ter 25.

Collections
.NET offers a variety of classes for managing collections of items. These include
both list- and dictionary-based structures; they work in conjunction with a set of
standard interfaces that unify their common characteristics. All collection types are
defined in the following namespaces, covered in Chapter 7:

System.Collections              // Nongeneric collections
System.Collections.Generic      // Generic collections
System.Collections.Frozen       // High-performance read-only collections
System.Collections.Immutable    // General-purpose read-only collections
System.Collections.Specialized  // Strongly typed collections
System.Collections.ObjectModel  // Bases for your own collections
System.Collections.Concurrent   // Thread-safe collection (Chapter 22)

Querying
Language-Integrated Query (LINQ) allows you to perform type-safe queries over
local and remote collections (e.g., SQL Server tables) and is described in Chapters
8, 9, and 10. A big advantage of LINQ is that it presents a consistent querying API
across a variety of domains. The essential types reside in the following namespaces:

System.Linq                  // LINQ to Objects and PLINQ
System.Linq.Expressions      // For building expressions manually
System.Xml.Linq              // LINQ to XML
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XML and JSON
XML and JSON are widely supported in .NET. Chapter 10 focuses entirely on
LINQ to XML—a lightweight XML Document Object Model (DOM) that can be
constructed and queried through LINQ. Chapter 11 covers the performant low-level
XML reader/writer classes, XML schemas and stylesheets, and types for working
with JSON:

System.Xml                // XmlReader, XmlWriter
System.Xml.Linq           // The LINQ to XML DOM
System.Xml.Schema         // Support for XSD
System.Xml.Serialization  // Declarative XML serialization for .NET types
System.Xml.XPath          // XPath query language
System.Xml.Xsl            // Stylesheet support

System.Text.Json          // JSON reader/writer and DOM
System.Text.Json.Nodes    // JsonNode API (DOM)

In the online supplement at http://www.albahari.com/nutshell, we cover the JSON
serializer.

Diagnostics
In Chapter 13, we cover logging and assertion and describe how to interact with
other processes, write to the Windows event log, and handle performance monitor‐
ing. The types for this are defined in and under System.Diagnostics.

Concurrency and Asynchrony
Many modern applications need to deal with more than one thing happening at
a time. Since C# 5.0, this has become easier through asynchronous functions and
high-level constructs such as tasks and task combinators. Chapter 14 explains all
of this in detail, after starting with the basics of multithreading. Types for working
with threads and asynchronous operations are in the System.Threading and Sys
tem.Threading.Tasks namespaces.

Streams and Input/Output
.NET provides a stream-based model for low-level input/output (I/O). Streams are
typically used to read and write directly to files and network connections, and can
be chained or wrapped in decorator streams to add compression or encryption
functionality. Chapter 15 describes the stream architecture as well as the specific
support for working with files and directories, compression, pipes, and memory-
mapped files. The Stream and I/O types are defined in and under the System.IO
namespace.
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Networking
You can directly access most standard network protocols such as HTTP, TCP/IP,
and SMTP via the types in System.Net. In Chapter 16, we demonstrate how to
communicate using each of these protocols, starting with simple tasks such as
downloading from a web page and finishing with using TCP/IP directly to retrieve
POP3 email. Here are the namespaces we cover:

System.Net
System.Net.Http          // HttpClient
System.Net.Mail          // For sending mail via SMTP
System.Net.Sockets       // TCP, UDP, and IP

Assemblies, Reflection, and Attributes
The assemblies into which C# programs compile comprise executable instructions
(stored as IL) and metadata, which describes the program’s types, members, and
attributes. Through reflection, you can inspect this metadata at runtime and do such
things as dynamically invoke methods. With Reflection.Emit, you can construct
new code on the fly.

In Chapter 17, we describe the makeup of assemblies and how to dynamically load
and isolate them. In Chapter 18, we cover reflection and attributes—describing
how to inspect metadata, dynamically invoke functions, write custom attributes,
emit new types, and parse raw IL. The types for using reflection and working with
assemblies reside in the following namespaces:

System
System.Reflection
System.Reflection.Emit

Dynamic Programming
In Chapter 19, we look at some of the patterns for dynamic programming and uti‐
lizing the Dynamic Language Runtime (DLR). We describe how to implement the
Visitor pattern, write custom dynamic objects, and interoperate with IronPython.
The types for dynamic programming are in System.Dynamic.

Cryptography
.NET provides extensive support for popular hashing and encryption protocols.
In Chapter 20, we cover hashing, symmetric and public-key encryption, and the
Windows Data Protection API. The types for this are defined in:

System.Security
System.Security.Cryptography

Advanced Threading
C#’s asynchronous functions make concurrent programming significantly easier
because they lessen the need for lower-level techniques. However, there are still
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times when you need signaling constructs, thread-local storage, reader/writer
locks, and so on. Chapter 21 explains this in depth. Threading types are in the
System.Threading namespace.

Parallel Programming
In Chapter 22, we cover in detail the libraries and types for leveraging multicore
processors, including APIs for task parallelism, imperative data parallelism, and
functional parallelism (PLINQ).

Span<T> and Memory<T>
To help with micro-optimizing performance hotspots, the CLR provides a number
of types to help you program in such a way as to reduce the load on the memory
manager. Two of the key types are Span<T> and Memory<T>, which we describe in
Chapter 23.

Native and COM Interoperability
You can interoperate with both native and Component Object Model (COM) code.
Native interoperability allows you to call functions in unmanaged DLLs, register
callbacks, map data structures, and interoperate with native data types. COM inter‐
operability allows you to call COM types (on Windows machines) and expose .NET
types to COM. The types that support these functions are in System.Runtime.Inter
opServices, and we cover them in Chapter 24.

Regular Expressions
In Chapter 25, we cover how you can use regular expressions to match character
patterns in strings.

Serialization
.NET providers several systems for saving and restoring objects to a binary or text
representation. Such systems can be used for communication as well as saving and
restoring objects to a file. In the online supplement at http://www.albahari.com/nut‐
shell, we cover all four serialization engines: the binary serializer, the (newly upda‐
ted) JSON serializer, the XML serializer, and the data contract serializer.

The Roslyn Compiler
The C# compiler itself is written in C#—the project is called “Roslyn,” and the
libraries are available as NuGet packages. With these libraries, you can utilize the
compiler’s functionality in many ways besides compiling source code to an assem‐
bly, such as writing code analysis and refactoring tools. We cover Roslyn in the
online supplement, at http://www.albahari.com/nutshell.
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Application Layers
User interface (UI)–based applications can be divided into two categories: thin
client, which amounts to a website, and rich client, which is a program the end user
must download and install on a computer or mobile device.

For writing thin-client applications in C#, there’s ASP.NET Core, which runs on
Windows, Linux, and macOS. ASP.NET Core is also designed for writing web APIs.

For rich-client applications, there is a choice of APIs:

• The Windows Desktop layer includes the popular WPF and Windows Forms•
APIs, and runs on Windows 7/8/10/11 desktop.

• WinUI 3 (Windows App SDK) is a successor to UWP that runs (only) on•
Windows 10+ desktop.

• UWP lets you write Windows Store apps that run on Windows 10+ desktop•
and devices such as Xbox or HoloLens.

• MAUI (formerly Xamarin) runs on iOS and Android mobile devices. MAUI•
also allows for cross-platform desktop applications that target macOS (via
Catalyst) and Windows (via Windows App SDK).

There are also third-party cross-platform UI libraries such as Avalonia. Unlike
MAUI, Avalonia also runs on Linux and does not rely on a Catalyst/WinUI indirec‐
tion layer for desktop platforms, simplifying development and debugging.

ASP.NET Core
ASP.NET Core is a lightweight modular successor to ASP.NET and is suitable for
creating web sites, REST-based web APIs, and microservices. It can also run in con‐
junction with two popular single-page-application frameworks: React and Angular.

ASP.NET supports the popular Model-View-Controller (MVC) pattern, as well as a
newer technology called Blazor, where client-side code is written in C# instead of
JavaScript.

ASP.NET Core runs on Windows, Linux, and macOS and can self-host in a custom
process. Unlike its .NET Framework predecessor (ASP.NET), ASP.NET Core is not
dependent on System.Web and the historical baggage of web forms.

As with any thin-client architecture, ASP.NET Core offers the following general
advantages over rich clients:

• There is zero deployment at the client end.•
• The client can run on any platform that supports a web browser.•
• Updates are easily deployed.•
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Windows Desktop
The Windows Desktop application layer offers a choice of two UI APIs for writing
rich-client applications: WPF and Windows Forms. Both APIs run on Windows
Desktop/Server 7 through 11.

WPF
WPF was introduced in 2006, and has been enhanced ever since. Unlike its prede‐
cessor, Windows Forms, WPF explicitly renders controls using DirectX, with the
following benefits:

• It supports sophisticated graphics, such as arbitrary transformations, 3D ren‐•
dering, multimedia, and true transparency. Skinning is supported through
styles and templates.

• Its primary measurement unit is not pixel based, so applications display cor‐•
rectly at any DPI setting.

• It has extensive and flexible layout support, which means that you can localize•
an application without danger of elements overlapping.

• Its use of DirectX makes rendering fast and able to take advantage of graphics•
hardware acceleration.

• It offers reliable data binding.•
• UIs can be described declaratively in XAML files that can be maintained•

independent of the “code-behind” files—this helps to separate appearance from
functionality.

WPF takes some time to learn due to its size and complexity. The types for writing
WPF applications are in the System.Windows namespace and all subnamespaces
except for System.Windows.Forms.

Windows Forms
Windows Forms is a rich-client API that shipped with the first version of .NET
Framework in 2000. Compared to WPF, Windows Forms is a relatively simple tech‐
nology that provides most of the features you need in writing a typical Windows
application. It also has significant relevancy in maintaining legacy applications. But
compared to WPF, it has numerous drawbacks, most of which stem from it being a
wrapper over GDI+ and the Win32 control library:

• Although Windows Forms provides mechanisms for DPI-awareness, it’s still•
too easy to write applications that break on clients whose DPI settings differ
from the developer’s.

• The API for drawing nonstandard controls is GDI+, which, although reasona‐•
bly flexible, is slow in rendering large areas (and without double buffering,
might flicker).
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• Controls lack true transparency.•
• Most controls are noncompositional. For instance, you can’t put an image•

control inside a tab control header. Customizing list views, combo boxes, and
tab controls in a way that would be trivial with WPF is time consuming and
painful in Windows Forms.

• Dynamic layout is difficult to correctly implement reliably.•

The last point is an excellent reason to favor WPF over Windows Forms—even
if you’re writing a business application that needs just a UI and not a “user
experience.” The layout elements in WPF, such as Grid, make it easy to assemble
labels and text boxes such that they always align—even after language-changing
localization—without messy logic and without any flickering. Further, you don’t
need to bow to the lowest common denominator in screen resolution—WPF layout
elements have been designed from the outset to adapt properly to resizing.

On the positive side, Windows Forms is relatively simple to learn and still has a
good number of third-party controls.

The Windows Forms types are in the System.Windows.Forms (in System.Win‐
dows.Forms.dll) and System.Drawing (in System.Drawing.dll) namespaces. The lat‐
ter also contains the GDI+ types for drawing custom controls.

UWP and WinUI 3
UWP is a rich-client API for writing touch-first UIs that target Windows 10+
desktop and devices. The word “Universal” refers to its ability to run on a range
of Windows 10 devices, including Xbox, Surface Hub, HoloLens, and (at the time)
Windows Phone.

The UWP API uses XAML and is somewhat similar to WPF. Here are its key
differences:

• The primary mode of distribution for UWP apps is the Windows Store.•
• UWP apps run in a sandbox to lessen the threat of malware, which means that•

they cannot perform tasks such as reading or writing arbitrary files, and they
cannot run with administrative elevation.

• UWP relies on WinRT types that are part of the operating system (Windows),•
not the managed runtime. This means that when writing apps, you must nomi‐
nate a Windows version range (such as Windows 10 build 17763 to Windows 10
build 18362). This means that you either need to target an old API or require
that your customers install the latest Windows update.

Because of the limitations created by these differences, UWP never succeeded in
matching the popularity of WPF and Windows Forms. To address this, Microsoft
has morphed UWP into a new technology called Windows App SDK (with a UI
layer called WinUI 3).
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The Windows App SDK transfers the WinRT APIs from the operating system to the
runtime, thereby exposing a fully managed interface and removing the necessity to
target a specific operating system version range. It also does the following:

• Integrates better with the Windows Desktop APIs (Windows Forms and WPF)•
• Allows you to write applications that run outside the Windows Store sandbox•
• Runs atop the latest .NET (instead of being tied to .NET Core 2.2, as is the case•

with UWP)

Despite these improvements, WinUI 3 hasn’t gained the widespread popularity of
the classic Windows Desktop APIs. Windows App SDK also does not support Xbox
or HoloLens at the time of writing, and requires a separate end-user download.

MAUI
MAUI (formerly Xamarin) lets you develop mobile apps in C# that target iOS and
Android (as well as cross-platform desktop apps that target macOS and Windows
via Catalyst and Windows App SDK).

The CLR/BCL that runs on iOS and Android is called Mono (a derivation of
the open-source Mono runtime). Historically, Mono hasn’t been fully compatible
with .NET, and libraries that ran on both Mono and .NET would target .NET Stan‐
dard. From .NET 6, however, Mono’s public interface merged with .NET, making
Mono, in effect, an implementation of .NET.

MAUI includes a unified project interface, hot reloading, and support for Blazor
Desktop and hybrid apps. See https://github.com/dotnet/maui for more information.
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6
.NET Fundamentals

Many of the core facilities that you need when programming are provided not by
the C# language but by types in the .NET BCL. In this chapter, we cover types that
help with fundamental programming tasks, such as virtual equality comparison,
order comparison, and type conversion. We also cover the basic .NET types, such as
String, DateTime, and Enum.

The types in this section reside in the System namespace, with the following excep‐
tions:

• StringBuilder is defined in System.Text, as are the types for text encodings.•

• CultureInfo and associated types are defined in System.Globalization.•

• XmlConvert is defined in System.Xml.•

String and Text Handling
Char
A C# char represents a single Unicode character and aliases the System.Char struct.
In Chapter 2, we described how to express char literals:

char c = 'A';
char newLine = '\n';

System.Char defines a range of static methods for working with characters, such
as ToUpper, ToLower, and IsWhiteSpace. You can call these through either the
System.Char type or its char alias:

Console.WriteLine (System.Char.ToUpper ('c'));    // C
Console.WriteLine (char.IsWhiteSpace ('\t'));     // True

ToUpper and ToLower honor the end user’s locale, which can lead to subtle bugs. The
following expression evaluates to false in Turkey:
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char.ToUpper ('i') == 'I'

The reason is because in Turkey, char.ToUpper ('i') is 'İ' (notice the dot on
top!). To avoid this problem, System.Char (and System.String) also provides
culture-invariant versions of ToUpper and ToLower ending with the word “Invari‐
ant.” These always apply English culture rules:

Console.WriteLine (char.ToUpperInvariant ('i'));    // I

This is a shortcut for:

Console.WriteLine (char.ToUpper ('i', CultureInfo.InvariantCulture))

For more on locales and culture, see “Formatting and Parsing” on page 317.

Most of char’s remaining static methods are related to categorizing characters.
Table 6-1 lists these.

Table 6-1. Static methods for categorizing characters

Static method Characters included Unicode categories included

IsLetter A–Z, a–z, and letters of other alphabets UpperCaseLetter

LowerCaseLetter

TitleCaseLetter

ModifierLetter

OtherLetter

IsUpper Uppercase letters UpperCaseLetter

IsLower Lowercase letters LowerCaseLetter

IsDigit 0–9 plus digits of other alphabets DecimalDigitNumber

IsLetterOrDigit Letters plus digits (IsLetter, IsDigit)

IsNumber All digits plus Unicode fractions and Roman
numeral symbols

DecimalDigitNumber

LetterNumber

OtherNumber

IsSeparator Space plus all Unicode separator characters LineSeparator

ParagraphSeparator

IsWhiteSpace All separators plus \n, \r, \t, \f, and \v LineSeparator

ParagraphSeparator

IsPunctuation Symbols used for punctuation in Western and
other alphabets

DashPunctuation

ConnectorPunctuation

InitialQuotePunctuation

FinalQuotePunctuation

IsSymbol Most other printable symbols MathSymbol

ModifierSymbol

OtherSymbol

IsControl Nonprintable “control” characters below 0x20,
such as \r, \n, \t, \0, and characters between
0x7F and 0x9A

(None)
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For more granular categorization, char provides a static method called GetUnicode
Category; this returns a UnicodeCategory enumeration whose members are shown
in the rightmost column of Table 6-1.

By explicitly casting from an integer, it’s possible to produce
a char outside the allocated Unicode set. To test a character’s
validity, call char.GetUnicodeCategory: if the result is Unico
deCategory.OtherNotAssigned, the character is invalid.

A char is 16 bits wide—enough to represent any Unicode character in the Basic
Multilingual Plane. To go beyond this, you must use surrogate pairs: we describe the
methods for doing this in “Text Encodings and Unicode” on page 301.

String
A C# string (== System.String) is an immutable (unchangeable) sequence of
characters. In Chapter 2, we described how to express string literals, perform equal‐
ity comparisons, and concatenate two strings. This section covers the remaining
functions for working with strings, exposed through the static and instance mem‐
bers of the System.String class.

Constructing strings
The simplest way to construct a string is to assign a literal, as we saw in Chapter 2:

string s1 = "Hello";
string s2 = "First Line\r\nSecond Line";
string s3 = @"\\server\fileshare\helloworld.cs";

To create a repeating sequence of characters, you can use string’s constructor:

Console.Write (new string ('*', 10));      // **********

You can also construct a string from a char array. The ToCharArray method does
the reverse:

char[] ca = "Hello".ToCharArray();
string s = new string (ca);              // s = "Hello"

string’s constructor is also overloaded to accept various (unsafe) pointer types, in
order to create strings from types such as char*.

Null and empty strings
An empty string has a length of zero. To create an empty string, you can use either
a literal or the static string.Empty field; to test for an empty string, you can either
perform an equality comparison or test its Length property:

string empty = "";
Console.WriteLine (empty == "");              // True
Console.WriteLine (empty == string.Empty);    // True
Console.WriteLine (empty.Length == 0);        // True

String and Text Handling | 293

.N
E

T
Fund

am
entals



Because strings are reference types, they can also be null:

string nullString = null;
Console.WriteLine (nullString == null);        // True
Console.WriteLine (nullString == "");          // False
Console.WriteLine (nullString.Length == 0);    // NullReferenceException

The static string.IsNullOrEmpty method is a useful shortcut for testing whether a
given string is either null or empty.

Accessing characters within a string
A string’s indexer returns a single character at the given index. As with all functions
that operate on strings, this is zero-indexed:

string str  = "abcde";
char letter = str[1];        // letter == 'b'

string also implements IEnumerable<char>, so you can foreach over its charac‐
ters:

foreach (char c in "123") Console.Write (c + ",");    // 1,2,3,

Searching within strings
The simplest methods for searching within strings are StartsWith, EndsWith, and
Contains. These all return true or false:

Console.WriteLine ("quick brown fox".EndsWith ("fox"));      // True
Console.WriteLine ("quick brown fox".Contains ("brown"));    // True

These methods are overloaded to let you specify a StringComparison enum to
control case and culture sensitivity (see “Ordinal versus culture comparison” on
page 297). The default is to perform a case-sensitive match using rules applicable
to the current (localized) culture. The following instead performs a case-insensitive
search using the invariant culture’s rules:

"abcdef".StartsWith ("aBc", StringComparison.InvariantCultureIgnoreCase)

IndexOf returns the first position of a given character or substring (or −1 if the
substring isn’t found):

Console.WriteLine ("abcde".IndexOf ("cd"));   // 2

IndexOf is also overloaded to accept a startPosition (an index from which to
begin searching) as well as a StringComparison enum:

Console.WriteLine ("abcde abcde".IndexOf ("CD", 6,
                   StringComparison.CurrentCultureIgnoreCase));    // 8

LastIndexOf is like IndexOf, but it works backward through the string.

IndexOfAny returns the first matching position of any one of a set of characters:

Console.Write ("ab,cd ef".IndexOfAny (new char[] {' ', ','} ));       // 2
Console.Write ("pas5w0rd".IndexOfAny ("0123456789".ToCharArray() ));  // 3
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LastIndexOfAny does the same in the reverse direction.

Manipulating strings
Because String is immutable, all the methods that “manipulate” a string return a
new one, leaving the original untouched (the same goes for when you reassign a
string variable).

Substring extracts a portion of a string:

string left3 = "12345".Substring (0, 3);     // left3 = "123";
string mid3  = "12345".Substring (1, 3);     // mid3 = "234";

If you omit the length, you get the remainder of the string:

string end3  = "12345".Substring (2);        // end3 = "345";

Insert and Remove insert or remove characters at a specified position:

string s1 = "helloworld".Insert (5, ", ");    // s1 = "hello, world"
string s2 = s1.Remove (5, 2);                 // s2 = "helloworld";

PadLeft and PadRight pad a string to a given length with a specified character (or a
space if unspecified):

Console.WriteLine ("12345".PadLeft (9, '*'));  // ****12345
Console.WriteLine ("12345".PadLeft (9));       //     12345

If the input string is longer than the padding length, the original string is returned
unchanged.

TrimStart and TrimEnd remove specified characters from the beginning or end of
a string; Trim does both. By default, these functions remove whitespace characters
(including spaces, tabs, new lines, and Unicode variations of these):

Console.WriteLine ("  abc \t\r\n ".Trim().Length);   // 3

Replace replaces all (non-overlapping) occurrences of a particular character or
substring:

Console.WriteLine ("to be done".Replace (" ", " | ") );  // to | be | done
Console.WriteLine ("to be done".Replace (" ", "")    );  // tobedone

ToUpper and ToLower return uppercase and lowercase versions of the input string.
By default, they honor the user’s current language settings; ToUpperInvariant and
ToLowerInvariant always apply English alphabet rules.

Splitting and joining strings
Split divides a string into pieces:

string[] words = "The quick brown fox".Split();

foreach (string word in words)
  Console.Write (word + "|");    // The|quick|brown|fox|
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By default, Split uses whitespace characters as delimiters; it’s also overloaded to
accept a params array of char or string delimiters. Split also optionally accepts a
StringSplitOptions enum, which has an option to remove empty entries: this is
useful when words are separated by several delimiters in a row.

The static Join method does the reverse of Split. It requires a delimiter and string
array:

string[] words = "The quick brown fox".Split();
string together = string.Join (" ", words);      // The quick brown fox

The static Concat method is similar to Join but accepts only a params string
array and applies no separator. Concat is exactly equivalent to the + operator (the
compiler, in fact, translates + to Concat):

string sentence     = string.Concat ("The", " quick", " brown", " fox");
string sameSentence = "The" + " quick" + " brown" + " fox";

String.Format and composite format strings
The static Format method provides a convenient way to build strings that embed
variables. The embedded variables (or values) can be of any type; the Format simply
calls ToString on them.

The master string that includes the embedded variables is called a composite for‐
mat string. When calling String.Format, you provide a composite format string
followed by each of the embedded variables:

string composite = "It's {0} degrees in {1} on this {2} morning";
string s = string.Format (composite, 35, "Perth", DateTime.Now.DayOfWeek);

// s == "It's 35 degrees in Perth on this Friday morning"

(And that’s Celsius!)

We can use interpolated string literals to the same effect (see “String Type” on page
58). Just precede the string with the $ symbol and put the expressions in braces:

string s = $"It's hot this {DateTime.Now.DayOfWeek} morning";

Each number in curly braces is called a format item. The number corresponds to the
argument position and is optionally followed by:

• A comma and a minimum width to apply•
• A colon and a format string•

The minimum width is useful for aligning columns. If the value is negative, the data
is left-aligned; otherwise, it’s right-aligned:
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string composite = "Name={0,-20} Credit Limit={1,15:C}";

Console.WriteLine (string.Format (composite, "Mary", 500));
Console.WriteLine (string.Format (composite, "Elizabeth", 20000));

Here’s the result:

Name=Mary                 Credit Limit=        $500.00
Name=Elizabeth            Credit Limit=     $20,000.00

Here’s the equivalent without using string.Format:

string s = "Name=" + "Mary".PadRight (20) +
           " Credit Limit=" + 500.ToString ("C").PadLeft (15);

The credit limit is formatted as currency by virtue of the "C" format string. We
describe format strings in detail in “Formatting and Parsing” on page 317.

Comparing Strings
In comparing two values, .NET differentiates the concepts of equality comparison
and order comparison. Equality comparison tests whether two instances are seman‐
tically the same; order comparison tests which of two (if any) instances comes first
when arranging them in ascending or descending sequence.

Equality comparison is not a subset of order comparison; the
two systems have different purposes. It’s legal, for instance, to
have two unequal values in the same ordering position. We
resume this topic in “Equality Comparison” on page 226.

For string equality comparison, you can use the == operator or one of string’s
Equals methods. The latter are more versatile because they allow you to specify
options such as case insensitivity.

Another difference is that == does not work reliably on strings
if the variables are cast to the object type. We explain why
this is so in “Equality Comparison” on page 226.

For string order comparison, you can use either the CompareTo instance method
or the static Compare and CompareOrdinal methods. These return a positive or
negative number, or zero, depending on whether the first value comes after, before,
or alongside the second.

Before going into the details of each, we need to examine .NET’s underlying string
comparison algorithms.

Ordinal versus culture comparison
There are two basic algorithms for string comparison: ordinal and culture sensitive.
Ordinal comparisons interpret characters simply as numbers (according to their
numeric Unicode value); culture-sensitive comparisons interpret characters with
reference to a particular alphabet. There are two special cultures: the “current cul‐
ture,” which is based on settings picked up from the computer’s control panel, and
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the “invariant culture,” which is the same on every computer (and closely matches
American culture).

For equality comparison, both ordinal and culture-specific algorithms are useful.
For ordering, however, culture-specific comparison is nearly always preferable: to
order strings alphabetically, you need an alphabet. Ordinal relies on the numeric
Unicode point values, which happen to put English characters in alphabetical order
—but even then, not exactly as you might expect. For example, assuming case
sensitivity, consider the strings "Atom", "atom", and "Zamia". The invariant culture
puts them in the following order:

"atom", "Atom", "Zamia"

Ordinal arranges them instead as follows:

"Atom", "Zamia", "atom"

This is because the invariant culture encapsulates an alphabet, which considers
uppercase characters adjacent to their lowercase counterparts (aAbBcCdD...). The
ordinal algorithm, however, puts all the uppercase characters first, and then all
lowercase characters (A...Z, a...z). This is essentially a throwback to the ASCII
character set invented in the 1960s.

String equality comparison
Despite ordinal’s limitations, string’s == operator always performs ordinal case-
sensitive comparison. The same goes for the instance version of string.Equals
when called without arguments; this defines the “default” equality comparison
behavior for the string type.

The ordinal algorithm was chosen for string’s == and Equals
functions because it’s both highly efficient and deterministic.
String equality comparison is considered fundamental and is
performed far more frequently than order comparison.
A “strict” notion of equality is also consistent with the general
use of the == operator.

The following methods allow culture-aware or case-insensitive comparisons:

public bool Equals (string value, StringComparison comparisonType);

public static bool Equals (string a, string b,
                           StringComparison comparisonType);

The static version is advantageous in that it still works if one or both of the strings
are null. StringComparison is an enum defined as follows:

public enum StringComparison
{
  CurrentCulture,               // Case-sensitive
  CurrentCultureIgnoreCase,
  InvariantCulture,             // Case-sensitive
  InvariantCultureIgnoreCase,
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  Ordinal,                      // Case-sensitive
  OrdinalIgnoreCase
}

For example:

Console.WriteLine (string.Equals ("foo", "FOO",
                   StringComparison.OrdinalIgnoreCase));   // True

Console.WriteLine ("ṻ" == "ǖ");                            // False

Console.WriteLine (string.Equals ("ṻ", "ǖ",
                   StringComparison.CurrentCulture));      // ?

(The result of the third example is determined by the computer’s current language
settings.)

String order comparison
String’s CompareTo instance method performs culture-sensitive, case-sensitive order
comparison. Unlike the == operator, CompareTo does not use ordinal comparison:
for ordering, a culture-sensitive algorithm is much more useful. Here’s the method’s
definition:

public int CompareTo (string strB);

The CompareTo instance method implements the generic
IComparable interface, a standard comparison protocol used
across the .NET libraries. This means string’s CompareTo
defines the default ordering behavior of strings in such appli‐
cations as sorted collections, for instance. For more informa‐
tion on IComparable, see “Order Comparison” on page 355.

For other kinds of comparison, you can call the static Compare and CompareOrdinal
methods:

public static int Compare (string strA, string strB,
                           StringComparison comparisonType);

public static int Compare (string strA, string strB, bool ignoreCase,
                           CultureInfo culture);

public static int Compare (string strA, string strB, bool ignoreCase);

public static int CompareOrdinal (string strA, string strB);

The last two methods are simply shortcuts for calling the first two methods.

All of the order comparison methods return a positive number, a negative number,
or zero depending on whether the first value comes after, before, or alongside the
second value:

Console.WriteLine ("Boston".CompareTo ("Austin"));    // 1
Console.WriteLine ("Boston".CompareTo ("Boston"));    // 0
Console.WriteLine ("Boston".CompareTo ("Chicago"));   // -1
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Console.WriteLine ("ṻ".CompareTo ("ǖ"));              // 1
Console.WriteLine ("foo".CompareTo ("FOO"));          // -1

The following performs a case-insensitive comparison using the current culture:

Console.WriteLine (string.Compare ("foo", "FOO", true));   // 0

By supplying a CultureInfo object, you can plug in any alphabet: 

// CultureInfo is defined in the System.Globalization namespace

CultureInfo german = CultureInfo.GetCultureInfo ("de-DE");
int i = string.Compare ("Müller", "Muller", false, german);

StringBuilder
The StringBuilder class (System.Text namespace) represents a mutable (editable)
string. With a StringBuilder, you can Append, Insert, Remove, and Replace sub‐
strings without replacing the whole StringBuilder.

StringBuilder’s constructor optionally accepts an initial string value as well as a
starting size for its internal capacity (default is 16 characters). If you go beyond this,
StringBuilder automatically resizes its internal structures to accommodate (at a
slight performance cost) up to its maximum capacity (default is int.MaxValue).

A popular use of StringBuilder is to build up a long string by repeatedly calling
Append. This approach is much more efficient than repeatedly concatenating ordi‐
nary string types:

StringBuilder sb = new StringBuilder();
for (int i = 0; i < 50; i++) sb.Append(i).Append(",");

To get the final result, call ToString():

Console.WriteLine (sb.ToString());

0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,
27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,

AppendLine performs an Append that adds a new line sequence ("\r\n" in Win‐
dows). AppendFormat accepts a composite format string, just like String.Format.

In addition to the Insert, Remove, and Replace methods (Replace works like
string’s Replace), StringBuilder defines a Length property and a writable indexer
for getting/setting individual characters.

To clear the contents of a StringBuilder, either instantiate a new one or set its
Length to zero.
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Setting a StringBuilder’s Length to zero doesn’t shrink its
internal capacity. So, if the StringBuilder previously con‐
tained one million characters, it will continue to occupy
around two megabytes of memory after zeroing its Length.
If you want to release the memory, you must create a new
StringBuilder and allow the old one to drop out of scope
(and be garbage-collected).

Text Encodings and Unicode
A character set is an allocation of characters, each with a numeric code, or code
point. There are two character sets in common use: Unicode and ASCII. Unicode
has an address space of approximately one million characters, of which about
100,000 are currently allocated. Unicode covers most spoken world languages as
well as some historical languages and special symbols. The ASCII set is simply the
first 128 characters of the Unicode set, which covers most of what you see on a
US-style keyboard. ASCII predates Unicode by 30 years and is still sometimes used
for its simplicity and efficiency: each character is represented by one byte.

The .NET type system is designed to work with the Unicode character set. ASCII is
implicitly supported, though, by virtue of being a subset of Unicode.

A text encoding maps characters from their numeric code point to a binary repre‐
sentation. In .NET, text encodings come into play primarily when dealing with text
files or streams. When you read a text file into a string, a text encoder translates
the file data from binary into the internal Unicode representation that the char
and string types expect. A text encoding can restrict what characters can be
represented as well as affect storage efficiency.

There are two categories of text encoding in .NET:

• Those that map Unicode characters to another character set•
• Those that use standard Unicode encoding schemes•

The first category contains legacy encodings such as IBM’s EBCDIC and 8-bit
character sets with extended characters in the upper-128 region that were popular
prior to Unicode (identified by a code page). The ASCII encoding is also in this
category: it encodes the first 128 characters and drops everything else. This category
contains the nonlegacy GB18030, as well, which is the mandatory standard for
applications written in China—or sold to China—since 2000.

In the second category are UTF-8, UTF-16, and UTF-32 (and the obsolete UTF-7).
Each differs in space efficiency. UTF-8 is the most space-efficient for most kinds of
text: it uses between one and four bytes to represent each character. The first 128
characters require only a single byte, making it compatible with ASCII. UTF-8 is the
most popular encoding for text files and streams (particularly on the internet), and
it is the default for stream input/output (I/O) in .NET (in fact, it’s the default for
almost everything that implicitly uses an encoding).
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UTF-16 uses one or two 16-bit words to represent each character. This is what .NET
uses internally to represent characters and strings. Some programs also write files in
UTF-16.

UTF-32 is the least space-efficient: it maps each code point directly to 32 bits, so
every character consumes four bytes. UTF-32 is rarely used for this reason. It does,
however, make random access very easy because every character takes an equal
number of bytes.

Obtaining an Encoding object
The Encoding class in System.Text is the common base type for classes that encap‐
sulate text encodings. There are several subclasses—their purpose is to encapsulate
families of encodings with similar features. The most common encodings can be
obtained through dedicated static properties on Encoding:

Encoding name Static property on Encoding

UTF-8 Encoding.UTF8

UTF-16 Encoding.Unicode (not UTF16)

UTF-32 Encoding.UTF32

ASCII Encoding.ASCII

You can obtain other encodings by calling Encoding.GetEncoding with a standard
Internet Assigned Numbers Authority (IANA) Character Set name:

// In .NET 5+ and .NET Core, you must first call RegisterProvider:
Encoding.RegisterProvider (CodePagesEncodingProvider.Instance);

Encoding chinese = Encoding.GetEncoding ("GB18030");

The static GetEncodings method returns a list of all supported encodings along
with their standard IANA names:

foreach (EncodingInfo info in Encoding.GetEncodings())
  Console.WriteLine (info.Name);

The other way to obtain an encoding is to directly instantiate an encoding class.
Doing so allows you to set various options via constructor arguments, including:

• Whether to throw an exception if an invalid byte sequence is encountered•
when decoding. The default is false.

• Whether to encode/decode UTF-16/UTF-32 with the most significant bytes•
first (big endian) or the least significant bytes first (little endian). The default is
little endian, the standard on the Windows operating system.

• Whether to emit a byte-order mark (a prefix that indicates endianness).•
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Encoding for file and stream I/O
The most common application for an Encoding object is to control how text is read
and written to a file or stream. For example, the following writes “Testing…” to a file
called data.txt in UTF-16 encoding:

System.IO.File.WriteAllText ("data.txt", "Testing...", Encoding.Unicode);

If you omit the final argument, WriteAllText applies the ubiquitous UTF-8 encod‐
ing.

UTF-8 is the default text encoding for all file and stream I/O.

We resume this subject in Chapter 15, in “Stream Adapters” on page 709.

Encoding to byte arrays
You can also use an Encoding object to go to and from a byte array. The GetBytes
method converts from string to byte[] with the given encoding; GetString con‐
verts from byte[] to string:

byte[] utf8Bytes  = System.Text.Encoding.UTF8.GetBytes    ("0123456789");
byte[] utf16Bytes = System.Text.Encoding.Unicode.GetBytes ("0123456789");
byte[] utf32Bytes = System.Text.Encoding.UTF32.GetBytes   ("0123456789");

Console.WriteLine (utf8Bytes.Length);    // 10
Console.WriteLine (utf16Bytes.Length);   // 20
Console.WriteLine (utf32Bytes.Length);   // 40

string original1 = System.Text.Encoding.UTF8.GetString    (utf8Bytes);
string original2 = System.Text.Encoding.Unicode.GetString (utf16Bytes);
string original3 = System.Text.Encoding.UTF32.GetString   (utf32Bytes);

Console.WriteLine (original1);          // 0123456789
Console.WriteLine (original2);          // 0123456789
Console.WriteLine (original3);          // 0123456789

UTF-16 and surrogate pairs
Recall that .NET stores characters and strings in UTF-16. Because UTF-16 requires
one or two 16-bit words per character, and a char is only 16 bits in length,
some Unicode characters require two chars to represent. This has a couple of
consequences:

• A string’s Length property can be greater than its real character count.•

• A single char is not always enough to fully represent a Unicode character.•

Most applications ignore this because nearly all commonly used characters fit into
a section of Unicode called the Basic Multilingual Plane (BMP), which requires
only one 16-bit word in UTF-16. The BMP covers several dozen world languages
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and includes more than 30,000 Chinese characters. Excluded are characters of
some ancient languages, symbols for musical notation, some less common Chinese
characters, and most emojis.

If you need to support two-word characters, the following static methods in char
convert a 32-bit code point to a string of two chars, and back again:

string ConvertFromUtf32 (int utf32)
int    ConvertToUtf32   (char highSurrogate, char lowSurrogate)

Two-word characters are called surrogates. They are easy to spot because each word
is in the range 0xD800 to 0xDFFF. You can use the following static methods in char
to assist:

bool IsSurrogate     (char c)
bool IsHighSurrogate (char c)
bool IsLowSurrogate  (char c)
bool IsSurrogatePair (char highSurrogate, char lowSurrogate)

The StringInfo class in the System.Globalization namespace also provides a
range of methods and properties for working with two-word characters.

Characters outside the BMP typically require special fonts and have limited operat‐
ing system support.

Dates and Times
The following immutable structs in the System namespace do the job of represent‐
ing dates and times:

DateTime, DateTimeOffset, TimeSpan, DateOnly, TimeOnly

C# doesn’t define any special keywords that map to these types.

TimeSpan
A TimeSpan represents an interval of time—or a time of the day. In the latter role,
it’s simply the “clock” time (without the date), which is equivalent to the time since
midnight, assuming no daylight saving transition. A TimeSpan has a resolution of
100 ns, has a maximum value of about 10 million days, and can be positive or
negative.

There are three ways to construct a TimeSpan:

• Through one of the constructors•

• By calling one of the static From… methods•

• By subtracting one DateTime from another•
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Here are the constructors:

public TimeSpan (int hours, int minutes, int seconds);
public TimeSpan (int days, int hours, int minutes, int seconds);
public TimeSpan (int days, int hours, int minutes, int seconds,
                                                   int milliseconds);
public TimeSpan (int days, int hours, int minutes, int seconds,
                                      int milliseconds, int microseconds);
public TimeSpan (long ticks);   // Each tick = 100ns

The static From… methods are more convenient when you want to specify an
interval in just a single unit, such as minutes, hours, and so on:

public static TimeSpan FromDays (double value);
public static TimeSpan FromHours (double value);
public static TimeSpan FromMinutes (double value);
public static TimeSpan FromSeconds (double value);
public static TimeSpan FromMilliseconds (double value);
public static TimeSpan FromMicroseconds (double value);

For example:

Console.WriteLine (new TimeSpan (2, 30, 0));     // 02:30:00
Console.WriteLine (TimeSpan.FromHours (2.5));    // 02:30:00
Console.WriteLine (TimeSpan.FromHours (-2.5));   // -02:30:00

TimeSpan overloads the < and > operators as well as the + and - operators. The
following expression evaluates to a TimeSpan of 2.5 hours:

TimeSpan.FromHours(2) + TimeSpan.FromMinutes(30);

The next expression evaluates to one second short of 10 days:

TimeSpan.FromDays(10) - TimeSpan.FromSeconds(1);   // 9.23:59:59

Using this expression, we can illustrate the integer properties Days, Hours, Minutes,
Seconds, and Milliseconds:

TimeSpan nearlyTenDays = TimeSpan.FromDays(10) - TimeSpan.FromSeconds(1);

Console.WriteLine (nearlyTenDays.Days);          // 9
Console.WriteLine (nearlyTenDays.Hours);         // 23
Console.WriteLine (nearlyTenDays.Minutes);       // 59
Console.WriteLine (nearlyTenDays.Seconds);       // 59
Console.WriteLine (nearlyTenDays.Milliseconds);  // 0

In contrast, the Total... properties return values of type double describing the entire
time span:

Console.WriteLine (nearlyTenDays.TotalDays);          // 9.99998842592593
Console.WriteLine (nearlyTenDays.TotalHours);         // 239.999722222222
Console.WriteLine (nearlyTenDays.TotalMinutes);       // 14399.9833333333
Console.WriteLine (nearlyTenDays.TotalSeconds);       // 863999
Console.WriteLine (nearlyTenDays.TotalMilliseconds);  // 863999000

The static Parse method does the opposite of ToString, converting a string to
a TimeSpan. TryParse does the same but returns false rather than throwing an
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exception if the conversion fails. The XmlConvert class also provides TimeSpan/
string conversion methods that follow standard XML formatting protocols.

The default value for a TimeSpan is TimeSpan.Zero.

TimeSpan can also be used to represent the time of the day (the elapsed time since
midnight). To obtain the current time of day, call DateTime.Now.TimeOfDay.

DateTime and DateTimeOffset
DateTime and DateTimeOffset are immutable structs for representing a date and,
optionally, a time. They have a resolution of 100 ns and a range covering the years
0001 through 9999.

DateTimeOffset is functionally similar to DateTime. Its distinguishing feature is
that it also stores a Coordinated Universal Time (UTC) offset; this allows more
meaningful results when comparing values across different time zones.

Choosing between DateTime and DateTimeOffset
DateTime and DateTimeOffset differ in how they handle time zones. A DateTime
incorporates a three-state flag indicating whether the DateTime is relative to the
following:

• The local time on the current computer•
• UTC (the modern equivalent of Greenwich Mean Time)•
• Unspecified•

A DateTimeOffset is more specific—it stores the offset from UTC as a TimeSpan:

July 01 2019 03:00:00 -06:00

This influences equality comparisons, which is the main factor in choosing between
DateTime and DateTimeOffset. Specifically:

• DateTime ignores the three-state flag in comparisons and considers two values•
equal if they have the same year, month, day, hour, minute, and so on.

• DateTimeOffset considers two values equal if they refer to the same point in•
time.

Daylight Saving Time can make this distinction important
even if your application doesn’t need to handle multiple geo‐
graphic time zones.

So, DateTime considers the following two values different, whereas DateTimeOffset
considers them equal:

July 01 2019 09:00:00 +00:00 (GMT)
July 01 2019 03:00:00 -06:00 (local time, Central America)
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In most cases, DateTimeOffset’s equality logic is preferable. For example, in calcu‐
lating which of two international events is more recent, a DateTimeOffset implicitly
gives the correct answer. Similarly, a hacker plotting a Distributed Denial of Service
attack would reach for a DateTimeOffset! To do the same with DateTime requires
standardizing on a single time zone (typically UTC) throughout your application.
This is problematic for two reasons:

• To be friendly to the end user, UTC DateTimes require explicit conversion to•
local time prior to formatting.

• It’s easy to forget and incorporate a local DateTime.•

DateTime is better, though, at specifying a value relative to the local computer at
runtime—for example, if you want to schedule an archive at each of your interna‐
tional offices for next Sunday, at 3 A.M. local time (when there’s least activity). Here,
DateTime would be more suitable because it would respect each site’s local time.

Internally, DateTimeOffset uses a short integer to store the
UTC offset in minutes. It doesn’t store any regional informa‐
tion, so there’s nothing present to indicate whether an offset of
+08:00, for instance, refers to Singapore time or Perth time.

We revisit time zones and equality comparison in more depth in “Dates and Time
Zones” on page 312.

SQL Server 2008 introduced direct support for DateTimeOff
set through a new data type of the same name.

Constructing a DateTime
DateTime defines constructors that accept integers for the year, month, and day—
and optionally, the hour, minute, second, millisecond (and microsecond, from .NET
7):

public DateTime (int year, int month, int day);

public DateTime (int year, int month, int day,
                 int hour, int minute, int second, int millisecond);

If you specify only a date, the time is implicitly set to midnight (0:00).

The DateTime constructors also allow you to specify a DateTimeKind—an enum
with the following values:

Unspecified, Local, Utc

This corresponds to the three-state flag described in the preceding section. Unspeci
fied is the default, and it means that the DateTime is time-zone-agnostic. Local
means relative to the local time zone on the current computer. A local DateTime
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does not include information about which particular time zone it refers to, or, unlike
DateTimeOffset, the numeric offset from UTC.

A DateTime’s Kind property returns its DateTimeKind.

DateTime’s constructors are also overloaded to accept a Calendar object, as well.
This allows you to specify a date using any of the Calendar subclasses defined in
System.Globalization:

DateTime d = new DateTime (5767, 1, 1,
                          new System.Globalization.HebrewCalendar());

Console.WriteLine (d);    // 12/12/2006 12:00:00 AM

(The formatting of the date in this example depends on your computer’s control
panel settings.) A DateTime always uses the default Gregorian calendar—this exam‐
ple, a one-time conversion, takes place during construction. To perform computa‐
tions using another calendar, you must use the methods on the Calendar subclass
itself.

You can also construct a DateTime with a single ticks value of type long, where ticks
is the number of 100-ns intervals from midnight 01/01/0001.

For interoperability, DateTime provides the static FromFileTime and FromFileTi
meUtc methods for converting from a Windows file time (specified as a long)
and FromOADate for converting from an OLE automation date/time (specified as a
double).

To construct a DateTime from a string, call the static Parse or ParseExact method.
Both methods accept optional flags and format providers; ParseExact also accepts
a format string. We discuss parsing in greater detail in “Formatting and Parsing” on
page 317.

Constructing a DateTimeOffset
DateTimeOffset has a similar set of constructors. The difference is that you also
specify a UTC offset as a TimeSpan:

public DateTimeOffset (int year, int month, int day,
                       int hour, int minute, int second,
                       TimeSpan offset);

public DateTimeOffset (int year, int month, int day,
                       int hour, int minute, int second, int millisecond,
                       TimeSpan offset);

The TimeSpan must amount to a whole number of minutes; otherwise, an exception
is thrown.

DateTimeOffset also has constructors that accept a Calendar object, a long ticks
value, and static Parse and ParseExact methods that accept a string.
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You can construct a DateTimeOffset from an existing DateTime either by using
these constructors:

public DateTimeOffset (DateTime dateTime);
public DateTimeOffset (DateTime dateTime, TimeSpan offset);

or with an implicit cast:

DateTimeOffset dt = new DateTime (2000, 2, 3);

The implicit cast from DateTime to DateTimeOffset is handy
because most of the .NET BCL supports DateTime—not Date
TimeOffset.

If you don’t specify an offset, it’s inferred from the DateTime value using these rules:

• If the DateTime has a DateTimeKind of Utc, the offset is zero.•

• If the DateTime has a DateTimeKind of Local or Unspecified (the default), the•
offset is taken from the current local time zone.

To convert in the other direction, DateTimeOffset provides three properties that
return values of type DateTime:

• The UtcDateTime property returns a DateTime in UTC time.•

• The LocalDateTime property returns a DateTime in the current local time zone•
(converting it if necessary).

• The DateTime property returns a DateTime in whatever zone it was specified,•
with a Kind of Unspecified (i.e., it returns the UTC time plus the offset).

The current DateTime/DateTimeOffset
Both DateTime and DateTimeOffset have a static Now property that returns the
current date and time:

Console.WriteLine (DateTime.Now);         // 11/11/2019 1:23:45 PM
Console.WriteLine (DateTimeOffset.Now);   // 11/11/2019 1:23:45 PM -06:00

DateTime also provides a Today property that returns just the date portion:

Console.WriteLine (DateTime.Today);       // 11/11/2019 12:00:00 AM

The static UtcNow property returns the current date and time in UTC:

Console.WriteLine (DateTime.UtcNow);        // 11/11/2019 7:23:45 AM
Console.WriteLine (DateTimeOffset.UtcNow);  // 11/11/2019 7:23:45 AM +00:00

The precision of all these methods depends on the operating system and is typically
in the 10 to 20 ms region.
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Working with dates and times
DateTime and DateTimeOffset provide a similar set of instance properties that
return various date/time elements:

DateTime dt = new DateTime (2000, 2, 3,
                            10, 20, 30);

Console.WriteLine (dt.Year);         // 2000
Console.WriteLine (dt.Month);        // 2
Console.WriteLine (dt.Day);          // 3
Console.WriteLine (dt.DayOfWeek);    // Thursday
Console.WriteLine (dt.DayOfYear);    // 34

Console.WriteLine (dt.Hour);         // 10
Console.WriteLine (dt.Minute);       // 20
Console.WriteLine (dt.Second);       // 30
Console.WriteLine (dt.Millisecond);  // 0
Console.WriteLine (dt.Ticks);        // 630851700300000000
Console.WriteLine (dt.TimeOfDay);    // 10:20:30  (returns a TimeSpan)

DateTimeOffset also has an Offset property of type TimeSpan.

Both types provide the following instance methods to perform computations (most
accept an argument of type double or int):

AddYears  AddMonths   AddDays
AddHours  AddMinutes  AddSeconds  AddMilliseconds  AddTicks

These all return a new DateTime or DateTimeOffset, and they take into account
such things as leap years. You can pass in a negative value to subtract.

The Add method adds a TimeSpan to a DateTime or DateTimeOffset. The + operator
is overloaded to do the same job:

TimeSpan ts = TimeSpan.FromMinutes (90);
Console.WriteLine (dt.Add (ts));
Console.WriteLine (dt + ts);             // same as above

You can also subtract a TimeSpan from a DateTime/DateTimeOffset and subtract
one DateTime/DateTimeOffset from another. The latter gives you a TimeSpan:

DateTime thisYear = new DateTime (2015, 1, 1);
DateTime nextYear = thisYear.AddYears (1);
TimeSpan oneYear = nextYear - thisYear;

Formatting and parsing datetimes
Calling ToString on a DateTime formats the result as a short date (all numbers)
followed by a long time (including seconds); for example:

11/11/2019 11:50:30 AM

The operating system’s control panel, by default, determines such things as whether
the day, month, or year comes first, the use of leading zeros, and whether 12- or
24-hour time is used.
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Calling ToString on a DateTimeOffset is the same, except that the offset is also
returned:

11/11/2019 11:50:30 AM -06:00

The ToShortDateString and ToLongDateString methods return just the date por‐
tion. The long date format is also determined by the control panel; an example
is “Wednesday, 11 November 2015.” ToShortTimeString and ToLongTimeString
return just the time portion, such as 17:10:10 (the former excludes seconds).

These four just-described methods are actually shortcuts to four different format
strings. ToString is overloaded to accept a format string and provider, allowing you
to specify a wide range of options and control how regional settings are applied. We
describe this in “Formatting and Parsing” on page 317.

DateTimes and DateTimeOffsets can be misparsed if the cul‐
ture settings differ from those in force when formatting takes
place. You can avoid this problem by using ToString in con‐
junction with a format string that ignores culture settings
(such as “o”):

DateTime dt1 = DateTime.Now;
string cannotBeMisparsed = dt1.ToString ("o");
DateTime dt2 = DateTime.Parse (cannotBeMisparsed);

The static Parse/TryParse and ParseExact/TryParseExact methods do the reverse
of ToString, converting a string to a DateTime or DateTimeOffset. These methods
are also overloaded to accept a format provider. The Try* methods return false
instead of throwing a FormatException.

Null DateTime and DateTimeOffset values
Because DateTime and DateTimeOffset are structs, they are not intrinsically nulla‐
ble. When you need nullability, there are two ways around this:

• Use a Nullable type (i.e., DateTime? or DateTimeOffset?).•

• Use the static field DateTime.MinValue or DateTimeOffset.MinValue (the•
default values for these types).

A nullable type is usually the best approach because the compiler helps to prevent
mistakes. DateTime.MinValue is useful for backward compatibility with code writ‐
ten prior to C# 2.0 (when nullable value types were introduced).

Calling ToUniversalTime or ToLocalTime on a DateTime.Min
Value can result in it no longer being DateTime.MinValue
(depending on which side of GMT you are on). If you’re
right on GMT (England, outside daylight saving), the problem
won’t arise at all because local and UTC times are the same.
This is your compensation for the English winter! 

Dates and Times | 311

.N
E

T
Fund

am
entals



DateOnly and TimeOnly
The DateOnly and TimeOnly structs (from .NET 6) exist for when you only want to
represent a date or time.

DateOnly is similar to DateTime, but without a time component. DateOnly also lacks
DateTimeKind; in effect, it’s always Unspecified and has no concept of Local or
Utc. The historical alternative to DateOnly was to use DateTime with a zero time
(midnight). The difficulty with this approach is that equality comparisons fail when
a non-zero time find its way into your code.

TimeOnly is similar to DateTime, but without a date component. TimeOnly is
intended for capturing the time of day and is suitable for applications such as
recording alarm times or opening hours.

Dates and Time Zones
In this section, we examine in more detail how time zones influence DateTime and
DateTimeOffset. We also look at the TimeZoneInfo type, which provides informa‐
tion on time zone offsets and Daylight Saving Time.

DateTime and Time Zones
DateTime is simplistic in its handling of time zones. Internally, it stores a DateTime
using two pieces of information:

• A 62-bit number, indicating the number of ticks since 1/1/0001•

• A 2-bit enum, indicating the DateTimeKind (Unspecified, Local, or Utc)•

When you compare two DateTime instances, only their ticks values are compared;
their DateTimeKinds are ignored:

DateTime dt1 = new DateTime (2000, 1, 1, 10, 20, 30, DateTimeKind.Local);
DateTime dt2 = new DateTime (2000, 1, 1, 10, 20, 30, DateTimeKind.Utc);
Console.WriteLine (dt1 == dt2);          // True
DateTime local = DateTime.Now;
DateTime utc = local.ToUniversalTime();
Console.WriteLine (local == utc);        // False

The instance methods ToUniversalTime/ToLocalTime convert to universal/local
time. These apply the computer’s current time zone settings and return a new
DateTime with a DateTimeKind of Utc or Local. No conversion happens if you call
ToUniversalTime on a DateTime that’s already Utc, or ToLocalTime on a DateTime
that’s already Local. You will get a conversion, however, if you call ToUniversal
Time or ToLocalTime on a DateTime that’s Unspecified.

312 | Chapter 6: .NET Fundamentals



You can construct a DateTime that differs from another only in Kind with the static
DateTime.SpecifyKind method:

DateTime d = new DateTime (2015, 12, 12);  // Unspecified
DateTime utc = DateTime.SpecifyKind (d, DateTimeKind.Utc);
Console.WriteLine (utc);            // 12/12/2015 12:00:00 AM

DateTimeOffset and Time Zones
Internally, DateTimeOffset comprises a DateTime field whose value is always in
UTC, and a 16-bit integer field for the UTC offset in minutes. Comparisons look
only at the (UTC) DateTime; the Offset is used primarily for formatting.

The ToUniversalTime/ToLocalTime methods return a DateTimeOffset represent‐
ing the same point in time but with a UTC or local offset. Unlike with DateTime,
these methods don’t affect the underlying date/time value, only the offset:

DateTimeOffset local = DateTimeOffset.Now;
DateTimeOffset utc   = local.ToUniversalTime();

Console.WriteLine (local.Offset);   // -06:00:00 (in Central America)
Console.WriteLine (utc.Offset);     // 00:00:00

Console.WriteLine (local == utc);                 // True

To include the Offset in the comparison, you must use the EqualsExact method:

Console.WriteLine (local.EqualsExact (utc));      // False

TimeZoneInfo
The TimeZoneInfo class provides information on time zone names, UTC offsets,
and Daylight Saving Time rules.

TimeZone
The static TimeZone.CurrentTimeZone method returns a TimeZone

TimeZone zone = TimeZone.CurrentTimeZone;
Console.WriteLine (zone.StandardName);      // Pacific Standard Time
Console.WriteLine (zone.DaylightName);      // Pacific Daylight Time

The GetDaylightChanges method returns specific Daylight Saving Time informa‐
tion for a given year:

DaylightTime day = zone.GetDaylightChanges (2019);
Console.WriteLine (day.Start.ToString ("M"));       // 10 March
Console.WriteLine (day.End.ToString ("M"));         // 03 November
Console.WriteLine (day.Delta);                      // 01:00:00
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TimeZoneInfo
The static TimeZoneInfo.Local method returns a TimeZoneInfo object based on the
current local settings. The following demonstrates the result if run in California:

TimeZoneInfo zone = TimeZoneInfo.Local;
Console.WriteLine (zone.StandardName);      // Pacific Standard Time
Console.WriteLine (zone.DaylightName);      // Pacific Daylight Time

The IsDaylightSavingTime and GetUtcOffset methods work as follows:

DateTime dt1 = new DateTime (2019, 1, 1);   // DateTimeOffset works, too
DateTime dt2 = new DateTime (2019, 6, 1);
Console.WriteLine (zone.IsDaylightSavingTime (dt1));     // True
Console.WriteLine (zone.IsDaylightSavingTime (dt2));     // False
Console.WriteLine (zone.GetUtcOffset (dt1));             // -08:00:00
Console.WriteLine (zone.GetUtcOffset (dt2));             // -07:00:00

You can obtain a TimeZoneInfo for any of the world’s time zones by calling Find
SystemTimeZoneById with the zone ID. We’ll switch to Western Australia for rea‐
sons that will soon become clear:

TimeZoneInfo wa = TimeZoneInfo.FindSystemTimeZoneById
                  ("W. Australia Standard Time");

Console.WriteLine (wa.Id);                   // W. Australia Standard Time
Console.WriteLine (wa.DisplayName);          // (GMT+08:00) Perth
Console.WriteLine (wa.BaseUtcOffset);        // 08:00:00
Console.WriteLine (wa.SupportsDaylightSavingTime);     // True

The Id property corresponds to the value passed to FindSystemTimeZoneById. The
static GetSystemTimeZones method returns all world time zones; hence, you can list
all valid zone ID strings as follows:

foreach (TimeZoneInfo z in TimeZoneInfo.GetSystemTimeZones())
  Console.WriteLine (z.Id);

You can also create a custom time zone by calling Time
ZoneInfo.CreateCustomTimeZone. Because TimeZoneInfo is
immutable, you must pass in all the relevant data as method
arguments.
You can serialize a predefined or custom time zone to
a (semi) human-readable string by calling ToSerialized
String—and deserialize it by calling TimeZoneInfo.FromSer
ializedString.

The static ConvertTime method converts a DateTime or DateTimeOffset from one
time zone to another. You can include either just a destination TimeZoneInfo, or
both source and destination TimeZoneInfo objects. You can also convert directly
from or to UTC with the methods ConvertTimeFromUtc and ConvertTimeToUtc.

For working with Daylight Saving Time, TimeZoneInfo provides the following addi‐
tional methods:
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• IsInvalidTime returns true if a DateTime is within the hour (or delta) that’s•
skipped when the clocks move forward.

• IsAmbiguousTime returns true if a DateTime or DateTimeOffset is within the•
hour (or delta) that’s repeated when the clocks move back.

• GetAmbiguousTimeOffsets returns an array of TimeSpans representing the•
valid offset choices for an ambiguous DateTime or DateTimeOffset.

You can’t obtain simple dates from a TimeZoneInfo indicating the start and end of
Daylight Saving Time. Instead, you must call GetAdjustmentRules, which returns a
declarative summary of all daylight saving rules that apply to all years. Each rule has
a DateStart and DateEnd indicating the date range within which the rule is valid:

foreach (TimeZoneInfo.AdjustmentRule rule in wa.GetAdjustmentRules())
  Console.WriteLine ("Rule: applies from " + rule.DateStart +
                                    " to " + rule.DateEnd);

Western Australia first introduced Daylight Saving Time in 2006, midseason (and
then rescinded it in 2009). This required a special rule for the first year; hence, there
are two rules:

Rule: applies from 1/01/2006 12:00:00 AM to 31/12/2006 12:00:00 AM
Rule: applies from 1/01/2007 12:00:00 AM to 31/12/2009 12:00:00 AM

Each AdjustmentRule has a DaylightDelta property of type TimeSpan (this is
one hour in almost every case) and properties called DaylightTransitionStart
and DaylightTransitionEnd. The latter two are of type TimeZoneInfo.Transition
Time, which has the following properties:

public bool IsFixedDateRule { get; }
public DayOfWeek DayOfWeek { get; }
public int Week { get; }
public int Day { get; }
public int Month { get; }
public DateTime TimeOfDay { get; }

A transition time is somewhat complicated in that it needs to represent both fixed
and floating dates. An example of a floating date is “the last Sunday in March.” Here
are the rules for interpreting a transition time:

1. If, for an end transition, IsFixedDateRule is true, Day is 1, Month is 1, and1.
TimeOfDay is DateTime.MinValue, there is no end to Daylight Saving Time in
that year (this can happen only in the southern hemisphere, upon the initial
introduction of daylight saving time to a region).

2. Otherwise, if IsFixedDateRule is true, the Month, Day, and TimeOfDay proper‐2.
ties determine the start or end of the adjustment rule.

3. Otherwise, if IsFixedDateRule is false, the Month, DayOfWeek, Week, and3.
TimeOfDay properties determine the start or end of the adjustment rule.
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In the last case, Week refers to the week of the month, with “5” meaning the last
week. We can demonstrate this by enumerating the adjustment rules for our wa time
zone:

foreach (TimeZoneInfo.AdjustmentRule rule in wa.GetAdjustmentRules())
{
  Console.WriteLine ("Rule: applies from " + rule.DateStart +
                                    " to " + rule.DateEnd);

  Console.WriteLine ("   Delta: " + rule.DaylightDelta);

  Console.WriteLine ("   Start: " + FormatTransitionTime
                                   (rule.DaylightTransitionStart, false));

  Console.WriteLine ("   End:   " + FormatTransitionTime
                                   (rule.DaylightTransitionEnd, true));
  Console.WriteLine();
}

In FormatTransitionTime, we honor the rules just described:

static string FormatTransitionTime (TimeZoneInfo.TransitionTime tt,
                                    bool endTime)
{
  if (endTime && tt.IsFixedDateRule
              && tt.Day == 1 && tt.Month == 1
              && tt.TimeOfDay == DateTime.MinValue)
    return "-";

  string s;
  if (tt.IsFixedDateRule)
    s = tt.Day.ToString();
  else
    s = "The " +
        "first second third fourth last".Split() [tt.Week - 1] +
        " " + tt.DayOfWeek + " in";

  return s + " " + DateTimeFormatInfo.CurrentInfo.MonthNames [tt.Month-1]
           + " at " + tt.TimeOfDay.TimeOfDay;
}

Daylight Saving Time and DateTime
If you use a DateTimeOffset or a UTC DateTime, equality comparisons are unimpe‐
ded by the effects of Daylight Saving Time. But with local DateTimes, daylight saving
can be problematic.

We can summarize the rules as follows:

• Daylight saving affects local time but not UTC time.•
• When the clocks turn back, comparisons that rely on time moving forward will•

break if (and only if) they use local DateTimes.
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• You can always reliably round-trip between UTC and local times (on the same•
computer)—even as the clocks turn back.

The IsDaylightSavingTime tells you whether a given local DateTime is subject to
Daylight Saving Time. UTC times always return false:

Console.Write (DateTime.Now.IsDaylightSavingTime());     // True or False
Console.Write (DateTime.UtcNow.IsDaylightSavingTime());  // Always False

Assuming dto is a DateTimeOffset, the following expression does the same:

dto.LocalDateTime.IsDaylightSavingTime

The end of Daylight Saving Time presents a particular complication for algorithms
that use local time, because when the clocks go back, the same hour (or more
precisely, Delta) repeats itself.

You can reliably compare any two DateTimes by first calling
ToUniversalTime on each. This strategy fails if (and only
if) exactly one of them has a DateTimeKind of Unspecified.
This potential for failure is another reason for favoring DateTi
meOffset.

Formatting and Parsing
Formatting means converting to a string; parsing means converting from a string.
The need to format or parse arises frequently in programming, in a variety of
situations. Hence, .NET provides a variety of mechanisms:

ToString and Parse
These methods provide default functionality for many types.

Format providers
These manifest as additional ToString (and Parse) methods that accept a
format string and/or a format provider. Format providers are highly flexible
and culture-aware. .NET includes format providers for the numeric types and
DateTime/DateTimeOffset.

XmlConvert

This is a static class with methods that format and parse while honoring XML
standards. XmlConvert is also useful for general-purpose conversion when you
need culture independence or you want to preempt misparsing. XmlConvert
supports the numeric types, bool, DateTime, DateTimeOffset, TimeSpan, and
Guid.

Type converters
These target designers and XAML parsers.

In this section, we discuss the first two mechanisms, focusing particularly on format
providers. We then describe XmlConvert, type converters, and other conversion
mechanisms.
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ToString and Parse
The simplest formatting mechanism is the ToString method. It gives meaningful
output on all simple value types (bool, DateTime, DateTimeOffset, TimeSpan, Guid,
and all the numeric types). For the reverse operation, each of these types defines a
static Parse method:

string s = true.ToString();     // s = "True"
bool b = bool.Parse (s);        // b = true

If the parsing fails, a FormatException is thrown. Many types also define a Try
Parse method, which returns false if the conversion fails rather than throwing an
exception:

bool failure = int.TryParse ("qwerty", out int i1);
bool success = int.TryParse ("123", out int i2);

If you don’t care about the output and want to test only whether parsing would
succeed, you can use a discard:

bool success = int.TryParse ("123", out int _);

If you anticipate an error, calling TryParse is faster and more elegant than calling
Parse in an exception handling block.

The Parse and TryParse methods on DateTime(Offset) and the numeric types
respect local culture settings; you can change this by specifying a CultureInfo
object. Specifying invariant culture is often a good idea. For instance, parsing
“1.234” into a double gives us 1234 in Germany:

Console.WriteLine (double.Parse ("1.234"));   // 1234  (In Germany)

This is because in Germany, the period indicates a thousands separator rather than a
decimal point. Specifying invariant culture fixes this:

double x = double.Parse ("1.234", CultureInfo.InvariantCulture);

The same applies when calling ToString():

string x = 1.234.ToString (CultureInfo.InvariantCulture);

From .NET 8, the .NET numeric and date/time types (as well
as other simple types) allow direct formatting and parsing of
UTF-8, via new TryFormat and Parse/TryParse methods that
operate on a byte array or Span<byte> (see Chapter 23). In
high-performance scenarios, this can be more efficient than
working with ordinary (UTF-16) strings and performing a
separate UTF-8 encoding/decoding.

Format Providers
Sometimes, you need more control over how formatting and parsing take place.
There are dozens of ways to format a DateTime(Offset), for instance. Format
providers allow extensive control over formatting and parsing, and are supported
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for numeric types and date/times. Format providers are also used by user interface
controls for formatting and parsing.

The gateway to using a format provider is IFormattable. All numeric types—and
DateTime(Offset)—implement this interface:

public interface IFormattable
{
  string ToString (string format, IFormatProvider formatProvider);
}

The first argument is the format string; the second is the format provider. The format
string provides instructions; the format provider determines how the instructions
are translated. For example:

NumberFormatInfo f = new NumberFormatInfo();
f.CurrencySymbol = "$$";
Console.WriteLine (3.ToString ("C", f));          // $$ 3.00

Here, "C" is a format string that indicates currency, and the NumberFormatInfo
object is a format provider that determines how currency—and other numeric
representations—are rendered. This mechanism allows for globalization.

All format strings for numbers and dates are listed in “Stan‐
dard Format Strings and Parsing Flags” on page 323.

If you specify a null format string or provider, a default is applied. The default
format provider is CultureInfo.CurrentCulture, which, unless reassigned, reflects
the computer’s runtime control panel settings. For example, on this computer:

Console.WriteLine (10.3.ToString ("C", null));  // $10.30

For convenience, most types overload ToString such that you can omit a null
provider:

Console.WriteLine (10.3.ToString ("C"));     // $10.30
Console.WriteLine (10.3.ToString ("F4"));    // 10.3000 (Fix to 4 D.P.)

Calling ToString on a DateTime(Offset) or a numeric type with no arguments is
equivalent to using a default format provider, with an empty format string.

.NET defines three format providers (all of which implement IFormatProvider):

NumberFormatInfo
DateTimeFormatInfo
CultureInfo

All enum types are also formattable, though there’s no special
IFormatProvider class.
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Format providers and CultureInfo
Within the context of format providers, CultureInfo acts as an indirection mecha‐
nism for the other two format providers, returning a NumberFormatInfo or Date
TimeFormatInfo object applicable to the culture’s regional settings.

In the following example, we request a specific culture (english language in Great
Britain):

CultureInfo uk = CultureInfo.GetCultureInfo ("en-GB");
Console.WriteLine (3.ToString ("C", uk));      // £3.00

This executes using the default NumberFormatInfo object applicable to the en-GB
culture.

The next example formats a DateTime with invariant culture. Invariant culture is
always the same, regardless of the computer’s settings:

DateTime dt = new DateTime (2000, 1, 2);
CultureInfo iv = CultureInfo.InvariantCulture;
Console.WriteLine (dt.ToString (iv));            // 01/02/2000 00:00:00
Console.WriteLine (dt.ToString ("d", iv));       // 01/02/2000

Invariant culture is based on American culture, with the fol‐
lowing differences:

• The currency symbol is ☼ instead of $.•

• Dates and times are formatted with leading zeros•
(though still with the month first).

• Time uses the 24-hour format rather than an AM/PM•
designator.

Using NumberFormatInfo or DateTimeFormatInfo
In the next example, we instantiate a NumberFormatInfo and change the group
separator from a comma to a space. We then use it to format a number to three
decimal places:

NumberFormatInfo f = new NumberFormatInfo ();
f.NumberGroupSeparator = " ";
Console.WriteLine (12345.6789.ToString ("N3", f));   // 12 345.679

The initial settings for a NumberFormatInfo or DateTimeFormatInfo are based on
the invariant culture. Sometimes, however, it’s more useful to choose a different
starting point. To do this, you can Clone an existing format provider:

NumberFormatInfo f = (NumberFormatInfo)
                      CultureInfo.CurrentCulture.NumberFormat.Clone();

A cloned format provider is always writable—even if the original was read-only.
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Composite formatting
Composite format strings allow you to combine variable substitution with format
strings. The static string.Format method accepts a composite format string (we
illustrated this in “String.Format and composite format strings” on page 296):

string composite = "Credit={0:C}";
Console.WriteLine (string.Format (composite, 500));   // Credit=$500.00

The Console class itself overloads its Write and WriteLine methods to accept
composite format strings, allowing us to shorten this example slightly:

Console.WriteLine ("Credit={0:C}", 500);   // Credit=$500.00

You can also append a composite format string to a StringBuilder (via AppendFor
mat), and to a TextWriter for I/O (see Chapter 15).

string.Format accepts an optional format provider. A simple application for this is
to call ToString on an arbitrary object while passing in a format provider:

string s = string.Format (CultureInfo.InvariantCulture, "{0}", someObject);

This is equivalent to the following:

string s;
if (someObject is IFormattable)
  s = ((IFormattable)someObject).ToString (null,
                                           CultureInfo.InvariantCulture);
else if (someObject == null)
  s = "";
else
  s = someObject.ToString();

Parsing with format providers
There’s no standard interface for parsing through a format provider. Instead, each
participating type overloads its static Parse (and TryParse) method to accept a
format provider, and optionally, a NumberStyles or DateTimeStyles enum.

NumberStyles and DateTimeStyles control how parsing works: they let you specify
such things as whether parentheses or a currency symbol can appear in the input
string. (By default, the answer to both questions is no.) For example:

int error = int.Parse ("(2)");   // Exception thrown

int minusTwo = int.Parse ("(2)", NumberStyles.Integer |
                                 NumberStyles.AllowParentheses);   // OK

decimal fivePointTwo = decimal.Parse ("£5.20", NumberStyles.Currency,
                       CultureInfo.GetCultureInfo ("en-GB"));

The next section lists all NumberStyles and DateTimeStyles members as well as the
default parsing rules for each type.
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IFormatProvider and ICustomFormatter
All format providers implement IFormatProvider:

public interface IFormatProvider { object GetFormat (Type formatType); }

The purpose of this method is to provide indirection—this is what allows Cultur
eInfo to defer to an appropriate NumberFormatInfo or DateTimeFormatInfo object
to do the work.

By implementing IFormatProvider—along with ICustomFormatter—you can also
write your own format provider that works in conjunction with existing types.
ICustomFormatter defines a single method, as follows:

string Format (string format, object arg, IFormatProvider formatProvider);

The following custom format provider writes numbers as words:

public class WordyFormatProvider : IFormatProvider, ICustomFormatter
{
  static readonly string[] _numberWords =
   "zero one two three four five six seven eight nine minus point".Split();

  IFormatProvider _parent;   // Allows consumers to chain format providers

  public WordyFormatProvider () : this (CultureInfo.CurrentCulture) { }
  public WordyFormatProvider (IFormatProvider parent) => _parent = parent;

  public object GetFormat (Type formatType)
  {
    if (formatType == typeof (ICustomFormatter)) return this;
    return null;
  }

  public string Format (string format, object arg, IFormatProvider prov)
  {
    // If it's not our format string, defer to the parent provider:
    if (arg == null || format != "W")
      return string.Format (_parent, "{0:" + format + "}", arg);

    StringBuilder result = new StringBuilder();
    string digitList = string.Format (CultureInfo.InvariantCulture,
                                      "{0}", arg);
    foreach (char digit in digitList)
    {
      int i = "0123456789-.".IndexOf (digit,
                                      StringComparison.InvariantCulture);
      if (i == -1) continue;
      if (result.Length > 0) result.Append (' ');
      result.Append (_numberWords[i]);
    }
    return result.ToString();
  }
}
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Notice that in the Format method, we used string.Format—with InvariantCul
ture—to convert the input number to a string. It would have been simpler just to
call ToString() on arg, but then CurrentCulture would have been used, instead.
The reason for needing the invariant culture is evident a few lines later:

int i = "0123456789-.".IndexOf (digit, StringComparison.InvariantCulture);

It’s critical here that the number string comprises only the characters 0123456789-.
and not any internationalized versions of these.

Here’s an example of using WordyFormatProvider:

double n = -123.45;
IFormatProvider fp = new WordyFormatProvider();
Console.WriteLine (string.Format (fp, "{0:C} in words is {0:W}", n));

// -$123.45 in words is minus one two three point four five

You can use custom format providers only in composite format strings.

Standard Format Strings and Parsing Flags
The standard format strings control how a numeric type or DateTime/DateTimeOff
set is converted to a string. There are two kinds of format strings:

Standard format strings
With these, you provide general guidance. A standard format string consists of
a single letter, followed, optionally, by a digit (whose meaning depends on the
letter). An example is "C" or "F2".

Custom format strings
With these, you micromanage every character with a template. An example is
"0:#.000E+00".

Custom format strings are unrelated to custom format providers.

Numeric Format Strings
Table 6-2 lists all standard numeric format strings.

Table 6-2. Standard numeric format strings

Letter Meaning Sample input Result Notes

G or g “General” 1.2345, "G"

0.00001, "G"

0.00001, "g"

1.2345, "G3"

12345, "G3"

1.2345

1E-05

1e-05

1.23

1.23E04

Switches to exponential notation
for small or large numbers.
G3 limits precision to three digits
in total (before + after point).

F Fixed point 2345.678, "F2"

2345.6, "F2"

2345.68

2345.60

F2 rounds to two decimal places.
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Letter Meaning Sample input Result Notes

N Fixed point with
group separator
(“Numeric”)

2345.678, "N2"

2345.6, "N2"

2,345.68

2,345.60

As above, with group (1,000s)
separator (details from format
provider).

D Pad with
leading zeros

123, "D5"

123, "D1"

00123

123

For integral types only.
D5 pads left to five digits; does
not truncate.

E or e Force
exponential
notation

56789, "E"

56789, "e"

56789, "E2"

5.678900E+004

5.678900e+004

5.68E+004

Six-digit default precision.

C Currency 1.2, "C"

1.2, "C4"

$1.20

$1.2000

C with no digit uses default
number of D.P. from format
provider.

P Percent .503, "P"

.503, "P0"

50.30%

50%

Uses symbol and layout from
format provider.
Decimal places can optionally be
overridden.

X or x Hexadecimal 47, "X"

47, "x"

47, "X4"

2F

2f

002F

X for uppercase hex digits; x for
lowercase hex digits.
Integrals only.

R or
G9/G17

Round-trip 1f / 3f, "R" 0.333333343 Use R for BigInteger, G17 for
double, or G9 for float.

Supplying no numeric format string (or a null or blank string) is equivalent to using
the "G" standard format string followed by no digit. This exhibits the following
behavior:

• Numbers smaller than 10−4 or larger than the type’s precision are expressed in•
exponential (scientific) notation.

• The two decimal places at the limit of float or double’s precision are rounded•
away to mask the inaccuracies inherent in conversion to decimal from their
underlying binary form.

The automatic rounding just described is usually beneficial
and goes unnoticed. However, it can cause trouble if you need
to round-trip a number—in other words, convert it to a string
and back again (maybe repeatedly) while preserving value
equality. For this reason, the R, G17, and G9 format strings
exist to circumvent this implicit rounding.

Table 6-3 lists custom numeric format strings.
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Table 6-3. Custom numeric format strings

Specifier Meaning Sample input Result Notes

# Digit
placeholder

12.345, ".##"

12.345, ".####"

12.35

12.345

Limits digits after D.P.

0 Zero
placeholder

12.345, ".00"

12.345, ".0000"

99, "000.00"

12.35

12.3450

099.00

As above, but also pads with
zeros before and after D.P.

. Decimal point Indicates D.P.
Actual symbol comes from
NumberFormatInfo.

, Group
separator

1234, 

"#,###,###"

1234, 

"0,000,000"

1,234

0,001,234

Symbol comes from Number
FormatInfo.

,

(as above)
Multiplier 1000000, "#,"

1000000, "#,,

1000

1

If comma is at end or before
D.P., it acts as a multiplier
—dividing result by 1,000,
1,000,000, etc.

% Percent
notation

0.6, "00%" 60% First multiplies by 100 and
then substitutes percent
symbol obtained from Num
berFormatInfo.

E0, e0, 

E+0, e+0 

E-0, e-0

Exponent
notation

1234, "0E0"

1234, "0E+0"

1234, "0.00E00"

1234, "0.00e00"

1E3

1E+3

1.23E03

1.23e03

\ Literal
character quote

50, @"\#0" #50 Use in conjunction with an @
prefix on the string—or use
\\

'xx''xx' Literal string
quote

50, "0 '...'" 50 ...

; Section
separator

15, "#;(#);zero" 15 (If positive)

-5, "#;(#);zero" (5) (If negative)

0, "#;(#);zero" zero (If zero)

Any other char Literal 35.2, "$0 . 00c" $35 . 20c

NumberStyles
Each numeric type defines a static Parse method that accepts a NumberStyles
argument. NumberStyles is a flags enum that lets you determine how the string is
read as it’s converted to a numeric type. It has the following combinable members:
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AllowLeadingWhite    AllowTrailingWhite
AllowLeadingSign     AllowTrailingSign
AllowParentheses     AllowDecimalPoint
AllowThousands       AllowExponent
AllowCurrencySymbol  AllowHexSpecifier

NumberStyles also defines these composite members:

None  Integer  Float  Number  HexNumber  Currency  Any

Except for None, all composite values include AllowLeadingWhite and Allow
TrailingWhite. Figure 6-1 shows their remaining makeup, with the most useful
three emphasized.

Figure 6-1. Composite NumberStyles

When you call Parse without specifying any flags, the defaults illustrated in Fig‐
ure 6-2 are applied.

Figure 6-2. Default parsing flags for numeric types
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If you don’t want the defaults shown in Figure 6-2, you must explicitly specify
NumberStyles:

int thousand = int.Parse ("3E8", NumberStyles.HexNumber);
int minusTwo = int.Parse ("(2)", NumberStyles.Integer |
                                 NumberStyles.AllowParentheses);
double aMillion = double.Parse ("1,000,000", NumberStyles.Any);
decimal threeMillion = decimal.Parse ("3e6", NumberStyles.Any);
decimal fivePointTwo = decimal.Parse ("$5.20", NumberStyles.Currency);

Because we didn’t specify a format provider, this example works with your local
currency symbol, group separator, decimal point, and so on. The next example is
hardcoded to work with the euro sign and a blank group separator for currencies:

NumberFormatInfo ni = new NumberFormatInfo();
ni.CurrencySymbol = "€";
ni.CurrencyGroupSeparator = " ";
double million = double.Parse ("€1 000 000", NumberStyles.Currency, ni);

Date/Time Format Strings
Format strings for DateTime/DateTimeOffset can be divided into two groups based
on whether they honor culture and format provider settings. Table 6-4 lists those
that do; Table 6-5 lists those that don’t. The sample output comes from formatting
the following DateTime (with invariant culture, in the case of Table 6-4):

new DateTime (2000, 1, 2,  17, 18, 19);

Table 6-4. Culture-sensitive date/time format strings

Format string Meaning Sample output

d Short date 01/02/2000

D Long date Sunday, 02 January 2000

t Short time 17:18

T Long time 17:18:19

f Long date + short time Sunday, 02 January 2000 17:18

F Long date + long time Sunday, 02 January 2000 17:18:19

g Short date + short time 01/02/2000 17:18

G (default) Short date + long time 01/02/2000 17:18:19

m, M Month and day 02 January

y, Y Year and month January 2000
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Table 6-5. Culture-insensitive date/time format strings

Format
string

Meaning Sample output Notes

o Round-
trippable

2000-01-02T17:18:19.0000000 Will append time zone information
unless DateTimeKind is
Unspecified

r, R RFC 1123
standard

Sun, 02 Jan 2000 17:18:19 

GMT

You must explicitly convert to UTC with
DateTime.ToUniversalTime

s Sortable;
ISO 8601

2000-01-02T17:18:19 Compatible with text-based sorting

u “Universal”
sortable

2000-01-02 17:18:19Z Similar to above; must explicitly convert
to UTC

U UTC Sunday, 02 January 2000 

17:18:19

Long date + short time, converted to
UTC

The format strings "r", "R", and "u" emit a suffix that implies UTC; yet they don’t
automatically convert a local to a UTC DateTime (so you must do the conversion
yourself). Ironically, "U" automatically converts to UTC, but doesn’t write a time
zone suffix! In fact, "o" is the only format specifier in the group that can write an
unambiguous DateTime without intervention.

DateTimeFormatInfo also supports custom format strings: these are analogous to
numeric custom format strings. The list is extensive and is available online in
Microsoft’s documentation. Here’s an example of a custom format string:

yyyy-MM-dd HH:mm:ss

Parsing and misparsing DateTimes
Strings that put the month or day first are ambiguous and can easily be misparsed—
particularly if you have global customers. This is not a problem in user interface
controls, because the same settings are in force when parsing as when formatting.
But when writing to a file, for instance, day/month misparsing can be a real prob‐
lem. There are two solutions:

• Always state the same explicit culture when formatting and parsing (e.g., invar‐•
iant culture).

• Format DateTime and DateTimeOffsets in a manner independent of culture.•

The second approach is more robust—particularly if you choose a format that
puts the four-digit year first: such strings are much more difficult to misparse
by another party. Further, strings formatted with a standards-compliant year-first
format (such as "o") can parse correctly alongside locally formatted strings—rather
like a “universal donor.” (Dates formatted with "s" or "u" have the further benefit of
being sortable.)
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To illustrate, suppose that we generate a culture-insensitive DateTime string s as
follows:

string s = DateTime.Now.ToString ("o");

The "o" format string includes milliseconds in the output.
The following custom format string gives the same result as
"o", but without milliseconds:

yyyy-MM-ddTHH:mm:ss K

We can reparse this in two ways. ParseExact demands strict compliance with the
specified format string:

DateTime dt1 = DateTime.ParseExact (s, "o", null);

(You can achieve a similar result with XmlConvert’s ToString and ToDateTime
methods.)

Parse, however, implicitly accepts both the "o" format and the CurrentCulture
format:

DateTime dt2 = DateTime.Parse (s);

This works with both DateTime and DateTimeOffset.

ParseExact is usually preferable if you know the format of
the string that you’re parsing. It means that if the string is
incorrectly formatted, an exception will be thrown—which is
usually better than risking a misparsed date.

DateTimeStyles
DateTimeStyles is a flags enum that provides additional instructions when calling
Parse on a DateTime(Offset). Here are its members:

None,
AllowLeadingWhite, AllowTrailingWhite, AllowInnerWhite,
AssumeLocal, AssumeUniversal, AdjustToUniversal,
NoCurrentDateDefault, RoundTripKind

There is also a composite member, AllowWhiteSpaces:

AllowWhiteSpaces = AllowLeadingWhite | AllowTrailingWhite | AllowInnerWhite

The default is None. This means that extra whitespace is normally prohibited (white‐
space that’s part of a standard DateTime pattern is exempt).

AssumeLocal and AssumeUniversal apply if the string doesn’t have a time zone
suffix (such as Z or +9:00). AdjustToUniversal still honors time zone suffixes, but
then converts to UTC using the current regional settings.

If you parse a string comprising a time but no date, today’s date is applied by
default. If you apply the NoCurrentDateDefault flag, however, it instead uses 1st
January 0001.
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Enum Format Strings
In “Enums” on page 154, we described formatting and parsing enum values.
Table 6-6 lists each format string and the result of applying it to the following
expression:

Console.WriteLine (System.ConsoleColor.Red.ToString (formatString));

Table 6-6. Enum format strings

Format string Meaning Sample output Notes

G or g “General” Red Default

F or f Treat as though Flags
attribute were present

Red Works on combined members even if
enum has no Flags attribute

D or d Decimal value 12 Retrieves underlying integral value

X or x Hexadecimal value 0000000C Retrieves underlying integral value

Other Conversion Mechanisms
In the previous two sections, we covered format providers—.NET’s primary mech‐
anism for formatting and parsing. Other important conversion mechanisms are
scattered through various types and namespaces. Some convert to and from string,
and some do other kinds of conversions. In this section, we discuss the following
topics:

• The Convert class and its functions:•
— Real to integral conversions that round rather than truncate—
— Parsing numbers in base 2, 8, and 16—
— Dynamic conversions—
— Base-64 translations—

• XmlConvert and its role in formatting and parsing for XML•
• Type converters and their role in formatting and parsing for designers and•

XAML

• BitConverter, for binary conversions•

Convert
.NET calls the following types base types:

• bool, char, string, System.DateTime, and System.DateTimeOffset•
• All the C# numeric types•
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The static Convert class defines methods for converting every base type to every
other base type. Unfortunately, most of these methods are useless: either they
throw exceptions or they are redundant alongside implicit casts. Among the clutter,
however, are some useful methods, listed in the following sections.

All base types (explicitly) implement IConvertible, which
defines methods for converting to every other base type. In
most cases, the implementation of each of these methods
simply calls a method in Convert. On rare occasions, it can
be useful to write a method that accepts an argument of type
IConvertible.

Rounding real to integral conversions
In Chapter 2, we saw how implicit and explicit casts allow you to convert between
numeric types. In summary:

• Implicit casts work for nonlossy conversions (e.g., int to double).•

• Explicit casts are required for lossy conversions (e.g., double to int).•

Casts are optimized for efficiency; hence, they truncate data that won’t fit. This can
be a problem when converting from a real number to an integer, because often
you want to round rather than truncate. Convert’s numerical conversion methods
address just this issue—they always round:

double d = 3.9;
int i = Convert.ToInt32 (d);    // i == 4

Convert uses banker’s rounding, which snaps midpoint values to even integers
(this avoids positive or negative bias). If banker’s rounding is a problem, first call
Math.Round on the real number: this accepts an additional argument that allows you
to control midpoint rounding.

Parsing numbers in base 2, 8, and 16
Hidden among the To(integral-type) methods are overloads that parse numbers
in another base:

int thirty = Convert.ToInt32  ("1E", 16);    // Parse in hexadecimal
uint five  = Convert.ToUInt32 ("101", 2);    // Parse in binary

The second argument specifies the base. It can be any base you like—as long as it’s 2,
8, 10, or 16!

Dynamic conversions
Occasionally, you need to convert from one type to another, but you don’t know
what the types are until runtime. For this, the Convert class provides a ChangeType
method:

public static object ChangeType (object value, Type conversionType);
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The source and target types must be one of the “base” types. ChangeType also
accepts an optional IFormatProvider argument. Here’s an example:

Type targetType = typeof (int);
object source = "42";

object result = Convert.ChangeType (source, targetType);

Console.WriteLine (result);             // 42
Console.WriteLine (result.GetType());   // System.Int32

An example of when this might be useful is in writing a deserializer that can work
with multiple types. It can also convert any enum to its integral type (see “Enums”
on page 154).

A limitation of ChangeType is that you cannot specify a format string or parsing flag.

Base-64 conversions
Sometimes, you need to include binary data such as a bitmap within a text docu‐
ment such as an XML file or email message. Base 64 is a ubiquitous means of
encoding binary data as readable characters, using 64 characters from the ASCII set.

Convert’s ToBase64String method converts from a byte array to base 64; From
Base64String does the reverse. 

XmlConvert
If you’re dealing with data that’s originated from or destined for an XML file,
XmlConvert (in the System.Xml namespace) provides the most suitable methods
for formatting and parsing. The methods in XmlConvert handle the nuances of
XML formatting without needing special format strings. For instance, true in XML
is “true” and not “True.” The .NET BCL internally uses XmlConvert extensively.
XmlConvert is also good for general-purpose, culture-independent serialization.

The formatting methods in XmlConvert are all provided as overloaded ToString
methods; the parsing methods are called ToBoolean, ToDateTime, and so on:

string s = XmlConvert.ToString (true);         // s = "true"
bool isTrue = XmlConvert.ToBoolean (s);

The methods that convert to and from DateTime accept an XmlDateTimeSerializa
tionMode argument. This is an enum with the following values:

Unspecified, Local, Utc, RoundtripKind

Local and Utc cause a conversion to take place when formatting (if the DateTime is
not already in that time zone). The time zone is then appended to the string:

2010-02-22T14:08:30.9375           // Unspecified
2010-02-22T14:07:30.9375+09:00     // Local
2010-02-22T05:08:30.9375Z          // Utc
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Unspecified strips away any time-zone information embedded in the DateTime
(i.e., DateTimeKind) before formatting. RoundtripKind honors the DateTime’s Date
TimeKind—so when it’s reparsed, the resultant DateTime struct will be exactly as it
was originally.

Type Converters
Type converters are designed to format and parse in design-time environments.
They also parse values in Extensible Application Markup Language (XAML) docu‐
ments—as used in Windows Presentation Foundation (WPF).

In .NET, there are more than 100 type converters—covering such things as colors,
images, and URIs. In contrast, format providers are implemented for only a handful
of simple value types.

Type converters typically parse strings in a variety of ways—without needing hints.
For instance, in a WPF application in Visual Studio, if you assign a control a
background color by typing "Beige" into the appropriate property window, Color’s
type converter figures out that you’re referring to a color name and not an RGB
string or system color. This flexibility can sometimes make type converters useful in
contexts outside of designers and XAML documents.

All type converters subclass TypeConverter in System.ComponentModel. To obtain a
TypeConverter, call TypeDescriptor.GetConverter. The following obtains a Type
Converter for the Color type (in the System.Drawing namespace):

TypeConverter cc = TypeDescriptor.GetConverter (typeof (Color));

Among many other methods, TypeConverter defines methods to ConvertToString
and ConvertFromString. We can call these as follows:

Color beige  = (Color) cc.ConvertFromString ("Beige");
Color purple = (Color) cc.ConvertFromString ("#800080");
Color window = (Color) cc.ConvertFromString ("Window");

By convention, type converters have names ending in Converter and are usually in
the same namespace as the type they’re converting. A type links to its converter via a
TypeConverterAttribute, allowing designers to pick up converters automatically.

Type converters can also provide design-time services such as generating standard
value lists for populating a drop-down list in a designer or assisting with code
serialization.

BitConverter
Most base types can be converted to a byte array, by calling BitConverter.GetBytes:

foreach (byte b in BitConverter.GetBytes (3.5))
  Console.Write (b + " ");                          // 0 0 0 0 0 0 12 64

BitConverter also provides methods, such as ToDouble, for converting in the other
direction.
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The decimal and DateTime(Offset) types are not supported by BitConverter. You
can, however, convert a decimal to an int array by calling decimal.GetBits. To go
the other way around, decimal provides a constructor that accepts an int array.

In the case of DateTime, you can call ToBinary on an instance—this returns a long
(upon which you can then use BitConverter). The static DateTime.FromBinary
method does the reverse.

Globalization
There are two aspects to internationalizing an application: globalization and localiza‐
tion.

Globalization is concerned with three tasks (in decreasing order of importance):

1. Making sure that your program doesn’t break when run in another culture1.
2. Respecting a local culture’s formatting rules; for instance, when displaying dates2.
3. Designing your program so that it picks up culture-specific data and strings3.

from satellite assemblies that you can later write and deploy

Localization means concluding that last task by writing satellite assemblies for
specific cultures. You can do this after writing your program (we cover the details in
“Resources and Satellite Assemblies” on page 776).

.NET helps you with the second task by applying culture-specific rules by default.
We’ve already seen how calling ToString on a DateTime or number respects local
formatting rules. Unfortunately, this makes it easy to fail the first task and have
your program break because you’re expecting dates or numbers to be formatted
according to an assumed culture. The solution, as we’ve seen, is either to specify
a culture (such as the invariant culture) when formatting and parsing or to use
culture-independent methods such as those in XmlConvert.

Globalization Checklist
We’ve already covered the important points in this chapter. Here’s a summary of the
essential work required:

• Understand Unicode and text encodings (see “Text Encodings and Unicode” on•
page 301).

• Be mindful that methods such as ToUpper and ToLower on char and string are•
culture sensitive: use ToUpperInvariant/ToLowerInvariant unless you want
culture sensitivity.

• Favor culture-independent formatting and parsing mechanisms for DateTime•
and DateTimeOffsets such as ToString("o") and XmlConvert.

334 | Chapter 6: .NET Fundamentals



• Otherwise, specify a culture when formatting/parsing numbers or date/times•
(unless you want local-culture behavior).

Testing
You can test against different cultures by reassigning Thread’s CurrentCulture
property (in System.Threading). The following changes the current culture to
Turkey:

Thread.CurrentThread.CurrentCulture = CultureInfo.GetCultureInfo ("tr-TR");

Turkey is a particularly good test case because:

• "i".ToUpper() != "I" and "I".ToLower() != "i".•
• Dates are formatted as day.month.year (note the period separator).•
• The decimal point indicator is a comma instead of a period.•

You can also experiment by changing the number and date formatting settings
in the Windows Control Panel: these are reflected in the default culture (Cultur
eInfo.CurrentCulture).

CultureInfo.GetCultures() returns an array of all available cultures.

Thread and CultureInfo also support a CurrentUICulture
property. This is concerned more with localization, which we
cover in Chapter 17.

Working with Numbers
Conversions
We covered numeric conversions in previous chapters and sections; Table 6-7 sum‐
marizes all of the options.

Table 6-7. Summary of numeric conversions

Task Functions Examples

Parsing base 10 numbers Parse

TryParse

double d = double.Parse ("3.5");

int i;

bool ok = int.TryParse ("3", out i);

Parsing from base 2, 8, or 16 Convert.ToIn

tegral

int i = Convert.ToInt32 ("1E", 16);

Formatting to hexadecimal ToString ("X") string hex = 45.ToString ("X");

Lossless numeric conversion Implicit cast int i = 23;

double d = i;
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Task Functions Examples

Truncating numeric
conversion

Explicit cast double d = 23.5;

int i = (int) d;

Rounding numeric conversion
(real to integral)

Convert.ToIn

tegral

double d = 23.5;

int i = Convert.ToInt32 (d);

Math
Table 6-8 lists the key members of the static Math class. The trigonometric functions
accept arguments of type double; other methods such as Max are overloaded to
operate on all numeric types. The Math class also defines the mathematical constants
E (e) and PI.

Table 6-8. Methods in the static Math class

Category Methods

Rounding Round, Truncate, Floor, Ceiling

Maximum/minimum Max, Min

Absolute value and sign Abs, Sign

Square root Sqrt

Raising to a power Pow, Exp

Logarithm Log, Log10

Trigonometric Sin, Cos, Tan,
Sinh, Cosh, Tanh,
Asin, Acos, Atan

The Round method lets you specify the number of decimal places with which to
round as well as how to handle midpoints (away from zero, or with banker’s
rounding). Floor and Ceiling round to the nearest integer: Floor always rounds
down, and Ceiling always rounds up—even with negative numbers.

Max and Min accept only two arguments. If you have an array or sequence of
numbers, use the Max and Min extension methods in System.Linq.Enumerable.

BigInteger
The BigInteger struct is a specialized numeric type. It resides in the System.Numer
ics namespace and allows you to represent an arbitrarily large integer without any
loss of precision.

C# doesn’t provide native support for BigInteger, so there’s no way to represent
BigInteger literals. You can, however, implicitly convert from any other integral
type to a BigInteger:

BigInteger twentyFive = 25;      // implicit conversion from integer
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To represent a bigger number, such as one googol (10100), you can use one of
BigInteger’s static methods, such as Pow (raise to the power):

BigInteger googol = BigInteger.Pow (10, 100);

Alternatively, you can Parse a string:

BigInteger googol = BigInteger.Parse ("1".PadRight (101, '0'));

Calling ToString() on this prints every digit:

Console.WriteLine (googol.ToString()); // 10000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000

You can perform potentially lossy conversions between BigInteger and the stan‐
dard numeric types by using the explicit cast operator:

double g2 = (double) googol;        // Explicit cast
BigInteger g3 = (BigInteger) g2;    // Explicit cast
Console.WriteLine (g3);

The output from this demonstrates the loss of precision:

9999999999999999673361688041166912...

BigInteger overloads all the arithmetic operators including remainder (%) as well
as the comparison and equality operators.

You can also construct a BigInteger from a byte array. The following code gener‐
ates a 32-byte random number suitable for cryptography and then assigns it to a
BigInteger:

// This uses the System.Security.Cryptography namespace:
RandomNumberGenerator rand = RandomNumberGenerator.Create();
byte[] bytes = new byte [32];
rand.GetBytes (bytes);
var bigRandomNumber = new BigInteger (bytes);   // Convert to BigInteger

The advantage of storing such a number in a BigInteger over a byte array is that
you get value-type semantics. Calling ToByteArray converts a BigInteger back to a
byte array.

Half
The Half struct is a 16-bit floating point type, and was introduced with .NET 5.
Half is intended mainly for interoperating with graphics card processors and does
not have native support in most CPUs.

You can convert between Half and float or double via an explicit cast:

Half h = (Half) 123.456;
Console.WriteLine (h);     // 123.44  (note loss of precision)

There are no arithmetic operations defined for this type, so you must convert to
another type such as float or double in order to perform calculations.
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Half has a range of -65500 to 65500:

Console.WriteLine (Half.MinValue);   // -65500
Console.WriteLine (Half.MaxValue);   // 65500

Note the loss of precision at the maximum range:

Console.WriteLine ((Half)65500);     // 65500
Console.WriteLine ((Half)65490);     // 65500
Console.WriteLine ((Half)65480);     // 65470

Complex
The Complex struct is another specialized numeric type that represents complex
numbers with real and imaginary components of type double. Complex resides in
the namespace (along with BigInteger).

To use Complex, instantiate the struct, specifying the real and imaginary values:

var c1 = new Complex (2, 3.5);
var c2 = new Complex (3, 0);

There are also implicit conversions from the standard numeric types.

The Complex struct exposes properties for the real and imaginary values as well as
the phase and magnitude:

Console.WriteLine (c1.Real);       // 2
Console.WriteLine (c1.Imaginary);  // 3.5
Console.WriteLine (c1.Phase);      // 1.05165021254837
Console.WriteLine (c1.Magnitude);  // 4.03112887414927

You can also construct a Complex number by specifying magnitude and phase:

Complex c3 = Complex.FromPolarCoordinates (1.3, 5);

The standard arithmetic operators are overloaded to work on Complex numbers:

Console.WriteLine (c1 + c2);    // (5, 3.5)
Console.WriteLine (c1 * c2);    // (6, 10.5)

The Complex struct exposes static methods for more advanced functions, including
the following:

• Trigonometric (Sin, Asin, Sinh, Tan, etc.)•
• Logarithms and exponentiations•

• Conjugate•

Random
The Random class generates a pseudorandom sequence of random bytes, integers,
or doubles.
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To use Random, you first instantiate it, optionally providing a seed to initiate the
random number series. Using the same seed guarantees the same series of numbers
(if run under the same CLR version), which is sometimes useful when you want
reproducibility:

Random r1 = new Random (1);
Random r2 = new Random (1);
Console.WriteLine (r1.Next (100) + ", " + r1.Next (100));      // 24, 11
Console.WriteLine (r2.Next (100) + ", " + r2.Next (100));      // 24, 11

If you don’t want reproducibility, you can construct Random with no seed; in that
case, it uses the current system time to make one up.

Because the system clock has limited granularity, two Random
instances created close together (typically within 10 ms) will
yield the same sequence of values. A common trap is to
instantiate a new Random object every time you need a random
number rather than reusing the same object.

A good pattern is to declare a single static Random instance.
In multithreaded scenarios, however, this can cause trouble
because Random objects are not thread-safe. We describe a
workaround in “Thread-Local Storage” on page 923.

Calling Next(n) generates a random integer between 0 and n−1. NextDouble gener‐
ates a random double between 0 and 1. NextBytes fills a byte array with random
values.

From .NET 8, the Random class includes a GetItems method, which picks n random
items from a collection. The following code picks two random numbers from a
collection of five:

int[] numbers = { 10, 20, 30, 40, 50 };
int[] randomTwo = new Random().GetItems (numbers, 2);

From .NET 8, there’s also a Shuffle method to randomize the order of items within
an array or span.

Random is not considered random enough for high-security applications such as
cryptography. For this, .NET provides a cryptographically strong random number
generator, in the System.Security.Cryptography namespace. Here’s how to use it:

var rand = System.Security.Cryptography.RandomNumberGenerator.Create();
byte[] bytes = new byte [32];
rand.GetBytes (bytes);       // Fill the byte array with random numbers.

The downside is that it’s less flexible: filling a byte array is the only means of
obtaining random numbers. To obtain an integer, you must use BitConverter:

byte[] bytes = new byte [4];
rand.GetBytes (bytes);
int i = BitConverter.ToInt32 (bytes, 0);
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BitOperations
The System.Numerics.BitOperations class (from .NET 6) exposes the following
methods to help with base-2 operations:

IsPow2

Returns true if a number is a power of 2

LeadingZeroCount/TrailingZeroCount
Returns the number of leading zeros, when formatted as a base-2 32-bit or
64-bit unsigned integer

Log2

Returns the integer base-2 log of an unsigned integer

PopCount

Returns the number of bits set to 1 in an unsigned integer

RotateLeft/RotateRight
Performs a bitwise left/right rotation

RoundUpToPowerOf2

Rounds an unsigned integer up to the closest power of 2

Enums
In Chapter 3, we described C#’s enum type and showed how to combine members,
test equality, use logical operators, and perform conversions. .NET extends C#’s
support for enums through the System.Enum type. This type has two roles:

• Providing type unification for all enum types•
• Defining static utility methods•

Type unification means that you can implicitly cast any enum member to a
System.Enum instance:

Display (Nut.Macadamia);     // Nut.Macadamia
Display (Size.Large);        // Size.Large

void Display (Enum value)
{
  Console.WriteLine (value.GetType().Name + "." + value.ToString());
}

enum Nut  { Walnut, Hazelnut, Macadamia }
enum Size { Small, Medium, Large }

The static utility methods on System.Enum are primarily related to performing
conversions and obtaining lists of members.
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Enum Conversions
There are three ways to represent an enum value:

• As an enum member•
• As its underlying integral value•
• As a string•

In this section, we describe how to convert between each.

Enum to integral conversions
Recall that an explicit cast converts between an enum member and its integral value.
An explicit cast is the correct approach if you know the enum type at compile time:

[Flags] 
public enum BorderSides { Left=1, Right=2, Top=4, Bottom=8 }
...
int i = (int) BorderSides.Top;            // i == 4
BorderSides side = (BorderSides) i;       // side == BorderSides.Top

You can cast a System.Enum instance to its integral type in the same way. The trick is
to first cast to an object and then the integral type:

static int GetIntegralValue (Enum anyEnum)
{
  return (int) (object) anyEnum;
}

This relies on you knowing the integral type: the method we just wrote would crash
if passed an enum whose integral type was long. To write a method that works with
an enum of any integral type, you can take one of three approaches. The first is to call
Convert.ToDecimal:

static decimal GetAnyIntegralValue (Enum anyEnum)
{
  return Convert.ToDecimal (anyEnum);
}

This works because every integral type (including ulong) can be converted to
decimal without loss of information. The second approach is to call Enum.GetUnder
lyingType in order to obtain the enum’s integral type, and then call Convert.Change
Type:

static object GetBoxedIntegralValue (Enum anyEnum)
{
  Type integralType = Enum.GetUnderlyingType (anyEnum.GetType());
  return Convert.ChangeType (anyEnum, integralType);
}

This preserves the original integral type, as the following example shows:
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object result = GetBoxedIntegralValue (BorderSides.Top);
Console.WriteLine (result);                               // 4
Console.WriteLine (result.GetType());                     // System.Int32

Our GetBoxedIntegralType method in fact performs no value
conversion; rather, it reboxes the same value in another type.
It translates an integral value in enum-type clothing to an inte‐
gral value in integral-type clothing. We describe this further in
“How Enums Work” on page 343.

The third approach is to call Format or ToString specifying the "d" or "D" format
string. This gives you the enum’s integral value as a string, and it is useful when
writing custom serialization formatters:

static string GetIntegralValueAsString (Enum anyEnum)
{
  return anyEnum.ToString ("D");      // returns something like "4"
}

Integral to enum conversions
Enum.ToObject converts an integral value to an enum instance of the given type:

object bs = Enum.ToObject (typeof (BorderSides), 3);
Console.WriteLine (bs);                              // Left, Right

This is the dynamic equivalent of the following:

BorderSides bs = (BorderSides) 3;

ToObject is overloaded to accept all integral types as well as object. (The latter
works with any boxed integral type.)

String conversions
To convert an enum to a string, you can either call the static Enum.Format method or
call ToString on the instance. Each method accepts a format string, which can be
"G" for default formatting behavior, "D" to emit the underlying integral value as a
string, "X" for the same in hexadecimal, or "F" to format combined members of an
enum without the Flags attribute. We listed examples of these in “Standard Format
Strings and Parsing Flags” on page 323.

Enum.Parse converts a string to an enum. It accepts the enum type and a string that
can include multiple members:

BorderSides leftRight = (BorderSides) Enum.Parse (typeof (BorderSides),
                                                  "Left, Right");

An optional third argument lets you perform case-insensitive parsing. An Argumen
tException is thrown if the member is not found.
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Enumerating Enum Values
Enum.GetValues returns an array comprising all members of a particular enum type:

foreach (Enum value in Enum.GetValues (typeof (BorderSides)))
  Console.WriteLine (value);

Composite members such as LeftRight = Left | Right are included, too.

Enum.GetNames performs the same function, but returns an array of strings.

Internally, the CLR implements GetValues and GetNames by
reflecting over the fields in the enum’s type. The results are
cached for efficiency.

How Enums Work
The semantics of enums are enforced largely by the compiler. In the CLR, there’s
no runtime difference between an enum instance (when unboxed) and its underly‐
ing integral value. Further, an enum definition in the CLR is merely a subtype
of System.Enum with static integral-type fields for each member. This makes the
ordinary use of an enum highly efficient, with a runtime cost matching that of
integral constants.

The downside of this strategy is that enums can provide static but not strong type
safety. We saw an example of this in Chapter 3:

[Flags] public enum BorderSides { Left=1, Right=2, Top=4, Bottom=8 }
...
BorderSides b = BorderSides.Left;
b += 1234;                          // No error!

When the compiler is unable to perform validation (as in this example), there’s no
backup from the runtime to throw an exception.

What we said about there being no runtime difference between an enum instance
and its integral value might seem at odds with the following:

[Flags] public enum BorderSides { Left=1, Right=2, Top=4, Bottom=8 }
...
Console.WriteLine (BorderSides.Right.ToString());        // Right
Console.WriteLine (BorderSides.Right.GetType().Name);    // BorderSides

Given the nature of an enum instance at runtime, you’d expect this to print 2 and
Int32! The reason for its behavior is down to some more compile-time trickery.
C# explicitly boxes an enum instance before calling its virtual methods—such as
ToString or GetType. And when an enum instance is boxed, it gains a runtime
wrapping that references its enum type.
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The Guid Struct
The Guid struct represents a globally unique identifier: a 16-byte value that, when
generated, is almost certainly unique in the world. Guids are often used for keys of
various sorts, in applications and databases. There are 2128, or 3.4 × 1038, unique
Guids.

The static Guid.NewGuid method generates a unique Guid:

Guid g = Guid.NewGuid ();
Console.WriteLine (g.ToString());  // 0d57629c-7d6e-4847-97cb-9e2fc25083fe

To instantiate an existing value, you use one of the constructors. The two most
useful constructors are:

public Guid (byte[] b);    // Accepts a 16-byte array
public Guid (string g);    // Accepts a formatted string

When represented as a string, a Guid is formatted as a 32-digit hexadecimal number,
with optional hyphens after the 8th, 12th, 16th, and 20th digits. The whole string
can also be optionally wrapped in brackets or braces:

Guid g1 = new Guid ("{0d57629c-7d6e-4847-97cb-9e2fc25083fe}");
Guid g2 = new Guid ("0d57629c7d6e484797cb9e2fc25083fe");
Console.WriteLine (g1 == g2);  // True

Being a struct, a Guid honors value-type semantics; hence, the equality operator
works in the preceding example.

The ToByteArray method converts a Guid to a byte array.

The static Guid.Empty property returns an empty Guid (all zeros). This is often used
in place of null.

Equality Comparison
Until now, we’ve assumed that the == and != operators are all there is to equality
comparison. The issue of equality, however, is more complex and subtler, sometimes
requiring the use of additional methods and interfaces. This section explores the
standard C# and .NET protocols for equality, focusing particularly on two ques‐
tions:

• When are == and != adequate—and inadequate—for equality comparison, and•
what are the alternatives?

• How and when should you customize a type’s equality logic?•

But before exploring the details of equality protocols and how to customize them,
we first must look at the preliminary concept of value versus referential equality.
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Value Versus Referential Equality
There are two kinds of equality:

Value equality
Two values are equivalent in some sense.

Referential equality
Two references refer to exactly the same object.

Unless overridden:

• Value types use value equality.•
• Reference types use referential equality. (This is overridden with anonymous•

types and records.)

Value types, in fact, can use only value equality (unless boxed). A simple demonstra‐
tion of value equality is to compare two numbers:

int x = 5, y = 5;
Console.WriteLine (x == y);   // True (by virtue of value equality)

A more elaborate demonstration is to compare two DateTimeOffset structs. The
following prints True because the two DateTimeOffsets refer to the same point in
time and so are considered equivalent:

var dt1 = new DateTimeOffset (2010, 1, 1, 1, 1, 1, TimeSpan.FromHours(8));
var dt2 = new DateTimeOffset (2010, 1, 1, 2, 1, 1, TimeSpan.FromHours(9));
Console.WriteLine (dt1 == dt2);   // True

DateTimeOffset is a struct whose equality semantics have
been tweaked. By default, structs exhibit a special kind of
value equality called structural equality in which two values
are considered equal if all of their members are equal. (You
can see this by creating a struct and calling its Equals method;
more on this later.)

Reference types exhibit referential equality by default. In the following example, f1
and f2 are not equal, despite their objects having identical content:

class Foo { public int X; }
...
Foo f1 = new Foo { X = 5 };
Foo f2 = new Foo { X = 5 };
Console.WriteLine (f1 == f2);   // False

In contrast, f3 and f1 are equal because they reference the same object:

Foo f3 = f1;
Console.WriteLine (f1 == f3);   // True
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Later in this section, we explain how you can customize reference types to exhibit
value equality. An example of this is the Uri class in the System namespace:

Uri uri1 = new Uri ("http://www.linqpad.net");
Uri uri2 = new Uri ("http://www.linqpad.net");
Console.WriteLine (uri1 == uri2);              // True

The string class exhibits similar behavior:

var s1 = "http://www.linqpad.net";
var s2 = "http://" + "www.linqpad.net";
Console.WriteLine (s1 == s2);       // True

Standard Equality Protocols
There are three standard protocols that types can implement for equality compari‐
son:

• The == and != operators•

• The virtual Equals method in object•

• The IEquatable<T> interface•

In addition, there are the pluggable protocols and the IStructuralEquatable inter‐
face, which we describe in Chapter 7.

== and !=
We’ve already seen in many examples how the standard == and != operators per‐
form equality/inequality comparisons. The subtleties with == and != arise because
they are operators; thus, they are statically resolved (in fact, they are implemented
as static functions). So, when you use == or !=, C# makes a compile-time decision
as to which type will perform the comparison, and no virtual behavior comes into
play. This is normally desirable. In the following example, the compiler hardwires
== to the int type because x and y are both int:

int x = 5;
int y = 5;
Console.WriteLine (x == y);      // True

But in the next example, the compiler wires the == operator to the object type:

object x = 5;
object y = 5;
Console.WriteLine (x == y);      // False

Because object is a class (and so a reference type), object’s == operator uses
referential equality to compare x and y. The result is false because x and y each
refer to different boxed objects on the heap.
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The virtual Object.Equals method
To correctly equate x and y in the preceding example, we can use the virtual Equals
method. Equals is defined in System.Object and so is available to all types:

object x = 5;
object y = 5;
Console.WriteLine (x.Equals (y));      // True

Equals is resolved at runtime—according to the object’s actual type. In this case, it
calls Int32’s Equals method, which applies value equality to the operands, returning
true. With reference types, Equals performs referential equality comparison by
default; with structs, Equals performs structural comparison by calling Equals on
each of its fields.

Why the Complexity?
You might wonder why the designers of C# didn’t avoid the problem by making ==
virtual and thus functionally identical to Equals. There are three reasons for this:

• If the first operand is null, Equals fails with a NullReferenceException; a static•
operator does not.

• Because the == operator is statically resolved, it executes extremely quickly.•
This means that you can write computationally intensive code without pen‐
alty—and without needing to learn another language such as C++.

• Sometimes it can be useful to have == and Equals apply different definitions of•
equality. We describe this scenario later in this section.

Essentially, the complexity of the design reflects the complexity of the situation: the
concept of equality covers a multitude of scenarios.

Hence, Equals is suitable for equating two objects in a type-agnostic fashion. The
following method equates two objects of any type:

public static bool AreEqual (object obj1, object obj2) 
  => obj1.Equals (obj2);

There is one case, however, in which this fails. If the first argument is null, you get
a NullReferenceException. Here’s the fix:

public static bool AreEqual (object obj1, object obj2)
{
  if (obj1 == null) return obj2 == null;
  return obj1.Equals (obj2);
}

Or, more succinctly:

public static bool AreEqual (object obj1, object obj2)
  => obj1 == null ? obj2 == null : obj1.Equals (obj2);
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The static object.Equals method
The object class provides a static helper method that does the work of AreEqual in
the preceding example. Its name is Equals—just like the virtual method—but there’s
no conflict because it accepts two arguments:

public static bool Equals (object objA, object objB)

This provides a null-safe equality comparison algorithm for when the types are
unknown at compile time:

object x = 3, y = 3;
Console.WriteLine (object.Equals (x, y));   // True
x = null;
Console.WriteLine (object.Equals (x, y));   // False
y = null;
Console.WriteLine (object.Equals (x, y));   // True

A useful application is when writing generic types. The following code will not
compile if object.Equals is replaced with the == or != operator:

class Test <T>
{
  T _value;
  public void SetValue (T newValue)
  {
    if (!object.Equals (newValue, _value))
    {
      _value = newValue;
      OnValueChanged();
    }
  }
  protected virtual void OnValueChanged() { ... }
}

Operators are prohibited here because the compiler cannot bind to the static
method of an unknown type.

A more elaborate way to implement this comparison is with
the EqualityComparer<T> class. This has the advantage of
avoiding boxing:

if (!EqualityComparer<T>.Default.Equals (newValue, _value))

We discuss EqualityComparer<T> in more detail in Chapter 7
(see “Plugging in Equality and Order” on page 411).

The static object.ReferenceEquals method
Occasionally, you need to force referential equality comparison. The static
object.ReferenceEquals method does just that:

Widget w1 = new Widget();
Widget w2 = new Widget();
Console.WriteLine (object.ReferenceEquals (w1, w2));     // False
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class Widget { ... }

You might want to do this because it’s possible for Widget to override the virtual
Equals method such that w1.Equals(w2) would return true. Further, it’s possible
for Widget to overload the == operator so that w1==w2 would also return true. In
such cases, calling object.ReferenceEquals guarantees normal referential equality
semantics.

Another way to force referential equality comparison is to cast
the values to object and then apply the == operator.

The IEquatable<T> interface
A consequence of calling object.Equals is that it forces boxing on value types. This
is undesirable in highly performance-sensitive scenarios because boxing is relatively
expensive compared to the actual comparison. A solution was introduced in C# 2.0,
with the IEquatable<T> interface:

public interface IEquatable<T>
{
  bool Equals (T other);
}

The idea is that IEquatable<T>, when implemented, gives the same result as calling
object’s virtual Equals method—but more quickly. Most basic .NET types imple‐
ment IEquatable<T>. You can use IEquatable<T> as a constraint in a generic type:

class Test<T> where T : IEquatable<T>
{
  public bool IsEqual (T a, T b)
  {
    return a.Equals (b);     // No boxing with generic T
  }
}

If we remove the generic constraint, the class would still compile, but a.Equals(b)
would instead bind to the slower object.Equals (slower assuming T was a value
type).

When Equals and == are not equal
We said earlier that it’s sometimes useful for == and Equals to apply different
definitions of equality. For example:

double x = double.NaN;
Console.WriteLine (x == x);            // False
Console.WriteLine (x.Equals (x));      // True

The double type’s == operator enforces that one NaN can never equal anything
else—even another NaN. This is most natural from a mathematical perspective, and
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it reflects the underlying CPU behavior. The Equals method, however, is obliged to
apply reflexive equality; in other words:

x.Equals (x) must always return true.

Collections and dictionaries rely on Equals behaving this way; otherwise, they
could not find an item they previously stored.

Having Equals and == apply different definitions of equality is actually quite rare
with value types. A more common scenario is with reference types; this happens
when the author customizes Equals so that it performs value equality while leaving
== to perform (default) referential equality. The StringBuilder class does exactly
that:

var sb1 = new StringBuilder ("foo");
var sb2 = new StringBuilder ("foo");
Console.WriteLine (sb1 == sb2);          // False (referential equality)
Console.WriteLine (sb1.Equals (sb2));    // True  (value equality)

Let’s now look at how to customize equality.

Equality and Custom Types
Recall default equality comparison behavior:

• Value types use value equality.•
• Reference types use referential equality unless overridden (as is the case with•

anonymous types and records).

Further:

• A struct’s Equals method applies structural value equality by default (i.e., it•
compares each field in the struct).

Sometimes, it makes sense to override this behavior when writing a type. There are
two cases for doing so:

• To change the meaning of equality•
• To speed up equality comparisons for structs•

Changing the meaning of equality
Changing the meaning of equality makes sense when the default behavior of ==
and Equals is unnatural for your type and is not what a consumer would expect.
An example is DateTimeOffset, a struct with two private fields: a UTC DateTime
and a numeric integer offset. If you were writing this type, you’d probably want
to ensure that equality comparisons considered only the UTC DateTime field and
not the offset field. Another example is numeric types that support NaN values such
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as float and double. If you were implementing such types yourself, you’d want to
ensure that NaN-comparison logic was supported in equality comparisons.

With classes, it’s sometimes more natural to offer value equality as the default
instead of referential equality. This is often the case with small classes that hold a
simple piece of data, such as System.Uri (or System.String).

With records, the compiler automatically implements structural equality (by com‐
paring each field). Sometimes, however, this will include fields that you don’t want
to compare, or objects that require special comparison logic, such as collections.
The process of overriding equality with records is slightly different because records
follow a special pattern that’s designed to play well with its rules for inheritance.

Speeding up equality comparisons with structs
The default structural equality comparison algorithm for structs is relatively slow.
Taking over this process by overriding Equals can improve performance by a
factor of five. Overloading the == operator and implementing IEquatable<T> allows
unboxed equality comparisons, and this can speed things up by a factor of five
again.

Overriding equality semantics for reference types doesn’t ben‐
efit performance. The default algorithm for referential equal‐
ity comparison is already very fast because it simply compares
two 32- or 64-bit references.

There’s another, rather peculiar case for customizing equality, and that’s to improve
a struct’s hashing algorithm for better performance in a hashtable. This comes as
a result of the fact that equality comparison and hashing are joined at the hip. We
examine hashing in a moment.

How to override equality semantics
To override equality with classes or structs, here are the steps:

1. Override GetHashCode() and Equals().1.

2. (Optionally) overload != and ==.2.

3. (Optionally) implement IEquatable<T>.3.

The process is different (and simpler) with records because the compiler already
overrides the equality methods and operators in line with its own special pattern. If
you want to intervene, you must conform to this pattern, which means writing an
Equals method with a signature like this:

record Test (int X, int Y)
{
  public virtual bool Equals (Test t) => t != null && t.X == X && t.Y == Y;
}
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Notice that Equals is virtual (not override) and accepts the actual record type
(Test in this case, and not object). The compiler will recognize that your method
has the “correct” signature and will patch it in.

You must also override GetHashCode(), just as you would with classes or structs.
You don’t need to (and shouldn’t) overload != and ==, or implement IEquatable<T>,
because this is already done for you.

Overriding GetHashCode
It might seem odd that System.Object—with its small footprint of members—
defines a method with a specialized and narrow purpose. GetHashCode is a virtual
method in Object that fits this description; it exists primarily for the benefit of just
the following two types:

System.Collections.Hashtable
System.Collections.Generic.Dictionary<TKey,TValue>

These are hashtables—collections for which each element has a key used for storage
and retrieval. A hashtable applies a very specific strategy for efficiently allocating
elements based on their key. This requires that each key have an Int32 number, or
hash code. The hash code need not be unique for each key, but should be as varied
as possible for good hashtable performance. Hashtables are considered important
enough that GetHashCode is defined in System.Object—so that every type can emit
a hash code.

We describe hashtables in detail in Chapter 7.

Both reference and value types have default implementations of GetHashCode,
meaning that you don’t need to override this method—unless you override Equals.
(And if you override GetHashCode, you will almost certainly want to also override
Equals.)

Here are the other rules for overriding object.GetHashCode:

• It must return the same value on two objects for which Equals returns true•
(hence, GetHashCode and Equals are overridden together).

• It must not throw exceptions.•
• It must return the same value if called repeatedly on the same object (unless the•

object has changed).

For maximum performance in hashtables, you should write GetHashCode so as to
minimize the likelihood of two different values returning the same hashcode. This
gives rise to the third reason for overriding Equals and GetHashCode on structs,
which is to provide a more efficient hashing algorithm than the default. The default
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implementation for structs is at the discretion of the runtime and can be based on
every field in the struct.

In contrast, the default GetHashCode implementation for classes is based on an
internal object token, which is unique for each instance in the CLR’s current
implementation.

If an object’s hashcode changes after it’s been added as a key to
a dictionary, the object will no longer be accessible in the dic‐
tionary. You can preempt this by basing hashcode calculations
on immutable fields.

We provide a complete example illustrating how to override GetHashCode shortly.

Overriding Equals
The axioms for object.Equals are as follows:

• An object cannot equal null (unless it’s a nullable type).•
• Equality is reflexive (an object equals itself).•

• Equality is commutative (if a.Equals(b), then b.Equals(a)).•

• Equality is transitive (if a.Equals(b) and b.Equals(c), then a.Equals(c)).•
• Equality operations are repeatable and reliable (they don’t throw exceptions).•

Overloading == and !=
In addition to overriding Equals, you can optionally overload the equality and
inequality operators. This is nearly always done with structs because the conse‐
quence of not doing so is that the == and != operators will simply not work on your
type.

With classes, there are two ways to proceed:

• Leave == and != alone—so that they apply referential equality.•

• Overload == and != in line with Equals.•

The first approach is most common with custom types—especially mutable types.
It ensures that your type follows the expectation that == and != should exhibit
referential equality with reference types, and this avoids confusing consumers. We
saw an example earlier:

var sb1 = new StringBuilder ("foo");
var sb2 = new StringBuilder ("foo");
Console.WriteLine (sb1 == sb2);          // False (referential equality)
Console.WriteLine (sb1.Equals (sb2));    // True  (value equality)
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The second approach makes sense with types for which a consumer would never
want referential equality. These are typically immutable—such as the string and
System.Uri classes—and are sometimes good candidates for structs.

Although it’s possible to overload != such that it means
something other than !(==), this is rarely done in prac‐
tice. An example is with the types defined in the Sys
tem.Data.SqlTypes namespace that represent native column
types in SQL Server. These follow the null comparison logic of
databases, whereby the = and <> operators (== and != in C#)
both return null if either operand is null.

Implementing IEquatable<T>
For completeness, it’s also good to implement IEquatable<T> when overriding
Equals. Its results should always match those of the overridden object’s Equals
method. Implementing IEquatable<T> comes at no programming cost if you struc‐
ture your Equals method implementation as in the example that follows in a
moment.

An example: the Area struct
Imagine that we need a struct to represent an area whose width and height are
interchangeable. In other words, 5 × 10 is equal to 10 × 5. (Such a type would be
suitable in an algorithm that arranges rectangular shapes.)

Here’s the complete code:

public struct Area : IEquatable <Area>
{
  public readonly int Measure1;
  public readonly int Measure2;

  public Area (int m1, int m2)
  {
    Measure1 = Math.Min (m1, m2);
    Measure2 = Math.Max (m1, m2);
  }

  public override bool Equals (object other)
    => other is Area a && Equals (a);    // Calls method below

  public bool Equals (Area other)        // Implements IEquatable<Area>
    => Measure1 == other.Measure1 && Measure2 == other.Measure2;

  public override int GetHashCode()
    => HashCode.Combine (Measure1, Measure2);

  // Note that we call the static Equals method in the object class: this
  // does null checking before calling our own (instance) Equals method.
  public static bool operator == (Area a1, Area a2) => Equals (a1, a2);
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  public static bool operator != (Area a1, Area a2) => !(a1 == a2);
}

From C# 10, you can shortcut the process with records. By
declaring this as a record struct, you can remove all the
code following the constructor.

In implementing GetHashCode, we used .NET’s HashCode.Combine function to pro‐
duce a composite hashcode. (Before that function existed, a popular approach was
to multiply each value by some prime number and then add them together.)

Here’s a demonstration of the Area struct:

Area a1 = new Area (5, 10);
Area a2 = new Area (10, 5);
Console.WriteLine (a1.Equals (a2));    // True
Console.WriteLine (a1 == a2);          // True

Pluggable equality comparers
If you want a type to take on different equality semantics just for a specific scenario,
you can use a pluggable IEqualityComparer. This is particularly useful in conjunc‐
tion with the standard collection classes, and we describe it in the following chapter,
in “Plugging in Equality and Order” on page 411.

Order Comparison
As well as defining standard protocols for equality, C# and .NET define two stan‐
dard protocols for determining the order of one object relative to another:

• The IComparable interfaces (IComparable and IComparable<T>)•

• The > and < operators•

The IComparable interfaces are used by general-purpose sorting algorithms. In the
following example, the static Array.Sort method works because System.String
implements the IComparable interfaces:

string[] colors = { "Green", "Red", "Blue" };
Array.Sort (colors);
foreach (string c in colors) Console.Write (c + " ");   // Blue Green Red

The < and > operators are more specialized, and they are intended mostly for
numeric types. Because they are statically resolved, they can translate to highly
efficient bytecode, suitable for computationally intensive algorithms.

.NET also provides pluggable ordering protocols, via the IComparer interfaces. We
describe these in the final section of Chapter 7.
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IComparable
The IComparable interfaces are defined as follows:

public interface IComparable       { int CompareTo (object other); }
public interface IComparable<in T> { int CompareTo (T other);      }

The two interfaces represent the same functionality. With value types, the generic
type-safe interface is faster than the nongeneric interface. In both cases, the Compar
eTo method works as follows:

• If a comes after b, a.CompareTo(b) returns a positive number.•

• If a is the same as b, a.CompareTo(b) returns 0.•

• If a comes before b, a.CompareTo(b) returns a negative number.•

For example:

Console.WriteLine ("Beck".CompareTo ("Anne"));       // 1
Console.WriteLine ("Beck".CompareTo ("Beck"));       // 0
Console.WriteLine ("Beck".CompareTo ("Chris"));      // -1

Most of the base types implement both IComparable interfaces. These interfaces are
also sometimes implemented when writing custom types. We provide an example
shortly.

IComparable versus Equals
Consider a type that both overrides Equals and implements the IComparable inter‐
faces. You’d expect that when Equals returns true, CompareTo should return 0. And
you’d be right. But here’s the catch:

When Equals returns false, CompareTo can return what it likes (as long as it’s
internally consistent)!

In other words, equality can be “fussier” than comparison, but not vice versa
(violate this and sorting algorithms will break). So, CompareTo can say, “All objects
are equal,” whereas Equals says, “But some are more equal than others!”

A great example of this is System.String. String’s Equals method and == operator
use ordinal comparison, which compares the Unicode point values of each charac‐
ter. Its CompareTo method, however, uses a culture-dependent comparison, which
sometimes puts more than one character into the same sorting position.

In Chapter 7, we discuss the pluggable ordering protocol, IComparer, which allows
you to specify an alternative ordering algorithm when sorting or instantiating a sor‐
ted collection. A custom IComparer can further extend the gap between CompareTo
and Equals—a case-insensitive string comparer, for instance, will return 0 when
comparing "A" and "a". The reverse rule still applies, however: CompareTo can
never be fussier than Equals.
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When implementing the IComparable interfaces in a custom
type, you can avoid running afoul of this rule by writing the
first line of CompareTo as follows:

if (Equals (other)) return 0;

After that, it can return what it likes, as long as it’s consistent!

< and >
Some types define < and > operators; for instance:

bool after2010 = DateTime.Now > new DateTime (2010, 1, 1);

You can expect the < and > operators, when implemented, to be functionally consis‐
tent with the IComparable interfaces. This is standard practice across .NET.

It’s also standard practice to implement the IComparable interfaces whenever < and
> are overloaded, although the reverse is not true. In fact, most .NET types that
implement IComparable do not overload < and >. This differs from the situation
with equality for which it’s normal to overload == when overriding Equals.

Typically, > and < are overloaded only when:

• A type has a strong intrinsic concept of “greater than” and “less than” (versus•
IComparable’s broader concepts of “comes before” and “comes after”).

• There is only one way or context in which to perform the comparison.•
• The result is invariant across cultures.•

System.String doesn’t satisfy the last point: the results of string comparisons can
vary according to language. Hence, string doesn’t support the > and < operators:

bool error = "Beck" > "Anne";       // Compile-time error

Implementing the IComparable Interfaces
In the following struct representing a musical note, we implement the IComparable
interfaces as well as overloading the < and > operators. For completeness, we also
override Equals/GetHashCode and overload == and !=:

public struct Note : IComparable<Note>, IEquatable<Note>, IComparable
{
  int _semitonesFromA;
  public int SemitonesFromA { get { return _semitonesFromA; } }

  public Note (int semitonesFromA)
  {
    _semitonesFromA = semitonesFromA;
  }

  public int CompareTo (Note other)            // Generic IComparable<T>
  {
    if (Equals (other)) return 0;    // Fail-safe check
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    return _semitonesFromA.CompareTo (other._semitonesFromA);
  }

  int IComparable.CompareTo (object other)     // Nongeneric IComparable
  {
    if (!(other is Note))
      throw new InvalidOperationException ("CompareTo: Not a note");
    return CompareTo ((Note) other);
  }

  public static bool operator < (Note n1, Note n2)
     => n1.CompareTo (n2) < 0;

  public static bool operator > (Note n1, Note n2)
    => n1.CompareTo (n2) > 0;

  public bool Equals (Note other)    // for IEquatable<Note>
    => _semitonesFromA == other._semitonesFromA;

  public override bool Equals (object other)
  {
    if (!(other is Note)) return false;
    return Equals ((Note) other);
  }

  public override int GetHashCode() => _semitonesFromA.GetHashCode();

  // Call the static Equals method to ensure nulls are properly handled:
  public static bool operator == (Note n1, Note n2) => Equals (n1, n2);

  public static bool operator != (Note n1, Note n2) => !(n1 == n2);
}

Utility Classes
Console
The static Console class handles standard input/output for console-based applica‐
tions. In a command-line (console) application, the input comes from the keyboard
via Read, ReadKey, and ReadLine, and the output goes to the text window via Write
and WriteLine. You can control the window’s position and dimensions with the
properties WindowLeft, WindowTop, WindowHeight, and WindowWidth. You can also
change the BackgroundColor and ForegroundColor properties and manipulate the
cursor with the CursorLeft, CursorTop, and CursorSize properties:

Console.WindowWidth = Console.LargestWindowWidth;
Console.ForegroundColor = ConsoleColor.Green;
Console.Write ("test... 50%");
Console.CursorLeft -= 3;
Console.Write ("90%");     // test... 90%

The Write and WriteLine methods are overloaded to accept a composite format
string (see String.Format in “String and Text Handling” on page 291). However,
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neither method accepts a format provider, so you’re stuck with CultureInfo
.CurrentCulture. (The workaround, of course, is to explicitly call string.Format.)

The Console.Out property returns a TextWriter. Passing Console.Out to a method
that expects a TextWriter is a useful way to get that method to write to the Console
for diagnostic purposes.

You can also redirect the Console’s input and output streams via the SetIn and
SetOut methods:

// First save existing output writer:
System.IO.TextWriter oldOut = Console.Out;

// Redirect the console's output to a file:
using (System.IO.TextWriter w = System.IO.File.CreateText
                                ("e:\\output.txt"))
{
  Console.SetOut (w);
  Console.WriteLine ("Hello world");
}

// Restore standard console output
Console.SetOut (oldOut);

In Chapter 15, we describe how streams and text writers work.

When running WPF or Windows Forms applications under
Visual Studio, the Console’s output is automatically redirected
to Visual Studio’s output window (in debug mode). This can
make Console.Write useful for diagnostic purposes; although
in most cases, the Debug and Trace classes in the System.Diag
nostics namespace are more appropriate (see Chapter 13).

Environment
The static System.Environment class provides a range of useful properties:

Files and folders
CurrentDirectory, SystemDirectory, CommandLine

Computer and operating system
MachineName, ProcessorCount, OSVersion, NewLine

User logon
UserName, UserInteractive, UserDomainName

Diagnostics
TickCount, StackTrace, WorkingSet, Version

You can obtain additional folders by calling GetFolderPath; we describe this in
“File and Directory Operations” on page 723 in Chapter 15.
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You can access OS environment variables (what you see when you type “set” at the
command prompt) with the following three methods: GetEnvironmentVariable,
GetEnvironmentVariables, and SetEnvironmentVariable.

The ExitCode property lets you set the return code—for when your program is
called from a command or batch file—and the FailFast method terminates a
program immediately, without performing cleanup.

The Environment class available to Windows Store apps offers just a limited number
of members (ProcessorCount, NewLine, and FailFast).

Process
The Process class in System.Diagnostics allows you to launch a new process. (In
Chapter 13, we describe how you can also use it to interact with other processes
running on the computer).

For security reasons, the Process class is not available to
Windows Store apps, and you cannot start arbitrary processes.
Instead, you must use the Windows.System.Launcher class to
“launch” a URI or file to which you have access; for example:

Launcher.LaunchUriAsync (new Uri ("http://albahari.com"));

var file = await KnownFolders.DocumentsLibrary
                             .GetFileAsync ("foo.txt");
Launcher.LaunchFileAsync (file);

This opens the URI or file, using whatever program is associ‐
ated with the URI scheme or file extension. Your program
must be in the foreground for this to work.

The static Process.Start method has several overloads; the simplest accepts a
simple filename with optional arguments:

Process.Start ("notepad.exe");
Process.Start ("notepad.exe", "e:\\file.txt");

The most flexible overload accepts a ProcessStartInfo instance. With this, you
can capture and redirect the launched process’s input, output, and error output (if
you leave UseShellExecute as false). The following captures the output of calling
ipconfig:

ProcessStartInfo psi = new ProcessStartInfo
{
  FileName = "cmd.exe",
  Arguments = "/c ipconfig /all",
  RedirectStandardOutput = true,
  UseShellExecute = false
};
Process p = Process.Start (psi);
string result = p.StandardOutput.ReadToEnd();
Console.WriteLine (result);
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If you don’t redirect output, Process.Start executes the program in parallel to the
caller. If you want to wait for the new process to complete, you can call WaitForExit
on the Process object, with an optional timeout.

Redirecting output and error streams
With UseShellExecute false (the default in .NET), you can capture the standard
input, output, and error streams and then write/read these streams via the Standar
dInput, StandardOutput, and StandardError properties.

A difficulty arises when you need to redirect both the standard output and standard
error streams, in that you can’t usually know in which order to read data from each
(because you don’t know in advance how the data will be interleaved). The solution
is to read from both streams at once, which you can accomplish by reading from (at
least) one of the streams asynchronously. Here’s how to do this:

• Handle the OutputDataReceived and/or ErrorDataReceived events. These•
events fire when output/error data is received.

• Call BeginOutputReadLine and/or BeginErrorReadLine. This enables the•
aforementioned events.

The following method runs an executable while capturing both the output and error
streams:

(string output, string errors) Run (string exePath, string args = "")
{
  using var p = Process.Start (new ProcessStartInfo (exePath, args)
  {
    RedirectStandardOutput = true,
    RedirectStandardError = true,
    UseShellExecute = false,    
  });
  
  var errors = new StringBuilder ();

  // Read from the error stream asynchronously...
  p.ErrorDataReceived += (sender, errorArgs) =>
  {
    if (errorArgs.Data != null) errors.AppendLine (errorArgs.Data);
  };
  p.BeginErrorReadLine ();
  
  // ...while we read from the output stream synchronously:
  string output = p.StandardOutput.ReadToEnd();

  p.WaitForExit();
  return (output, errors.ToString());
}
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UseShellExecute

In .NET 5+ (and .NET Core), the default for UseShellEx
ecute is false, whereas in .NET Framework, it was true.
Because this is a breaking change, it’s worth checking all calls
to Process.Start when porting code from .NET Framework.

The UseShellExecute flag changes how the CLR starts the process. With UseShel
lExecute true, you can do the following:

• Specify a path to a file or document rather than an executable (resulting in the•
operating system opening the file or document with its associated application)

• Specify a URL (resulting in the operating system navigating to that URL in the•
default web browser)

• (Windows only) Specify a Verb (such as “runas”, to run the process with•
administrative elevation)

The drawback is that you cannot redirect the input or output streams. Should
you need to do so—while launching a file or document—a workaround is to set
UseShellExecute to false and invoke the command-line process (cmd.exe) with the
“/c” switch, as we did earlier when calling ipconfig.

Under Windows, UseShellExecute instructs the CLR to use the Windows ShellExe‐
cute function instead of the CreateProcess function. Under Linux, UseShellExecute
instructs the CLR to call xdg-open, gnome-open, or kfmclient.

AppContext
The static System.AppContext class exposes two useful properties:

• BaseDirectory returns the folder in which the application started. This folder•
is important for resolving assemblies (finding and loading dependencies) and
locating configuration files (such as appsettings.json).

• TargetFrameworkName tells you the name and version of the .NET runtime that•
the application targets (as specified in its .runtimeconfig.json file). This might be
older than the runtime actually in use.

In addition, the AppContext class manages a global string-keyed dictionary of
Boolean values, intended to offer library writers a standard mechanism for allowing
consumers to switch new features on or off. This untyped approach makes sense
with experimental features that you want to keep undocumented to the majority of
users.

The consumer of a library requests that you enable a feature as follows:

AppContext.SetSwitch ("MyLibrary.SomeBreakingChange", true);
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Code within that library can then check for that switch as follows:

bool isDefined, switchValue;
isDefined = AppContext.TryGetSwitch ("MyLibrary.SomeBreakingChange",
                                      out switchValue);

TryGetSwitch returns false if the switch is undefined; this lets you distinguish an
undefined switch from one whose value is set to false, should this be necessary.

Ironically, the design of TryGetSwitch illustrates how not to
write APIs. The out parameter is unnecessary, and the method
should instead return a nullable bool whose value is true,
false, or null for undefined. This would then enable the fol‐
lowing use:

bool switchValue = AppContext.GetSwitch ("...") ?? false;
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7
Collections

.NET provides a standard set of types for storing and managing collections of
objects. These include resizable lists, linked lists, and sorted and unsorted diction‐
aries, as well as arrays. Of these, only arrays form part of the C# language; the
remaining collections are just classes you instantiate like any other.

We can divide the types in the .NET BCL for collections into the following cate‐
gories:

• Interfaces that define standard collection protocols•
• Ready-to-use collection classes (lists, dictionaries, etc.)•
• Base classes for writing application-specific collections•

This chapter covers each of these categories, with an additional section on the types
used in determining element equality and order.

The collection namespaces are as follows:

Namespace Contains

System.Collections Nongeneric collection classes and interfaces

System.Collections.Specialized Strongly typed nongeneric collection classes

System.Collections.Generic Generic collection classes and interfaces

System.Collections.ObjectModel Proxies and bases for custom collections

System.Collections.Concurrent Thread-safe collections (see Chapter 23)
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Enumeration
In computing, there are many different kinds of collections, ranging from simple
data structures such as arrays or linked lists, to more complex ones such as red/
black trees and hashtables. Although the internal implementation and external char‐
acteristics of these data structures vary widely, the ability to traverse the contents of
the collection is an almost universal need. The .NET BCL supports this need via a
pair of interfaces (IEnumerable, IEnumerator, and their generic counterparts) that
allow different data structures to expose a common traversal API. These are part of
a larger set of collection interfaces illustrated in Figure 7-1.

Figure 7-1. Collection interfaces

IEnumerable and IEnumerator
The IEnumerator interface defines the basic low-level protocol by which elements
in a collection are traversed—or enumerated—in a forward-only manner. Its decla‐
ration is as follows:

public interface IEnumerator
{
  bool MoveNext();
  object Current { get; }
  void Reset();
}

MoveNext advances the current element or “cursor” to the next position, returning
false if there are no more elements in the collection. Current returns the element
at the current position (usually cast from object to a more specific type). MoveNext
must be called before retrieving the first element—this is to allow for an empty
collection. The Reset method, if implemented, moves back to the start, allowing
the collection to be enumerated again. Reset exists mainly for Component Object
Model (COM) interoperability; calling it directly is generally avoided because it’s

366 | Chapter 7: Collections



not universally supported (and is unnecessary in that it’s usually just as easy to
instantiate a new enumerator).

Collections do not usually implement enumerators; instead, they provide enumera‐
tors, via the interface IEnumerable:

public interface IEnumerable
{
  IEnumerator GetEnumerator();
}

By defining a single method retuning an enumerator, IEnumerable provides flexibil‐
ity in that the iteration logic can be farmed out to another class. Moreover, it means
that several consumers can enumerate the collection at once without interfering
with one another. You can think of IEnumerable as “IEnumeratorProvider,” and it is
the most basic interface that collection classes implement.

The following example illustrates low-level use of IEnumerable and IEnumerator:

string s = "Hello";

// Because string implements IEnumerable, we can call GetEnumerator():
IEnumerator rator = s.GetEnumerator();

while (rator.MoveNext())
{
  char c = (char) rator.Current;
  Console.Write (c + ".");
}

// Output:  H.e.l.l.o.

However, it’s rare to call methods on enumerators directly in this manner because
C# provides a syntactic shortcut: the foreach statement. Here’s the same example
rewritten using foreach:

string s = "Hello";      // The String class implements IEnumerable

foreach (char c in s)
  Console.Write (c + ".");

IEnumerable<T> and IEnumerator<T>
IEnumerator and IEnumerable are nearly always implemented in conjunction with
their extended generic versions:

public interface IEnumerator<T> : IEnumerator, IDisposable
{
  T Current { get; }
}

public interface IEnumerable<T> : IEnumerable
{
  IEnumerator<T> GetEnumerator();
}
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By defining a typed version of Current and GetEnumerator, these interfaces
strengthen static type safety, avoid the overhead of boxing with value-type elements,
and are more convenient to the consumer. Arrays automatically implement IEnumer
able<T> (where T is the member type of the array).

Thanks to the improved static type safety, calling the following method with an
array of characters will generate a compile-time error:

void Test (IEnumerable<int> numbers) { ... }

It’s a standard practice for collection classes to publicly expose IEnumerable<T>
while “hiding” the nongeneric IEnumerable through explicit interface implementa‐
tion. This is so that if you directly call GetEnumerator(), you get back the type-safe
generic IEnumerator<T>. There are times, though, when this rule is broken for
reasons of backward compatibility (generics did not exist prior to C# 2.0). A good
example is arrays—these must return the nongeneric (the nice way of putting it
is “classic”) IEnumerator to avoid breaking earlier code. To get a generic IEnumera
tor<T>, you must cast to expose the explicit interface:

int[] data = { 1, 2, 3 };
var rator = ((IEnumerable <int>)data).GetEnumerator();

Fortunately, you rarely need to write this sort of code, thanks to the foreach
statement.

IEnumerable<T> and IDisposable
IEnumerator<T> inherits from IDisposable. This allows enumerators to hold refer‐
ences to resources such as database connections—and ensure that those resources
are released when enumeration is complete (or abandoned partway through). The
foreach statement recognizes this detail and translates the following:

foreach (var element in somethingEnumerable) { ... }

into the logical equivalent of this:

using (var rator = somethingEnumerable.GetEnumerator())
  while (rator.MoveNext())
  {
    var element = rator.Current;
    ...
  }

The using block ensures disposal—more on IDisposable in Chapter 12.
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When to Use the Nongeneric Interfaces
Given the extra type safety of the generic collection interfaces such as IEnumera
ble<T>, the question arises: do you ever need to use the nongeneric IEnumerable (or
ICollection or IList)?

In the case of IEnumerable, you must implement this interface in conjunction with
IEnumerable<T>—because the latter derives from the former. However, it’s very rare
that you actually implement these interfaces from scratch: in nearly all cases, you
can take the higher-level approach of using iterator methods, Collection<T>, and
LINQ.

So, what about as a consumer? In nearly all cases, you can manage entirely with the
generic interfaces. The nongeneric interfaces are still occasionally useful, though, in
their ability to provide type unification for collections across all element types. The
following method, for instance, counts elements in any collection recursively:

public static int Count (IEnumerable e)
{
  int count = 0;
  foreach (object element in e)
  {
    var subCollection = element as IEnumerable;
    if (subCollection != null)
      count += Count (subCollection);
    else
      count++;
  }
  return count;
}

Because C# offers covariance with generic interfaces, it might seem valid to have
this method instead accept IEnumerable<object>. This, however, would fail with
value-type elements and with legacy collections that don’t implement IEnumera
ble<T>—an example is ControlCollection in Windows Forms.

(On a slight tangent, you might have noticed a potential bug in our example: cyclic
references will cause infinite recursion and crash the method. We could fix this most
easily with the use of a HashSet (see “HashSet<T> and SortedSet<T>” on page 392).

Implementing the Enumeration Interfaces
You might want to implement IEnumerable or IEnumerable<T> for one or more of
the following reasons:

• To support the foreach statement•
• To interoperate with anything expecting a standard collection•
• To meet the requirements of a more sophisticated collection interface•
• To support collection initializers•
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To implement IEnumerable/IEnumerable<T>, you must provide an enumerator. You
can do this in one of three ways:

• If the class is “wrapping” another collection, by returning the wrapped collec‐•
tion’s enumerator

• Via an iterator using yield return•

• By instantiating your own IEnumerator/IEnumerator<T> implementation•

You can also subclass an existing collection: Collection<T> is
designed just for this purpose (see “Customizable Collections
and Proxies” on page 401). Yet another approach is to use the
LINQ query operators, which we cover in Chapter 8.

Returning another collection’s enumerator is just a matter of calling GetEnumerator
on the inner collection. However, this is viable only in the simplest scenarios in
which the items in the inner collection are exactly what are required. A more
flexible approach is to write an iterator, using C#’s yield return statement. An
iterator is a C# language feature that assists in writing collections, in the same way
the foreach statement assists in consuming collections. An iterator automatically
handles the implementation of IEnumerable and IEnumerator—or their generic
versions. Here’s a simple example:

public class MyCollection : IEnumerable
{
  int[] data = { 1, 2, 3 };

  public IEnumerator GetEnumerator()
  {
    foreach (int i in data)
      yield return i;
  }
}

Notice the “black magic”: GetEnumerator doesn’t appear to return an enumerator at
all! Upon parsing the yield return statement, the compiler writes a hidden nested
enumerator class behind the scenes and then refactors GetEnumerator to instantiate
and return that class. Iterators are powerful and simple (and are used extensively in
the implementation of LINQ-to-Object’s standard query operators).

Keeping with this approach, we can also implement the generic interface IEnumera
ble<T>:

public class MyGenCollection : IEnumerable<int>
{
  int[] data = { 1, 2, 3 };

  public IEnumerator<int> GetEnumerator()
  {
    foreach (int i in data)
      yield return i;
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  }

  // Explicit implementation keeps it hidden:
  IEnumerator IEnumerable.GetEnumerator() => GetEnumerator();
}

Because IEnumerable<T> inherits from IEnumerable, we must implement both
the generic and the nongeneric versions of GetEnumerator. In accordance with
standard practice, we’ve implemented the nongeneric version explicitly. It can sim‐
ply call the generic GetEnumerator because IEnumerator<T> inherits from IEnumera
tor.

The class we’ve just written would be suitable as a basis from which to write a
more sophisticated collection. However, if we need nothing above a simple IEnumer
able<T> implementation, the yield return statement allows for an easier variation.
Rather than writing a class, you can move the iteration logic into a method return‐
ing a generic IEnumerable<T> and let the compiler take care of the rest. Here’s an
example:

public static IEnumerable <int> GetSomeIntegers()
{
  yield return 1;
  yield return 2;
  yield return 3;
}

Here’s our method in use:

foreach (int i in Test.GetSomeIntegers())
  Console.WriteLine (i);

The final approach in writing GetEnumerator is to write a class that implements
IEnumerator directly. This is exactly what the compiler does behind the scenes, in
resolving iterators. (Fortunately, it’s rare that you’ll need to go this far yourself.) The
following example defines a collection that’s hardcoded to contain the integers 1, 2,
and 3:

public class MyIntList : IEnumerable
{
  int[] data = { 1, 2, 3 };

  public IEnumerator GetEnumerator() => new Enumerator (this);

  class Enumerator : IEnumerator       // Define an inner class
  {                                    // for the enumerator.
    MyIntList collection;
    int currentIndex = -1;

    public Enumerator (MyIntList items) => this.collection = items;

    public object Current
    {
      get
      {
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        if (currentIndex == -1)
          throw new InvalidOperationException ("Enumeration not started!");
        if (currentIndex == collection.data.Length)
          throw new InvalidOperationException ("Past end of list!");
        return collection.data [currentIndex];
      }
    }

    public bool MoveNext()
    {
      if (currentIndex >= collection.data.Length - 1) return false;
      return ++currentIndex < collection.data.Length;
    }

    public void Reset() => currentIndex = -1;
  }
}

Implementing Reset is optional—you can instead throw a
NotSupportedException.

Note that the first call to MoveNext should move to the first (and not the second)
item in the list.

To get on par with an iterator in functionality, we must also implement IEnumera
tor<T>. Here’s an example with bounds checking omitted for brevity:

class MyIntList : IEnumerable<int>
{
  int[] data = { 1, 2, 3 };

  // The generic enumerator is compatible with both IEnumerable and
  // IEnumerable<T>. We implement the nongeneric GetEnumerator method
  // explicitly to avoid a naming conflict.

  public IEnumerator<int> GetEnumerator() => new Enumerator(this);
  IEnumerator IEnumerable.GetEnumerator() => new Enumerator(this);

  class Enumerator : IEnumerator<int>
  {
    int currentIndex = -1;
    MyIntList collection;

    public Enumerator (MyIntList items) => collection = items;

    public int Current => collection.data [currentIndex];
    object IEnumerator.Current => Current;

    public bool MoveNext() => ++currentIndex < collection.data.Length;

    public void Reset() => currentIndex = -1;

    // Given we don't need a Dispose method, it's good practice to
    // implement it explicitly, so it's hidden from the public interface.
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    void IDisposable.Dispose() {}
  }
}

The example with generics is faster because IEnumerator<int>.Current doesn’t
require casting from int to object and so avoids the overhead of boxing.

The ICollection and IList Interfaces
Although the enumeration interfaces provide a protocol for forward-only iteration
over a collection, they don’t provide a mechanism to determine the size of the
collection, access a member by index, or modify the collection. For such functional‐
ity, .NET defines the ICollection, IList, and IDictionary interfaces. Each comes
in both generic and nongeneric versions; however, the nongeneric versions exist
mostly for legacy support.

Figure 7-1 showed the inheritance hierarchy for these interfaces. The easiest way to
summarize them is as follows:

IEnumerable<T> (and IEnumerable)
Provides minimum functionality (enumeration only)

ICollection<T> (and ICollection)
Provides medium functionality (e.g., the Count property)

IList<T>/IDictionary<K,V> and their nongeneric versions
Provide maximum functionality (including “random” access by index/key)

It’s rare that you’ll need to implement any of these interfaces.
In nearly all cases when you need to write a collection class,
you can instead subclass Collection<T> (see “Customizable
Collections and Proxies” on page 401). LINQ provides yet
another option that covers many scenarios.

The generic and nongeneric versions differ in ways over and above what you might
expect, particularly in the case of ICollection. The reasons for this are mostly
historical: because generics came later, the generic interfaces were developed with
the benefit of hindsight, leading to a different (and better) choice of members.
For this reason, ICollection<T> does not extend ICollection, IList<T> does not
extend IList, and IDictionary<TKey, TValue> does not extend IDictionary. Of
course, a collection class itself is free to implement both versions of an interface if
beneficial (which it often is).

Another, subtler reason for IList<T> not extending IList
is that casting to IList<T> would then return an interface
with both Add(T) and Add(object) members. This would
effectively defeat static type safety because you could call Add
with an object of any type.
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This section covers ICollection<T> and IList<T> and their nongeneric versions;
“Dictionaries” on page 394 covers the dictionary interfaces.

There is no consistent rationale in the way the words “col‐
lection” and “list” are applied throughout the .NET libraries.
For instance, because IList<T> is a more functional version
of ICollection<T>, you might expect the class List<T> to
be correspondingly more functional than the class Collec
tion<T>. This is not the case. It’s best to consider the terms
“collection” and “list” as broadly synonymous, except when a
specific type is involved.

ICollection<T> and ICollection
ICollection<T> is the standard interface for countable collections of objects. It
provides the ability to determine the size of a collection (Count), determine whether
an item exists in the collection (Contains), copy the collection into an array
(ToArray), and determine whether the collection is read-only (IsReadOnly). For
writable collections, you can also Add, Remove, and Clear items from the collection.
And because it extends IEnumerable<T>, it can also be traversed via the foreach
statement:

public interface ICollection<T> : IEnumerable<T>, IEnumerable
{
  int Count { get; }

  bool Contains (T item);
  void CopyTo (T[] array, int arrayIndex);
  bool IsReadOnly { get; }

  void Add(T item);
  bool Remove (T item);
  void Clear();
}

The nongeneric ICollection is similar in providing a countable collection, but it
doesn’t provide functionality for altering the list or checking for element member‐
ship:

public interface ICollection : IEnumerable
{
   int Count { get; }
   bool IsSynchronized { get; }
   object SyncRoot { get; }
   void CopyTo (Array array, int index);
}

The nongeneric interface also defines properties to assist with synchronization
(Chapter 14)—these were dumped in the generic version because thread safety is no
longer considered intrinsic to the collection.
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Both interfaces are fairly straightforward to implement. If implementing a read-only
ICollection<T>, the Add, Remove, and Clear methods should throw a NotSupporte
dException.

These interfaces are usually implemented in conjunction with either the IList or
the IDictionary interface.

IList<T> and IList
IList<T> is the standard interface for collections indexable by position. In addi‐
tion to the functionality inherited from ICollection<T> and IEnumerable<T>, it
provides the ability to read or write an element by position (via an indexer) and
insert/remove by position:

public interface IList<T> : ICollection<T>, IEnumerable<T>, IEnumerable
{
  T this [int index] { get; set; }
  int IndexOf (T item);
  void Insert (int index, T item);
  void RemoveAt (int index);
}

The IndexOf methods perform a linear search on the list, returning −1 if the
specified item is not found.

The nongeneric version of IList has more members because it inherits less from
ICollection:

public interface IList : ICollection, IEnumerable
{
  object this [int index] { get; set }
  bool IsFixedSize { get; }
  bool IsReadOnly  { get; }
  int  Add      (object value);
  void Clear();
  bool Contains (object value);
  int  IndexOf  (object value);
  void Insert   (int index, object value);
  void Remove   (object value);
  void RemoveAt (int index);
}

The Add method on the nongeneric IList interface returns an integer—this is the
index of the newly added item. In contrast, the Add method on ICollection<T> has
a void return type.

The general-purpose List<T> class is the quintessential implementation of both
IList<T> and IList. C# arrays also implement both the generic and nongeneric
ILists (although the methods that add or remove elements are hidden via explicit
interface implementation and throw a NotSupportedException if called).
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An ArgumentException is thrown if you try to access a mul‐
tidimensional array via IList’s indexer. This is a trap when
writing methods such as the following:

public object FirstOrNull (IList list)
{
  if (list == null || list.Count == 0) return null;
  return list[0];
}

This might appear bulletproof, but it will throw an exception
if called with a multidimensional array. You can test for a
multidimensional array at runtime with this expression (more
on this in Chapter 19):

list.GetType().IsArray && list.GetType().GetArrayRank()>1

IReadOnlyCollection<T> and IReadOnlyList<T>
.NET also defines collection and list interfaces that expose just the members
required for read-only operations:

public interface IReadOnlyCollection<out T> : IEnumerable<T>, IEnumerable
{
  int Count { get; }
}

public interface IReadOnlyList<out T> : IReadOnlyCollection<T>,
                                        IEnumerable<T>, IEnumerable
{
  T this[int index] { get; }
}

Because the type parameter for these interfaces is used only in output positions, it’s
marked as covariant. This allows a list of cats, for instance, to be treated as a read-
only list of animals. In contrast, T is not marked as covariant with ICollection<T>
and IList<T>, because T is used in both input and output positions.

These interfaces represent a read-only view of a collection or
list; the underlying implementation might still be writable.
Most of the writable (mutable) collections implement both the
read-only and read/write interfaces.

In addition to letting you work with collections covariantly, the read-only interfaces
allow a class to publicly expose a read-only view of a private writable collection. We
demonstrate this—along with a better solution—in “ReadOnlyCollection<T>” on
page 406.

IReadOnlyList<T> maps to the Windows Runtime type IVectorView<T>.
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The Array Class
The Array class is the implicit base class for all single and multidimensional arrays,
and it is one of the most fundamental types implementing the standard collection
interfaces. The Array class provides type unification, so a common set of methods is
available to all arrays, regardless of their declaration or underlying element type.

Because arrays are so fundamental, C# provides explicit syntax for their dec‐
laration and initialization, which we described in Chapters 2 and 3. When
an array is declared using C#’s syntax, the CLR implicitly subtypes the Array
class—synthesizing a pseudotype appropriate to the array’s dimensions and element
types. This pseudotype implements the typed generic collection interfaces, such as
IList<string>.

The CLR also treats array types specially upon construction, assigning them a
contiguous space in memory. This makes indexing into arrays highly efficient, but
prevents them from being resized later on.

Array implements the collection interfaces up to IList<T> in both their generic and
nongeneric forms. IList<T> itself is implemented explicitly, though, to keep Array’s
public interface clean of methods such as Add or Remove, which throw an exception
on fixed-length collections such as arrays. The Array class does actually offer a
static Resize method, although this works by creating a new array and then copying
over each element. As well as being inefficient, references to the array elsewhere in
the program will still point to the original version. A better solution for resizable
collections is to use the List<T> class (described in the following section).

An array can contain value-type or reference-type elements. Value-type elements
are stored in place in the array, so an array of three long integers (each 8 bytes) will
occupy 24 bytes of contiguous memory. A reference type element, however, occu‐
pies only as much space in the array as a reference (4 bytes in a 32-bit environment
or 8 bytes in a 64-bit environment). Figure 7-2 illustrates the effect, in memory, of
the following program:

StringBuilder[] builders = new StringBuilder [5];
builders [0] = new StringBuilder ("builder1");
builders [1] = new StringBuilder ("builder2");
builders [2] = new StringBuilder ("builder3");

long[] numbers = new long [3];
numbers [0] = 12345;
numbers [1] = 54321;
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Figure 7-2. Arrays in memory

Because Array is a class, arrays are always (themselves) reference types—regardless
of the array’s element type. This means that the statement arrayB = arrayA results
in two variables that reference the same array. Similarly, two distinct arrays will
always fail an equality test, unless you employ a structural equality comparer, which
compares every element of the array:

object[] a1 = { "string", 123, true };
object[] a2 = { "string", 123, true };

Console.WriteLine (a1 == a2);                          // False
Console.WriteLine (a1.Equals (a2));                    // False

IStructuralEquatable se1 = a1;
Console.WriteLine (se1.Equals (a2,
 StructuralComparisons.StructuralEqualityComparer));   // True

Arrays can be duplicated by calling the Clone method: arrayB = arrayA.Clone().
However, this results in a shallow clone, meaning that only the memory represented
by the array itself is copied. If the array contains value-type objects, the values them‐
selves are copied; if the array contains reference type objects, just the references
are copied (resulting in two arrays whose members reference the same objects).
Figure 7-3 demonstrates the effect of adding the following code to our example:

StringBuilder[] builders2 = builders;
StringBuilder[] shallowClone = (StringBuilder[]) builders.Clone();
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Figure 7-3. Shallow-cloning an array

To create a deep copy—for which reference type subobjects are duplicated—you
must loop through the array and clone each element manually. The same rules apply
to other .NET collection types.

Although Array is designed primarily for use with 32-bit indexers, it also has
limited support for 64-bit indexers (allowing an array to theoretically address up
to 264 elements) via several methods that accept both Int32 and Int64 parameters.
These overloads are useless in practice because the CLR does not permit any
object—including arrays—to exceed two gigabytes in size (whether running on a
32- or 64-bit environment).

Many of the methods on the Array class that you expect to
be instance methods are in fact static methods. This is an odd
design decision, and means that you should check for both
static and instance methods when looking for a method on
Array.

Construction and Indexing
The easiest way to create and index arrays is through C#’s language constructs:

int[] myArray = { 1, 2, 3 };
int first = myArray [0];
int last = myArray [myArray.Length - 1];

Alternatively, you can instantiate an array dynamically by calling Array.CreateIn
stance. This allows you to specify element type and rank (number of dimensions)
at runtime as well as allowing nonzero-based arrays through specifying a lower
bound. Nonzero-based arrays are not compatible with the .NET Common Language
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Specification (CLS), and should not be exposed as public members in a library that
might be consumed by a program written in F# or Visual Basic.

The GetValue and SetValue methods let you access elements in a dynamically
created array (they also work on ordinary arrays):

 // Create a string array 2 elements in length:
 Array a = Array.CreateInstance (typeof(string), 2);
 a.SetValue ("hi", 0);                             //  → a[0] = "hi";
 a.SetValue ("there", 1);                          //  → a[1] = "there";
 string s = (string) a.GetValue (0);               //  → s = a[0];

 // We can also cast to a C# array as follows:
 string[] cSharpArray = (string[]) a;
 string s2 = cSharpArray [0];

Zero-indexed arrays created dynamically can be cast to a C# array of a matching
or compatible type (compatible by standard array-variance rules). For example, if
Apple subclasses Fruit, Apple[] can be cast to Fruit[]. This leads to the issue
of why object[] was not used as the unifying array type rather than the Array
class. The answer is that object[] is incompatible with both multidimensional and
value-type arrays (and non-zero-based arrays). An int[] array cannot be cast to
object[]. Hence, we require the Array class for full type unification.

GetValue and SetValue also work on compiler-created arrays, and they are useful
when writing methods that can deal with an array of any type and rank. For
multidimensional arrays, they accept an array of indexers:

public object GetValue (params int[] indices)
public void   SetValue (object value, params int[] indices)

The following method prints the first element of any array, regardless of rank:

 void WriteFirstValue (Array a)
 {
   Console.Write (a.Rank + "-dimensional; ");

   // The indexers array will automatically initialize to all zeros, so
   // passing it into GetValue or SetValue will get/set the zero-based
   // (i.e., first) element in the array.

   int[] indexers = new int[a.Rank];
   Console.WriteLine ("First value is " +  a.GetValue (indexers));
 }

 void Demo()
 {
   int[]  oneD = { 1, 2, 3 };
   int[,] twoD = { {5,6}, {8,9} };

   WriteFirstValue (oneD);   // 1-dimensional; first value is 1
   WriteFirstValue (twoD);   // 2-dimensional; first value is 5
 }
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For working with arrays of unknown type but known rank,
generics provide an easier and more efficient solution:

void WriteFirstValue<T> (T[] array)
{
  Console.WriteLine (array[0]);
}

SetValue throws an exception if the element is of an incompatible type for the
array.

When an array is instantiated, whether via language syntax or Array.Create
Instance, its elements are automatically initialized to their default values. For arrays
with reference type elements, this means writing nulls; for arrays with value-type
elements, this means bitwise “zeroing” the members. The Array class also provides
this functionality on demand via the Clear method:

public static void Clear (Array array, int index, int length);

This method doesn’t affect the size of the array. This is in contrast to the usual use of
Clear (such as in ICollection<T>.Clear) whereby the collection is reduced to zero
elements.

Enumeration
Arrays are easily enumerated with a foreach statement:

int[] myArray = { 1, 2, 3};
foreach (int val in myArray)
  Console.WriteLine (val);

You can also enumerate using the static Array.ForEach method, defined as follows:

public static void ForEach<T> (T[] array, Action<T> action);

This uses an Action delegate, with this signature:

public delegate void Action<T> (T obj);

Here’s the first example rewritten with Array.ForEach:

Array.ForEach (new[] { 1, 2, 3 }, Console.WriteLine);

We can further simplify this with a collection expression (from C# 12):

Array.ForEach ([ 1, 2, 3 ], Console.WriteLine);

Length and Rank
Array provides the following methods and properties for querying length and rank:

public int  GetLength      (int dimension);
public long GetLongLength  (int dimension);

public int  Length       { get; }
public long LongLength   { get; }
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public int GetLowerBound (int dimension);
public int GetUpperBound (int dimension);

public int Rank { get; }    // Returns number of dimensions in array

GetLength and GetLongLength return the length for a given dimension (0 for a
single-dimensional array), and Length and LongLength return the total number of
elements in the array—all dimensions included.

GetLowerBound and GetUpperBound are useful with nonzero indexed arrays. Get
UpperBound returns the same result as adding GetLowerBound to GetLength for any
given dimension.

Searching
The Array class offers a range of methods for finding elements within a one-
dimensional array:

BinarySearch methods
For rapidly searching a sorted array for a particular item

IndexOf/LastIndex methods
For searching unsorted arrays for a particular item

Find/FindLast/FindIndex/FindLastIndex/FindAll/Exists/TrueForAll
For searching unsorted arrays for item(s) that satisfy a given Predicate<T>

None of the array-searching methods throws an exception if the specified value is
not found. Instead, if an item is not found, methods returning an integer return −1
(assuming a zero-indexed array), and methods returning a generic type return the
type’s default value (e.g., 0 for an int, or null for a string ).

The binary search methods are fast, but they work only on sorted arrays and
require that the elements be compared for order rather than simply equality. To
this effect, the binary search methods can accept an IComparer or IComparer<T>
object to arbitrate on ordering decisions (see “Plugging in Equality and Order” on
page 411”). This must be consistent with any comparer used in originally sorting
the array. If no comparer is provided, the type’s default ordering algorithm will be
applied based on its implementation of IComparable / IComparable<T>.

The IndexOf and LastIndexOf methods perform a simple enumeration over the
array, returning the position of the first (or last) element that matches the given
value.

The predicate-based searching methods allow a method delegate or lambda expres‐
sion to arbitrate on whether a given element is a “match.” A predicate is simply a
delegate accepting an object and returning true or false:

public delegate bool Predicate<T> (T object);

In the following example, we search an array of strings for a name containing the
letter “a”:
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string[] names = { "Rodney", "Jack", "Jill" };
string match = Array.Find (names, ContainsA);
Console.WriteLine (match);     // Jack

ContainsA (string name) { return name.Contains ("a"); }

Here’s the same code shortened with a lambda expression:

string[] names = { "Rodney", "Jack", "Jill" };
string match = Array.Find (names, n => n.Contains ("a"));     // Jack

FindAll returns an array of all items satisfying the predicate. In fact, it’s equivalent
to Enumerable.Where in the System.Linq namespace, except that FindAll returns
an array of matching items rather than an IEnumerable<T> of the same.

Exists returns true if any array member satisfies the given predicate, and is equiva‐
lent to Any in System.Linq.Enumerable.

TrueForAll returns true if all items satisfy the predicate, and is equivalent to All in
System.Linq.Enumerable.

Sorting
Array has the following built-in sorting methods:

// For sorting a single array:

public static void Sort<T> (T[] array);
public static void Sort    (Array array);

// For sorting a pair of arrays:

public static void Sort<TKey,TValue> (TKey[] keys, TValue[] items);
public static void Sort              (Array keys, Array items);

Each of these methods is additionally overloaded to also accept the following:

int index                 // Starting index at which to begin sorting
int length                // Number of elements to sort
IComparer<T> comparer     // Object making ordering decisions
Comparison<T> comparison  // Delegate making ordering decisions

The following illustrates the simplest use of Sort:

int[] numbers = { 3, 2, 1 };
Array.Sort (numbers);                     // Array is now { 1, 2, 3 }

The methods accepting a pair of arrays work by rearranging the items of each array
in tandem, basing the ordering decisions on the first array. In the next example,
both the numbers and their corresponding words are sorted into numerical order:

int[] numbers = { 3, 2, 1 };
string[] words = { "three", "two", "one" };
Array.Sort (numbers, words);
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// numbers array is now { 1, 2, 3 }
// words   array is now { "one", "two", "three" }

Array.Sort requires that the elements in the array implement IComparable (see
“Order Comparison” on page 355). This means that most built-in C# types (such as
integers, as in the preceding example) can be sorted. If the elements are not intrins‐
ically comparable or you want to override the default ordering, you must provide
Sort with a custom comparison provider that reports on the relative position of two
elements. There are ways to do this:

• Via a helper object that implements IComparer /IComparer<T> (see “Plugging•
in Equality and Order” on page 411)

• Via a Comparison delegate:•

public delegate int Comparison<T> (T x, T y);

The Comparison delegate follows the same semantics as IComparer<T>.CompareTo:
if x comes before y, a negative integer is returned; if x comes after y, a positive
integer is returned; if x and y have the same sorting position, 0 is returned.

In the following example, we sort an array of integers such that the odd numbers
come first:

int[] numbers = { 1, 2, 3, 4, 5 };
Array.Sort (numbers, (x, y) => x % 2 == y % 2 ? 0 : x % 2 == 1 ? -1 : 1);

// numbers array is now { 1, 3, 5, 2, 4 }

As an alternative to calling Sort, you can use LINQ’s OrderBy
and ThenBy operators. Unlike Array.Sort, the LINQ opera‐
tors don’t alter the original array, instead emitting the sorted
result in a fresh IEnumerable<T> sequence.

Reversing Elements
The following Array methods reverse the order of all—or a portion of—elements in
an array:

public static void Reverse (Array array);
public static void Reverse (Array array, int index, int length);

Copying
Array provides four methods to perform shallow copying: Clone, CopyTo, Copy, and
ConstrainedCopy. The former two are instance methods; the latter two are static
methods.

The Clone method returns a whole new (shallow-copied) array. The CopyTo and
Copy methods copy a contiguous subset of the array. Copying a multidimensional
rectangular array requires you to map the multidimensional index to a linear index.
For example, the middle square (position[1,1]) in a 3 × 3 array is represented
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with the index 4, from the calculation: 1 * 3 + 1. The source and destination ranges
can overlap without causing a problem.

ConstrainedCopy performs an atomic operation: if all of the requested elements
cannot be successfully copied (due to a type error, for instance), the operation is
rolled back.

Array also provides an AsReadOnly method that returns a wrapper that prevents
elements from being reassigned.

Converting and Resizing
Array.ConvertAll creates and returns a new array of element type TOutput, calling
the supplied Converter delegate to copy over the elements. Converter is defined as
follows:

public delegate TOutput Converter<TInput,TOutput> (TInput input)

The following converts an array of floats to an array of integers:

float[] reals = { 1.3f, 1.5f, 1.8f };
int[] wholes = Array.ConvertAll (reals, r => Convert.ToInt32 (r));

// wholes array is { 1, 2, 2 }

The Resize method works by creating a new array and copying over the elements,
returning the new array via the reference parameter. However, any references to the
original array in other objects will remain unchanged.

The System.Linq namespace offers an additional buffet of
extension methods suitable for array conversion. These meth‐
ods return an IEnumerable<T>, which you can convert back to
an array via Enumerable ’s ToArray method.

Lists, Queues, Stacks, and Sets
.NET provides a basic set of concrete collection classes that implement the inter‐
faces described in this chapter. This section concentrates on the list-like collections
(versus the dictionary-like collections, which we cover in “Dictionaries” on page
394). As with the interfaces we discussed previously, you usually have a choice of
generic or nongeneric versions of each type. In terms of flexibility and performance,
the generic classes win, making their nongeneric counterparts redundant except for
backward compatibility. This differs from the situation with collection interfaces,
for which the nongeneric versions are still occasionally useful.

Of the classes described in this section, the generic List class is the most commonly
used.
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List<T> and ArrayList
The generic List and nongeneric ArrayList classes provide a dynamically sized
array of objects and are among the most commonly used of the collection
classes. ArrayList implements IList, whereas List<T> implements both IList
and IList<T> (and the read-only version, IReadOnlyList<T>). Unlike with arrays,
all interfaces are implemented publicly, and methods such as Add and Remove are
exposed and work as you would expect.

Internally, List<T> and ArrayList work by maintaining an internal array of objects,
replaced with a larger array upon reaching capacity. Appending elements is efficient
(because there is usually a free slot at the end), but inserting elements can be slow
(because all elements after the insertion point must be shifted to make a free slot),
as can removing elements (especially near the start). As with arrays, searching is
efficient if the BinarySearch method is used on a list that has been sorted, but it is
otherwise inefficient because each item must be individually checked.

List<T> is up to several times faster than ArrayList if T is
a value type, because List<T> avoids the overhead of boxing
and unboxing elements.

List<T> and ArrayList provide constructors that accept an existing collection of
elements: these copy each element from the existing collection into the new List<T>
or ArrayList:

public class List<T> : IList<T>, IReadOnlyList<T>
{
  public List ();
  public List (IEnumerable<T> collection);
  public List (int capacity);

  // Add+Insert
  public void Add         (T item);
  public void AddRange    (IEnumerable<T> collection);
  public void Insert      (int index, T item);
  public void InsertRange (int index, IEnumerable<T> collection);

  // Remove
  public bool Remove      (T item);
  public void RemoveAt    (int index);
  public void RemoveRange (int index, int count);
  public int  RemoveAll   (Predicate<T> match);

  // Indexing
  public T this [int index] { get; set; }
  public List<T> GetRange (int index, int count);
  public Enumerator<T> GetEnumerator();

  // Exporting, copying and converting:
  public T[] ToArray();
  public void CopyTo (T[] array);
  public void CopyTo (T[] array, int arrayIndex);
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  public void CopyTo (int index, T[] array, int arrayIndex, int count);
  public ReadOnlyCollection<T> AsReadOnly();
  public List<TOutput> ConvertAll<TOutput> (Converter <T,TOutput>
                                            converter);
  // Other:
  public void Reverse();            // Reverses order of elements in list.
  public int Capacity { get;set; }  // Forces expansion of internal array.
  public void TrimExcess();         // Trims internal array back to size.
  public void Clear();              // Removes all elements, so Count=0.
}

public delegate TOutput Converter <TInput, TOutput> (TInput input);

In addition to these members, List<T> provides instance versions of all of Array’s
searching and sorting methods.

The following code demonstrates List’s properties and methods (for examples on
searching and sorting, see “The Array Class” on page 377):

var words = new List<string>();    // New string-typed list

words.Add ("melon");
words.Add ("avocado");
words.AddRange (["banana", "plum"]);
words.Insert (0, "lemon");                   // Insert at start
words.InsertRange (0, ["peach", "nashi"]);   // Insert at start

words.Remove ("melon");
words.RemoveAt (3);                         // Remove the 4th element
words.RemoveRange (0, 2);                   // Remove first 2 elements

// Remove all strings starting in 'n':
words.RemoveAll (s => s.StartsWith ("n"));

Console.WriteLine (words [0]);                          // first word
Console.WriteLine (words [words.Count - 1]);            // last word
foreach (string s in words) Console.WriteLine (s);      // all words
List<string> subset = words.GetRange (1, 2);            // 2nd->3rd words

string[] wordsArray = words.ToArray();    // Creates a new typed array

// Copy first two elements to the end of an existing array:
string[] existing = new string [1000];
words.CopyTo (0, existing, 998, 2);

List<string> upperCaseWords = words.ConvertAll (s => s.ToUpper());
List<int> lengths = words.ConvertAll (s => s.Length);

The nongeneric ArrayList class requires clumsy casts—as the following example
demonstrates:

ArrayList al = new ArrayList();
al.Add ("hello");
string first = (string) al [0];
string[] strArr = (string[]) al.ToArray (typeof (string));
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Such casts cannot be verified by the compiler; the following compiles successfully
but then fails at runtime:

int first = (int) al [0];    // Runtime exception

An ArrayList is functionally similar to List<object>. Both
are useful when you need a list of mixed-type elements that
share no common base type (other than object). A possi‐
ble advantage of choosing an ArrayList, in this case, would
be if you need to deal with the list using reflection (Chap‐
ter 19). Reflection is easier with a nongeneric ArrayList than
a List<object>.

If you import the System.Linq namespace, you can convert an ArrayList to a
generic List by calling Cast and then ToList:

ArrayList al = new ArrayList();
al.AddRange (new[] { 1, 5, 9 } );
List<int> list = al.Cast<int>().ToList();

Cast and ToList are extension methods in the System.Linq.Enumerable class.

LinkedList<T>
LinkedList<T> is a generic doubly linked list (see Figure 7-4). A doubly linked list
is a chain of nodes in which each references the node before, the node after, and the
actual element. Its main benefit is that an element can always be inserted efficiently
anywhere in the list because it just involves creating a new node and updating a few
references. However, finding where to insert the node in the first place can be slow
because there’s no intrinsic mechanism to index directly into a linked list; each node
must be traversed, and binary-chop searches are not possible.

Figure 7-4. LinkedList<T>

388 | Chapter 7: Collections



LinkedList<T> implements IEnumerable<T> and ICollection<T> (and their non‐
generic versions), but not IList<T> because access by index is not supported. List
nodes are implemented via the following class:

public sealed class LinkedListNode<T>
{
  public LinkedList<T> List { get; }
  public LinkedListNode<T> Next { get; }
  public LinkedListNode<T> Previous { get; }
  public T Value { get; set; }
}

When adding a node, you can specify its position either relative to another node or
at the start/end of the list. LinkedList<T> provides the following methods for this:

public void AddFirst(LinkedListNode<T> node);
public LinkedListNode<T> AddFirst (T value);

public void AddLast (LinkedListNode<T> node);
public LinkedListNode<T> AddLast (T value);

public void AddAfter (LinkedListNode<T> node, LinkedListNode<T> newNode);
public LinkedListNode<T> AddAfter (LinkedListNode<T> node, T value);

public void AddBefore (LinkedListNode<T> node, LinkedListNode<T> newNode);
public LinkedListNode<T> AddBefore (LinkedListNode<T> node, T value);

Similar methods are provided to remove elements:

public void Clear();

public void RemoveFirst();
public void RemoveLast();

public bool Remove (T value);
public void Remove (LinkedListNode<T> node);

LinkedList<T> has internal fields to keep track of the number of elements in the
list as well as the head and tail of the list. These are exposed in the following public
properties:

public int Count { get; }                      // Fast
public LinkedListNode<T> First { get; }        // Fast
public LinkedListNode<T> Last { get; }         // Fast

LinkedList<T> also supports the following searching methods (each requiring that
the list be internally enumerated):

public bool Contains (T value);
public LinkedListNode<T> Find (T value);
public LinkedListNode<T> FindLast (T value);
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Finally, LinkedList<T> supports copying to an array for indexed processing and
obtaining an enumerator to support the foreach statement:

public void CopyTo (T[] array, int index);
public Enumerator<T> GetEnumerator();

Here’s a demonstration on the use of LinkedList<string>:

var tune = new LinkedList<string>();
tune.AddFirst ("do");                           // do
tune.AddLast ("so");                            // do - so

tune.AddAfter (tune.First, "re");               // do - re- so
tune.AddAfter (tune.First.Next, "mi");          // do - re - mi- so
tune.AddBefore (tune.Last, "fa");               // do - re - mi - fa- so

tune.RemoveFirst();                             // re - mi - fa - so
tune.RemoveLast();                              // re - mi - fa

LinkedListNode<string> miNode = tune.Find ("mi");
tune.Remove (miNode);                           // re - fa
tune.AddFirst (miNode);                         // mi- re - fa

foreach (string s in tune) Console.WriteLine (s);

Queue<T> and Queue
Queue<T> and Queue are first-in, first-out (FIFO) data structures, providing meth‐
ods to Enqueue (add an item to the tail of the queue) and Dequeue (retrieve and
remove the item at the head of the queue). A Peek method is also provided to return
the element at the head of the queue without removing it, and a Count property
(useful in checking that elements are present before dequeuing).

Although queues are enumerable, they do not implement IList<T>/IList, because
members cannot be accessed directly by index. A ToArray method is provided,
however, for copying the elements to an array from which they can be randomly
accessed:

public class Queue<T> : IEnumerable<T>, ICollection, IEnumerable
{
  public Queue();
  public Queue (IEnumerable<T> collection);   // Copies existing elements
  public Queue (int capacity);                // To lessen auto-resizing
  public void Clear();
  public bool Contains (T item);
  public void CopyTo (T[] array, int arrayIndex);
  public int Count { get; }
  public T Dequeue();
  public void Enqueue (T item);
  public Enumerator<T> GetEnumerator();       // To support foreach
  public T Peek();
  public T[] ToArray();
  public void TrimExcess();
}
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The following is an example of using Queue<int>:

var q = new Queue<int>();
q.Enqueue (10);
q.Enqueue (20);
int[] data = q.ToArray();         // Exports to an array
Console.WriteLine (q.Count);      // "2"
Console.WriteLine (q.Peek());     // "10"
Console.WriteLine (q.Dequeue());  // "10"
Console.WriteLine (q.Dequeue());  // "20"
Console.WriteLine (q.Dequeue());  // throws an exception (queue empty)

Queues are implemented internally using an array that’s resized as required—much
like the generic List class. The queue maintains indexes that point directly to the
head and tail elements; therefore, enqueuing and dequeuing are extremely quick
operations (except when an internal resize is required).

Stack<T> and Stack
Stack<T> and Stack are last-in, first-out (LIFO) data structures, providing methods
to Push (add an item to the top of the stack) and Pop (retrieve and remove an
element from the top of the stack). A nondestructive Peek method is also provided,
as is a Count property and a ToArray method for exporting the data for random
access:

public class Stack<T> : IEnumerable<T>, ICollection, IEnumerable
{
  public Stack();
  public Stack (IEnumerable<T> collection);   // Copies existing elements
  public Stack (int capacity);                // Lessens auto-resizing
  public void Clear();
  public bool Contains (T item);
  public void CopyTo (T[] array, int arrayIndex);
  public int Count { get; }
  public Enumerator<T> GetEnumerator();       // To support foreach
  public T Peek();
  public T Pop();
  public void Push (T item);
  public T[] ToArray();
  public void TrimExcess();
}

The following example demonstrates Stack<int>:

var s = new Stack<int>();
s.Push (1);                      //            Stack = 1
s.Push (2);                      //            Stack = 1,2
s.Push (3);                      //            Stack = 1,2,3
Console.WriteLine (s.Count);     // Prints 3
Console.WriteLine (s.Peek());    // Prints 3,  Stack = 1,2,3
Console.WriteLine (s.Pop());     // Prints 3,  Stack = 1,2
Console.WriteLine (s.Pop());     // Prints 2,  Stack = 1
Console.WriteLine (s.Pop());     // Prints 1,  Stack = <empty>
Console.WriteLine (s.Pop());     // throws exception
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Stacks are implemented internally with an array that’s resized as required, as with
Queue<T> and List<T>.

BitArray
A BitArray is a dynamically sized collection of compacted bool values. It is more
memory efficient than both a simple array of bool and a generic List of bool
because it uses only one bit for each value, whereas the bool type otherwise occu‐
pies one byte for each value.

BitArray’s indexer reads and writes individual bits:

var bits = new BitArray(2);
bits[1] = true;

There are four bitwise operator methods (And, Or, Xor, and Not). All but the last
accept another BitArray:

bits.Xor (bits);               // Bitwise exclusive-OR bits with itself
Console.WriteLine (bits[1]);   // False

HashSet<T> and SortedSet<T>
HashSet<T> and SortedSet<T> have the following distinguishing features:

• Their Contains methods execute quickly using a hash-based lookup.•
• They do not store duplicate elements and silently ignore requests to add dupli‐•

cates.
• You cannot access an element by position.•

SortedSet<T> keeps elements in order, whereas HashSet<T> does not.

The commonality of the HashSet<T> and SortedSet<T> types is captured by the
interface ISet<T>. From .NET 5, these classes also implement an interface called
IReadOnlySet<T>, which is also implemented by the immutable set types (see
“Immutable Collections” on page 406).

HashSet<T> is implemented with a hashtable that stores just keys; SortedSet<T> is
implemented with a red/black tree.

Both collections implement ICollection<T> and offer methods that you would
expect, such as Contains, Add, and Remove. In addition, there’s a predicate-based
removal method called RemoveWhere.
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The following constructs a HashSet<char> from an existing collection, tests for
membership, and then enumerates the collection (notice the absence of duplicates):

var letters = new HashSet<char> ("the quick brown fox");

Console.WriteLine (letters.Contains ('t'));      // true
Console.WriteLine (letters.Contains ('j'));      // false

foreach (char c in letters) Console.Write (c);   // the quickbrownfx

(The reason we can pass a string into HashSet<char>’s constructor is because
string implements IEnumerable<char>.)

The really interesting methods are the set operations. The following set operations
are destructive in that they modify the set:

public void UnionWith           (IEnumerable<T> other);   // Adds
public void IntersectWith       (IEnumerable<T> other);   // Removes
public void ExceptWith          (IEnumerable<T> other);   // Removes
public void SymmetricExceptWith (IEnumerable<T> other);   // Removes

whereas the following methods simply query the set and so are nondestructive:

public bool IsSubsetOf         (IEnumerable<T> other);
public bool IsProperSubsetOf   (IEnumerable<T> other);
public bool IsSupersetOf       (IEnumerable<T> other);
public bool IsProperSupersetOf (IEnumerable<T> other);
public bool Overlaps           (IEnumerable<T> other);
public bool SetEquals          (IEnumerable<T> other);

UnionWith adds all the elements in the second set to the original set (excluding
duplicates). IntersectWith removes the elements that are not in both sets. We can
extract all of the vowels from our set of characters as follows:

var letters = new HashSet<char> ("the quick brown fox");
letters.IntersectWith ("aeiou");
foreach (char c in letters) Console.Write (c);     // euio

ExceptWith removes the specified elements from the source set. Here, we strip all
vowels from the set:

var letters = new HashSet<char> ("the quick brown fox");
letters.ExceptWith ("aeiou");
foreach (char c in letters) Console.Write (c);     // th qckbrwnfx

SymmetricExceptWith removes all but the elements that are unique to one set or the
other:

var letters = new HashSet<char> ("the quick brown fox");
letters.SymmetricExceptWith ("the lazy brown fox");
foreach (char c in letters) Console.Write (c);     // quicklazy

Note that because HashSet<T> and SortedSet<T> implement IEnumerable<T>, you
can use another type of set (or collection) as the argument to any of the set
operation methods.
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SortedSet<T> offers all the members of HashSet<T>, plus the following:

public virtual SortedSet<T> GetViewBetween (T lowerValue, T upperValue)
public IEnumerable<T> Reverse()
public T Min { get; }
public T Max { get; }

SortedSet<T> also accepts an optional IComparer<T> in its constructor (rather than
an equality comparer).

Here’s an example of loading the same letters into a SortedSet<char>:

var letters = new SortedSet<char> ("the quick brown fox");
foreach (char c in letters) Console.Write (c);   //  bcefhiknoqrtuwx

Following on from this, we can obtain the letters in the set between f and i as
follows:

foreach (char c in letters.GetViewBetween ('f', 'i'))
  Console.Write (c);                                    //  fhi

Dictionaries
A dictionary is a collection in which each element is a key/value pair. Dictionaries
are most commonly used for lookups and sorted lists.

.NET defines a standard protocol for dictionaries, via the interfaces IDictionary
and IDictionary <TKey, TValue>, as well as a set of general-purpose dictionary
classes. The classes each differ in the following regard:

• Whether or not items are stored in sorted sequence•
• Whether or not items can be accessed by position (index) as well as by key•
• Whether it’s generic or nongeneric•
• Whether it’s fast or slow to retrieve items by key from a large dictionary•

Table 7-1 summarizes each of the dictionary classes and how they differ in these
respects. The performance times are in milliseconds and based on performing
50,000 operations on a dictionary with integer keys and values on a 1.5 GHz
PC. (The differences in performance between generic and nongeneric counterparts
using the same underlying collection structure are due to boxing, and show up only
with value-type elements.)
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Table 7-1. Dictionary classes

Type Internal
structure

Retrieve
by index?

Memory
overhead
(avg. bytes
per item)

Speed:
random
insertion

Speed:
sequential
insertion

Speed:
retrieval
by key

Unsorted

Dictionary <K,V> Hashtable No 22 30 30 20

Hashtable Hashtable No 38 50 50 30

ListDictionary Linked list No 36 50,000 50,000 50,000

OrderedDictionary Hashtable
+ array

Yes 59 70 70 40

Sorted

SortedDictionary 

<K,V>

Red/black
tree

No 20 130 100 120

SortedList <K,V> 2xArray Yes 2 3,300 30 40

SortedList 2xArray Yes 27 4,500 100 180

In Big-O notation, retrieval time by key is as follows:

• O(1) for Hashtable, Dictionary, and OrderedDictionary•

• O(log n) for SortedDictionary and SortedList•

• O(n) for ListDictionary (and nondictionary types such as List<T>)•

n is the number of elements in the collection.

IDictionary<TKey,TValue>
IDictionary<TKey,TValue> defines the standard protocol for all key/value-based
collections. It extends ICollection<T> by adding methods and properties to access
elements based on a key of arbitrary type:

public interface IDictionary <TKey, TValue> :
  ICollection <KeyValuePair <TKey, TValue>>, IEnumerable
{
   bool ContainsKey (TKey key);
   bool TryGetValue (TKey key, out TValue value);
   void Add         (TKey key, TValue value);
   bool Remove      (TKey key);

   TValue this [TKey key]      { get; set; }  // Main indexer - by key
   ICollection <TKey> Keys     { get; }       // Returns just keys
   ICollection <TValue> Values { get; }       // Returns just values
}
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There’s also an interface called IReadOnlyDiction

ary<TKey,TValue> that defines the read-only subset of dictio‐
nary members.

To add an item to a dictionary, you either call Add or use the index’s set accessor—
the latter adds an item to the dictionary if the key is not already present (or
updates the item if it is present). Duplicate keys are forbidden in all dictionary
implementations, so calling Add twice with the same key throws an exception.

To retrieve an item from a dictionary, use either the indexer or the TryGetValue
method. If the key doesn’t exist, the indexer throws an exception, whereas TryGet
Value returns false. You can test for membership explicitly by calling Contains
Key; however, this incurs the cost of two lookups if you then subsequently retrieve
the item.

Enumerating directly over an IDictionary<TKey,TValue> returns a sequence of
KeyValuePair structs:

public struct KeyValuePair <TKey, TValue>
{
  public TKey Key     { get; }
  public TValue Value { get; }
}

You can enumerate over just the keys or values via the dictionary’s Keys/Values
properties.

We demonstrate the use of this interface with the generic Dictionary class in the
following section.

IDictionary
The nongeneric IDictionary interface is the same in principle as IDiction
ary<TKey,TValue>, apart from two important functional differences. It’s important
to be aware of these differences, because IDictionary appears in legacy code
(including the .NET BCL itself in places):

• Retrieving a nonexistent key via the indexer returns null (rather than throwing•
an exception).

• Contains tests for membership rather than ContainsKey.•

Enumerating over a nongeneric IDictionary returns a sequence of Dictionary
Entry structs:

public struct DictionaryEntry
{
  public object Key   { get; set; }
  public object Value { get; set; }
}

396 | Chapter 7: Collections



Dictionary<TKey,TValue> and Hashtable
The generic Dictionary class is one of the most commonly used collections (along
with the List<T> collection). It uses a hashtable data structure to store keys and
values, and it is fast and efficient.

The nongeneric version of Dictionary<TKey,TValue> is
called Hashtable; there is no nongeneric class called Dictio
nary. When we refer simply to Dictionary, we mean the
generic Dictionary<TKey,TValue> class.

Dictionary implements both the generic and nongeneric IDictionary interfaces,
the generic IDictionary being exposed publicly. Dictionary is, in fact, a “textbook”
implementation of the generic IDictionary.

Here’s how to use it:

var d = new Dictionary<string, int>();

d.Add("One", 1);
d["Two"] = 2;     // adds to dictionary because "two" isn't already present
d["Two"] = 22;    // updates dictionary because "two" is now present
d["Three"] = 3;

Console.WriteLine (d["Two"]);                // Prints "22"
Console.WriteLine (d.ContainsKey ("One"));   // true (fast operation)
Console.WriteLine (d.ContainsValue (3));     // true (slow operation)
int val = 0;
if (!d.TryGetValue ("onE", out val))
  Console.WriteLine ("No val");              // "No val" (case sensitive)

// Three different ways to enumerate the dictionary:

foreach (KeyValuePair<string, int> kv in d)          //  One; 1
  Console.WriteLine (kv.Key + "; " + kv.Value);      //  Two; 22
                                                     //  Three; 3

foreach (string s in d.Keys) Console.Write (s);      // OneTwoThree
Console.WriteLine();
foreach (int i in d.Values) Console.Write (i);       // 1223

Its underlying hashtable works by converting each element’s key into an integer
hashcode—a pseudo-unique value—and then applying an algorithm to convert the
hashcode into a hash key. This hash key is used internally to determine which
“bucket” an entry belongs to. If the bucket contains more than one value, a linear
search is performed on the bucket. A good hash function does not strive to return
strictly unique hashcodes (which would usually be impossible); it strives to return
hashcodes that are evenly distributed across the 32-bit integer space. This avoids the
scenario of ending up with a few very large (and inefficient) buckets.

A dictionary can work with keys of any type, providing it’s able to determine
equality between keys and obtain hashcodes. By default, equality is determined via
the key’s object.Equals method, and the pseudo-unique hashcode is obtained via
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the key’s GetHashCode method. You can change this behavior either by overriding
these methods or by providing an IEqualityComparer object when constructing the
dictionary. A common application of this is to specify a case-insensitive equality
comparer when using string keys:

var d = new Dictionary<string, int> (StringComparer.OrdinalIgnoreCase);

We discuss this further in “Plugging in Equality and Order” on page 411.

As with many other types of collections, you can improve the performance of a
dictionary slightly by specifying the collection’s expected size in the constructor,
avoiding or lessening the need for internal resizing operations.

The nongeneric version is named Hashtable and is functionally similar apart from
differences stemming from it exposing the nongeneric IDictionary interface dis‐
cussed previously.

The downside to Dictionary and Hashtable is that the items are not sorted.
Furthermore, the original order in which the items were added is not retained. As
with all dictionaries, duplicate keys are not allowed.

When the generic collections were introduced back in 2005,
the CLR team chose to name them according to what they
represent (Dictionary, List) rather than how they are inter‐
nally implemented (Hashtable, ArrayList). Although this is
good because it gives them the freedom to later change the
implementation, it also means that the performance contract
(often the most important criteria in choosing one kind of
collection over another) is no longer captured in the name.

OrderedDictionary
An OrderedDictionary is a nongeneric dictionary that maintains elements in the
same order that they were added. With an OrderedDictionary, you can access
elements both by index and by key.

An OrderedDictionary is not a sorted dictionary.

An OrderedDictionary is a combination of a Hashtable and an ArrayList. This
means that it has all the functionality of a Hashtable, plus functions such as
RemoveAt, and an integer indexer. It also exposes Keys and Values properties that
return elements in their original order.

This class was introduced in .NET 2.0; yet, peculiarly, there’s no generic version.
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1 There’s also a functionally identical nongeneric version of this called SortedList.

ListDictionary and HybridDictionary
ListDictionary uses a singly linked list to store the underlying data. It doesn’t
provide sorting, although it does preserve the original entry order of the items.
ListDictionary is extremely slow with large lists. Its only real “claim to fame” is its
efficiency with very small lists (fewer than 10 items).

HybridDictionary is a ListDictionary that automatically converts to a Hashtable
upon reaching a certain size, to address ListDictionary’s problems with perfor‐
mance. The idea is to get a low memory footprint when the dictionary is small,
and good performance when the dictionary is large. However, given the overhead in
converting from one to the other—and the fact that a Dictionary is not excessively
heavy or slow in either scenario—you wouldn’t suffer unreasonably by using a
Dictionary to begin with.

Both classes come only in nongeneric form.

Sorted Dictionaries
The .NET BCL provides two dictionary classes internally structured such that their
content is always sorted by key:

• SortedDictionary<TKey,TValue>•

• SortedList<TKey,TValue>1•

(In this section, we abbreviate <TKey,TValue> to <,>.)

SortedDictionary<,> uses a red/black tree: a data structure designed to perform
consistently well in any insertion or retrieval scenario.

SortedList<,> is implemented internally with an ordered array pair, providing
fast retrieval (via a binary-chop search) but poor insertion performance (because
existing values need to be shifted to make room for a new entry).

SortedDictionary<,> is much faster than SortedList<,> at inserting elements in
a random sequence (particularly with large lists). SortedList<,>, however, has an
extra ability: to access items by index as well as by key. With a sorted list, you
can go directly to the nth element in the sorting sequence (via the indexer on
the Keys/Values properties). To do the same with a SortedDictionary<,>, you
must manually enumerate over n items. (Alternatively, you could write a class that
combines a sorted dictionary with a list class.)

None of the three collections allows duplicate keys (as is the case with all
dictionaries).
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The following example uses reflection to load all of the methods defined in
System.Object into a sorted list keyed by name and then enumerates their keys
and values:

// MethodInfo is in the System.Reflection namespace

var sorted = new SortedList <string, MethodInfo>();

foreach (MethodInfo m in typeof (object).GetMethods())
  sorted [m.Name] = m;

foreach (string name in sorted.Keys)
  Console.WriteLine (name);

foreach (MethodInfo m in sorted.Values)
  Console.WriteLine (m.Name + " returns a " + m.ReturnType);

Here’s the result of the first enumeration:

Equals
GetHashCode
GetType
ReferenceEquals
ToString

Here’s the result of the second enumeration:

Equals returns a System.Boolean
GetHashCode returns a System.Int32
GetType returns a System.Type
ReferenceEquals returns a System.Boolean
ToString returns a System.String

Notice that we populated the dictionary through its indexer. If we instead used the
Add method, it would throw an exception because the object class upon which
we’re reflecting overloads the Equals method, and you can’t add the same key twice
to a dictionary. By using the indexer, the later entry overwrites the earlier entry,
preventing this error.

You can store multiple members of the same key by making
each value element a list:

SortedList <string, List<MethodInfo>>

Extending our example, the following retrieves the MethodInfo whose key is
"GetHashCode", just as with an ordinary dictionary:

Console.WriteLine (sorted ["GetHashCode"]);      // Int32 GetHashCode()

So far, everything we’ve done would also work with a SortedDictionary<,>. The
following two lines, however, which retrieve the last key and value, work only with a
sorted list:

Console.WriteLine (sorted.Keys  [sorted.Count - 1]);            // ToString
Console.WriteLine (sorted.Values[sorted.Count - 1].IsVirtual);  // True

400 | Chapter 7: Collections



Customizable Collections and Proxies
The collection classes discussed in previous sections are convenient in that you can
directly instantiate them, but they don’t allow you to control what happens when an
item is added to or removed from the collection. With strongly typed collections in
an application, you sometimes need this control; for instance:

• To fire an event when an item is added or removed•
• To update properties because of the added or removed item•
• To detect an “illegal” add/remove operation and throw an exception (for exam‐•

ple, if the operation violates a business rule)

The .NET BCL provides collection classes for this exact purpose, in the System
.Collections.ObjectModel namespace. These are essentially proxies or wrappers
that implement IList<T> or IDictionary<,> by forwarding the methods through
to an underlying collection. Each Add, Remove, or Clear operation is routed via a
virtual method that acts as a “gateway” when overridden.

Customizable collection classes are commonly used for publicly exposed col‐
lections; for instance, a collection of controls exposed publicly on a System
.Windows.Form class.

Collection<T> and CollectionBase
The Collection<T> class is a customizable wrapper for List<T>.

As well as implementing IList<T> and IList, it defines four additional virtual
methods and a protected property as follows:

public class Collection<T> :
  IList<T>, ICollection<T>, IEnumerable<T>, IList, ICollection, IEnumerable
{
   // ...

   protected virtual void ClearItems();
   protected virtual void InsertItem (int index, T item);
   protected virtual void RemoveItem (int index);
   protected virtual void SetItem (int index, T item);

   protected IList<T> Items { get; }
}

The virtual methods provide the gateway by which you can “hook in” to change or
enhance the list’s normal behavior. The protected Items property allows the imple‐
menter to directly access the “inner list”—this is used to make changes internally
without the virtual methods firing.

The virtual methods need not be overridden; they can be left alone until there’s a
requirement to alter the list’s default behavior. The following example demonstrates
the typical “skeleton” use of Collection<T>:
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Zoo zoo = new Zoo();
zoo.Animals.Add (new Animal ("Kangaroo", 10));
zoo.Animals.Add (new Animal ("Mr Sea Lion", 20));
foreach (Animal a in zoo.Animals) Console.WriteLine (a.Name);

public class Animal
{
  public string Name;
  public int Popularity;

  public Animal (string name, int popularity)
  {
    Name = name; Popularity = popularity;
  }
}

public class AnimalCollection : Collection <Animal>
{
  // AnimalCollection is already a fully functioning list of animals.
  // No extra code is required.
}

public class Zoo   // The class that will expose AnimalCollection.
{                  // This would typically have additional members.

  public readonly AnimalCollection Animals = new AnimalCollection();
}

As it stands, AnimalCollection is no more functional than a simple List<Animal>;
its role is to provide a base for future extension. To illustrate, let’s now add a Zoo
property to Animal so that it can reference the Zoo in which it lives and override
each of the virtual methods in Collection<Animal> to maintain that property
automatically:

public class Animal
{
  public string Name;
  public int Popularity;
  public Zoo Zoo { get; internal set; }
  public Animal(string name, int popularity)
  {
    Name = name; Popularity = popularity;
  }
}

public class AnimalCollection : Collection <Animal>
{
  Zoo zoo;
  public AnimalCollection (Zoo zoo) { this.zoo = zoo; }

  protected override void InsertItem (int index, Animal item)
  {
    base.InsertItem (index, item);
    item.Zoo = zoo;
  }
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  protected override void SetItem (int index, Animal item)
  {
    base.SetItem (index, item);
    item.Zoo = zoo;
  }
  protected override void RemoveItem (int index)
  {
    this [index].Zoo = null;
    base.RemoveItem (index);
  }
  protected override void ClearItems()
  {
    foreach (Animal a in this) a.Zoo = null;
    base.ClearItems();
  }
}

public class Zoo
{
  public readonly AnimalCollection Animals;
  public Zoo() { Animals = new AnimalCollection (this); }
}

Collection<T> also has a constructor accepting an existing IList<T>. Unlike with
other collection classes, the supplied list is proxied rather than copied, meaning
that subsequent changes will be reflected in the wrapping Collection<T> (although
without Collection<T>’s virtual methods firing). Conversely, changes made via the
Collection<T> will change the underlying list.

CollectionBase
CollectionBase is the nongeneric version of Collection<T>. This provides most
of the same features as Collection<T> but is clumsier to use. Instead of the
template methods InsertItem, RemoveItem, SetItem, and ClearItem, Collection
Base has “hook” methods that double the number of methods required: OnInsert,
OnInsertComplete, OnSet, OnSetComplete, OnRemove, OnRemoveComplete, OnClear,
and OnClearComplete. Because CollectionBase is nongeneric, you must also
implement typed methods when subclassing it—at a minimum, a typed indexer
and Add method.

KeyedCollection<TKey,TItem> and DictionaryBase
KeyedCollection<TKey,TItem> subclasses Collection<TItem>. It both adds and
subtracts functionality. What it adds is the ability to access items by key, much like
with a dictionary. What it subtracts is the ability to proxy your own inner list.

A keyed collection has some resemblance to an OrderedDictionary in that it com‐
bines a linear list with a hashtable. However, unlike OrderedDictionary, it doesn’t
implement IDictionary and doesn’t support the concept of a key/value pair. Keys
are obtained instead from the items themselves: via the abstract GetKeyForItem
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method. This means enumerating a keyed collection is just like enumerating an
ordinary list.

You can best think of KeyedCollection<TKey,TItem> as Collection<TItem> plus
fast lookup by key.

Because it subclasses Collection<>, a keyed collection inherits all of Collec
tion<>’s functionality, except for the ability to specify an existing list in construc‐
tion. The additional members it defines are as follows:

public abstract class KeyedCollection <TKey, TItem> : Collection <TItem>

  // ...

  protected abstract TKey GetKeyForItem(TItem item);
  protected void ChangeItemKey(TItem item, TKey newKey);

  // Fast lookup by key - this is in addition to lookup by index.
  public TItem this[TKey key] { get; }

  protected IDictionary<TKey, TItem> Dictionary { get; }
}

GetKeyForItem is what the implementer overrides to obtain an item’s key from
the underlying object. The ChangeItemKey method must be called if the item’s
key property changes, in order to update the internal dictionary. The Dictionary
property returns the internal dictionary used to implement the lookup, which is
created when the first item is added. This behavior can be changed by specifying
a creation threshold in the constructor, delaying the internal dictionary from being
created until the threshold is reached (in the interim, a linear search is performed
if an item is requested by key). A good reason not to specify a creation threshold
is that having a valid dictionary can be useful in obtaining an ICollection<> of
keys, via the Dictionary’s Keys property. This collection can then be passed on to a
public property.

The most common use for KeyedCollection<,> is in providing a collection of
items accessible both by index and by name. To demonstrate this, let’s revisit
the zoo, this time implementing AnimalCollection as a KeyedCollection<string,
Animal>:

public class Animal
{
  string name;
  public string Name
  {
    get { return name; }
    set {
      if (Zoo != null) Zoo.Animals.NotifyNameChange (this, value);
      name = value;
    }
  }
  public int Popularity;
  public Zoo Zoo { get; internal set; }
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  public Animal (string name, int popularity)
  {
    Name = name; Popularity = popularity;
  }
}

public class AnimalCollection : KeyedCollection <string, Animal>
{
  Zoo zoo;
  public AnimalCollection (Zoo zoo) { this.zoo = zoo; }

  internal void NotifyNameChange (Animal a, string newName) =>
    this.ChangeItemKey (a, newName);

  protected override string GetKeyForItem (Animal item) => item.Name;

  // The following methods would be implemented as in the previous example
  protected override void InsertItem (int index, Animal item)...
  protected override void SetItem (int index, Animal item)...
  protected override void RemoveItem (int index)...
  protected override void ClearItems()...
}

public class Zoo
{
  public readonly AnimalCollection Animals;
  public Zoo() { Animals = new AnimalCollection (this); }
}

The following code demonstrates its use:

Zoo zoo = new Zoo();
zoo.Animals.Add (new Animal ("Kangaroo", 10));
zoo.Animals.Add (new Animal ("Mr Sea Lion", 20));
Console.WriteLine (zoo.Animals [0].Popularity);               // 10
Console.WriteLine (zoo.Animals ["Mr Sea Lion"].Popularity);   // 20
zoo.Animals ["Kangaroo"].Name = "Mr Roo";
Console.WriteLine (zoo.Animals ["Mr Roo"].Popularity);        // 10

DictionaryBase
The nongeneric version of KeyedCollection is called DictionaryBase. This legacy
class takes a very different approach in that it implements IDictionary and uses
clumsy hook methods like CollectionBase: OnInsert, OnInsertComplete, OnSet,
OnSetComplete, OnRemove, OnRemoveComplete, OnClear, and OnClearComplete (and
additionally, OnGet). The primary advantage of implementing IDictionary over
taking the KeyedCollection approach is that you don’t need to subclass it in order
to obtain keys. But since the very purpose of DictionaryBase is to be subclassed,
it’s no advantage at all. The improved model in KeyedCollection is almost certainly
due to the fact that it was written some years later, with the benefit of hindsight.
DictionaryBase is best considered useful for backward compatibility.
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ReadOnlyCollection<T>
ReadOnlyCollection<T> is a wrapper, or proxy, that provides a read-only view of a
collection. This is useful in allowing a class to publicly expose read-only access to a
collection that the class can still update internally.

A read-only collection accepts the input collection in its constructor, to which it
maintains a permanent reference. It doesn’t take a static copy of the input collection,
so subsequent changes to the input collection are visible through the read-only
wrapper.

To illustrate, suppose that your class wants to provide read-only public access to a
list of strings called Names. We could do this as follows:

public class Test
{
  List<string> names = new List<string>();
  public IReadOnlyList<string> Names => names;
}

Although Names returns a read-only interface, the consumer can still downcast at
runtime to List<string> or IList<string> and then call Add, Remove, or Clear on
the list. ReadOnlyCollection<T> provides a more robust solution:

public class Test
{
  List<string> names = new List<string>();
  public ReadOnlyCollection<string> Names { get; private set; }

  public Test() => Names = new ReadOnlyCollection<string> (names);

  public void AddInternally() => names.Add ("test");
}

Now, only members within the Test class can alter the list of names:

Test t = new Test();

Console.WriteLine (t.Names.Count);       // 0
t.AddInternally();
Console.WriteLine (t.Names.Count);       // 1

t.Names.Add ("test");                    // Compiler error
((IList<string>) t.Names).Add ("test");  // NotSupportedException

Immutable Collections
We just described how ReadOnlyCollection<T> creates a read-only view of a col‐
lection. Restricting the ability to write (mutate) a collection—or any other object—
simplifies software and reduces bugs.

The immutable collections extend this principle, by providing collections that cannot
be modified at all after initialization. Should you need to add an item to an immuta‐
ble collection, you must instantiate a new collection, leaving the old one untouched.
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Immutability is a hallmark of functional programming and has the following bene‐
fits:

• It eliminates a large class of bugs associated with changing state.•
• It vastly simplifies parallelism and multithreading, by avoiding most of the•

thread-safety problems that we describe in Chapters 14, 22, and 23.
• It makes code easier to reason about.•

The disadvantage of immutability is that when you need to make a change, you
must create a whole new object. This incurs a performance hit, although there are
mitigating strategies that we discuss in this section, including the ability to reuse
portions of the original structure.

The immutable collections are part of .NET (in .NET Framework, they are available
via the System.Collections.Immutable NuGet package). All collections are defined in
the System.Collections.Immutable namespace:

Type Internal structure

ImmutableArray<T> Array

ImmutableList<T> AVL tree

ImmutableDictionary<K,V> AVL tree

ImmutableHashSet<T> AVL tree

ImmutableSortedDictionary<K,V> AVL tree

ImmutableSortedSet<T> AVL tree

ImmutableStack<T> Linked list

ImmutableQueue<T> Linked list

The ImmutableArray<T> and ImmutableList<T> types are both immutable versions
of List<T>. Both do the same job but with different performance characteristics
that we discuss in “Immutable Collections and Performance” on page 409.

The immutable collections expose a public interface similar to their mutable coun‐
terparts. The key difference is that the methods that appear to alter the collection
(such as Add or Remove) don’t alter the original collection; instead they return a new
collection with the requested item added or removed. This is called nondestructive
mutation.

Immutable collections prevent the adding and removing of
items; they don’t prevent the items themselves from being
mutated. To get the full benefits of immutability, you need
to ensure that only immutable items end up in an immutable
collection.
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Creating Immutable Collections
Each immutable collection type offers a Create<T>() method, which accepts
optional initial values and returns an initialized immutable collection:

ImmutableArray<int> array = ImmutableArray.Create<int> (1, 2, 3);

Each collection also offers a CreateRange<T> method, which does the same job as
Create<T>; the difference is that its parameter type is IEnumerable<T> instead of
params T[].

You can also create an immutable collection from an existing IEnumerable<T>,
using appropriately extension methods (ToImmutableArray, ToImmutableList,
ToImmutableDictionary, and so on):

var list = new[] { 1, 2, 3 }.ToImmutableList();

Manipulating Immutable Collections
The Add method returns a new collection containing the existing elements plus the
new one:

var oldList = ImmutableList.Create<int> (1, 2, 3);

ImmutableList<int> newList = oldList.Add (4);

Console.WriteLine (oldList.Count);     // 3  (unaltered)
Console.WriteLine (newList.Count);     // 4

The Remove method operates in the same fashion, returning a new collection with
the item removed.

Repeatedly adding or removing elements in this manner is inefficient, because a
new immutable collection is created for each add or remove operation. A better
solution is to call AddRange (or RemoveRange), which accepts an IEnumerable<T> of
items, which are all added or removed in one go:

var anotherList = oldList.AddRange ([4, 5, 6]);

The immutable list and array also defines Insert and InsertRange methods to
insert elements at a particular index, a RemoveAt method to remove at an index, and
RemoveAll, which removes based on a predicate.

Builders
For more complex initialization needs, each immutable collection class defines a
builder counterpart. Builders are classes that are functionally equivalent to a muta‐
ble collection, with similar performance characteristics. After the data is initialized,
calling .ToImmutable() on a builder returns an immutable collection.

ImmutableArray<int>.Builder builder = ImmutableArray.CreateBuilder<int>();
builder.Add (1);
builder.Add (2);
builder.Add (3);
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builder.RemoveAt (0);
ImmutableArray<int> myImmutable = builder.ToImmutable();

You also can use builders to batch multiple updates to an existing immutable
collection:

var builder2 = myImmutable.ToBuilder();
builder2.Add (4);      // Efficient
builder2.Remove (2);   // Efficient
...                    // More changes to builder...
// Return a new immutable collection with all the changes applied:
ImmutableArray<int> myImmutable2 = builder2.ToImmutable();

Immutable Collections and Performance
Most of the immutable collections use an AVL tree internally, which allows the add/
remove operations to reuse portions of the original internal structure rather than
having to re-create the entire thing from scratch. This reduces the overhead of add/
remove operations from potentially huge (with large collections) to just moderately
large, but it comes at the cost of making read operations slower. The end result is
that most immutable collections are slower than their mutable counterparts for both
reading and writing.

The most seriously affected is ImmutableList<T>, which for both read and add
operations, is 10 to 200 times slower than List<T> (depending on the size of the
list). This is why ImmutableArray<T> exists: by using an array inside, it avoids
the overhead for read operations (for which it’s comparable in performance to
an ordinary mutable array). The flipside is that it’s much slower than (even) Immu
tableList<T> for add operations because none of the original structure can be
reused.

Hence, ImmutableArray<T> is desirable when you want unimpeded read-
performance and don’t expect many subsequent calls to Add or Remove (without
using a builder).

Type Read performance Add performance

ImmutableList<T> Slow Slow

ImmutableArray<T> Very fast Very slow

Calling Remove on an ImmutableArray is more expensive than
calling Remove on a List<T>—even in the worst-case scenario
of removing the first element—because allocating the new
collection places additional load on the garbage collector.

Although the immutable collections as a whole incur a potentially significant per‐
formance cost, it’s important to keep the overall magnitude in perspective. An Add
operation on an ImmutableList with a million elements is still likely to occur in
less than a microsecond on a typical laptop, and a read operation, in less than 100

Immutable Collections | 409

C
o

llectio
ns



nanoseconds. And, if you need to perform write-operations in a loop, you can avoid
the accumulated cost with a builder.

The following factors also work to mitigate the costs:

• Immutability allows for easy concurrency and parallelization (Chapter 23), so•
you can employ all available cores. Parallelizing with mutable state easily leads
to errors and requires the use of locks or concurrent collections, both of which
hurt performance.

• With immutability, you don’t need to “defensively copy” collections or data•
structures to guard against unexpected change. This was a factor in favoring
the use of immutable collections in writing recent portions of Visual Studio.

• In most typical programs, few collections have enough items for the difference•
to matter.

In addition to Visual Studio, the well-performing Microsoft Roslyn toolchain was
built with immutable collections, demonstrating how the benefits can outweigh the
costs.

Frozen Collections
From .NET 8, the System.Collections.Frozen namespace contains the following
two read-only collection classes:

FrozenDictionary<TKey,TValue>
FrozenSet<T>

These are similar to ImmutableDictionary<K,V> and ImmutableHashSet<T>, but
lack methods for nondestructive mutation (such as Add or Remove), allowing for
highly optimized read performance. To create a frozen collection, you start with
another collection or sequence and then call the ToFrozenDictionary or ToFrozen
Set extension method:

int[] numbers = { 10, 20, 30 };
FrozenSet<int> frozen = numbers.ToFrozenSet();
Console.WriteLine (frozen.Contains (10));   // True

Frozen collections are great for lookups that are initialized at the start of a program
and then used throughout the life of the application:

class Disassembler
{
  public readonly static IReadOnlyDictionary<string,string> OpCodeLookup =
    new Dictionary<string, string>()
    {
      { "ADC", "Add with Carry" },
      { "ADD", "Add" },
      { "AND", "Logical AND" },
      { "ANDN", "Logical AND NOT" },
      ...
    }
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    .ToFrozenDictionary();

  ...
}

The frozen collections implement the standard dictionary/set interfaces, includ‐
ing their read-only versions. In this example, we exposed our FrozenDiction
ary<string,string> as a field of type IReadOnlyDictionary<string,string>.

Plugging in Equality and Order
In the sections “Equality Comparison” on page 226 and “Order Comparison” on
page 355, we described the standard .NET protocols that make a type equatable,
hashable, and comparable. A type that implements these protocols can function
correctly in a dictionary or sorted list “out of the box.” More specifically:

• A type for which Equals and GetHashCode return meaningful results can be•
used as a key in a Dictionary or Hashtable.

• A type that implements IComparable /IComparable<T> can be used as a key in•
any of the sorted dictionaries or lists.

A type’s default equating or comparison implementation typically reflects what is
most “natural” for that type. Sometimes, however, the default behavior is not what
you want. You might need a dictionary whose string type key is treated without
respect to case. Or you might want a sorted list of customers, sorted by each
customer’s postcode. For this reason, .NET also defines a matching set of “plug-in”
protocols. The plug-in protocols achieve two things:

• They allow you to switch in alternative equating or comparison behavior.•
• They allow you to use a dictionary or sorted collection with a key type that’s•

not intrinsically equatable or comparable.

The plug-in protocols consist of the following interfaces:

IEqualityComparer and IEqualityComparer<T>
• Performs plug-in equality comparison and hashing•

• Recognized by Hashtable and Dictionary•

IComparer and IComparer<T>
• Performs plug-in order comparison•

• Recognized by the sorted dictionaries and collections; also, Array.Sort•

Each interface comes in both generic and nongeneric forms. The IEquality
Comparer interfaces also have a default implementation in a class called Equality
Comparer.
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In addition, there are interfaces called IStructuralEquatable and IStructuralCom
parable which allow for the option of structural comparisons on classes and arrays.

IEqualityComparer and EqualityComparer
An equality comparer switches in nondefault equality and hashing behavior, pri‐
marily for the Dictionary and Hashtable classes.

Recall the requirements of a hashtable-based dictionary. It needs answers to two
questions for any given key:

• Is it the same as another?•
• What is its integer hashcode?•

An equality comparer answers these questions by implementing the IEquality
Comparer interfaces:

public interface IEqualityComparer<T>
{
   bool Equals (T x, T y);
   int GetHashCode (T obj);
}

public interface IEqualityComparer     // Nongeneric version
{
   bool Equals (object x, object y);
   int GetHashCode (object obj);
}

To write a custom comparer, you implement one or both of these interfaces (imple‐
menting both gives maximum interoperability). Because this is somewhat tedious,
an alternative is to subclass the abstract EqualityComparer class, defined as follows:

public abstract class EqualityComparer<T> : IEqualityComparer,
                                            IEqualityComparer<T>
{
  public abstract bool Equals (T x, T y);
  public abstract int GetHashCode (T obj);

  bool IEqualityComparer.Equals (object x, object y);
  int IEqualityComparer.GetHashCode (object obj);

  public static EqualityComparer<T> Default { get; }
}

EqualityComparer implements both interfaces; your job is simply to override the
two abstract methods.

The semantics for Equals and GetHashCode follow the same rules for
object.Equals and object.GetHashCode, described in Chapter 6. In the following
example, we define a Customer class with two fields and then write an equality
comparer that matches both the first and last names:
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public class Customer
{
  public string LastName;
  public string FirstName;

  public Customer (string last, string first)
  {
    LastName = last;
    FirstName = first;
  }
}
public class LastFirstEqComparer : EqualityComparer <Customer>
{
  public override bool Equals (Customer x, Customer y)
    => x.LastName == y.LastName && x.FirstName == y.FirstName;

  public override int GetHashCode (Customer obj)
    => (obj.LastName + ";" + obj.FirstName).GetHashCode();
}

To illustrate how this works, let’s create two customers:

Customer c1 = new Customer ("Bloggs", "Joe");
Customer c2 = new Customer ("Bloggs", "Joe");

Because we’ve not overridden object.Equals, normal reference type equality
semantics apply:

Console.WriteLine (c1 == c2);               // False
Console.WriteLine (c1.Equals (c2));         // False

The same default equality semantics apply when using these customers in a Dictio
nary without specifying an equality comparer:

var d = new Dictionary<Customer, string>();
d [c1] = "Joe";
Console.WriteLine (d.ContainsKey (c2));         // False

Now, with the custom equality comparer:

var eqComparer = new LastFirstEqComparer();
var d = new Dictionary<Customer, string> (eqComparer);
d [c1] = "Joe";
Console.WriteLine (d.ContainsKey (c2));         // True

In this example, we would have to be careful not to change the customer’s First
Name or LastName while it was in use in the dictionary; otherwise, its hashcode
would change and the Dictionary would break.

EqualityComparer<T>.Default
Calling EqualityComparer<T>.Default returns a general-purpose equality com‐
parer that you can use as an alternative to the static object.Equals method. The
advantage is that it first checks whether T implements IEquatable<T>, and if so, it
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calls that implementation instead, avoiding the boxing overhead. This is particularly
useful in generic methods:

static bool Foo<T> (T x, T y)
{
  bool same = EqualityComparer<T>.Default.Equals (x, y);
  ...

ReferenceEqualityComparer.Instance (.NET 5+)
From .NET 5, ReferenceEqualityComparer.Instance returns an equality com‐
parer that always applies referential equality. In the case of value types, its Equals
method always returns false.

IComparer and Comparer
Comparers are used to switch in custom ordering logic for sorted dictionaries and
collections.

Note that a comparer is useless to the unsorted dictionaries such as Dictionary
and Hashtable—these require an IEqualityComparer to get hashcodes. Similarly,
an equality comparer is useless for sorted dictionaries and collections.

Here are the IComparer interface definitions:

public interface IComparer
{
  int Compare(object x, object y);
}
public interface IComparer <in T>
{
  int Compare(T x, T y);
}

As with equality comparers, there’s an abstract class that you can subtype instead of
implementing the interfaces:

public abstract class Comparer<T> : IComparer, IComparer<T>
{
   public static Comparer<T> Default { get; }

   public abstract int Compare (T x, T y);       // Implemented by you
   int IComparer.Compare (object x, object y);   // Implemented for you
}

The following example illustrates a class that describes a wish as well as a comparer
that sorts wishes by priority:

class Wish
{
  public string Name;
  public int Priority;

  public Wish (string name, int priority)
  {
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    Name = name;
    Priority = priority;
  }
}

class PriorityComparer : Comparer<Wish>
{
  public override int Compare (Wish x, Wish y)
  {
    if (object.Equals (x, y)) return 0;    // Optimization
    if (x == null) return -1;
    if (y == null) return 1;
    return x.Priority.CompareTo (y.Priority);
  }
}

The object.Equals check ensures that we can never contradict the Equals method.
Calling the static object.Equals method in this case is better than calling x.Equals
because it still works if x is null!

Here’s how our PriorityComparer is used to sort a List:

var wishList = new List<Wish>();
wishList.Add (new Wish ("Peace", 2));
wishList.Add (new Wish ("Wealth", 3));
wishList.Add (new Wish ("Love", 2));
wishList.Add (new Wish ("3 more wishes", 1));

wishList.Sort (new PriorityComparer());
foreach (Wish w in wishList) Console.Write (w.Name + " | ");

// OUTPUT: 3 more wishes | Love | Peace | Wealth |

In the next example, SurnameComparer allows you to sort surname strings in an
order suitable for a phonebook listing:

class SurnameComparer : Comparer <string>
{
  string Normalize (string s)
  {
    s = s.Trim().ToUpper();
    if (s.StartsWith ("MC")) s = "MAC" + s.Substring (2);
    return s;
  }

  public override int Compare (string x, string y)
    => Normalize (x).CompareTo (Normalize (y));
}

Here’s SurnameComparer in use in a sorted dictionary:

var dic = new SortedDictionary<string,string> (new SurnameComparer());
dic.Add ("MacPhail", "second!");
dic.Add ("MacWilliam", "third!");
dic.Add ("McDonald", "first!");
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foreach (string s in dic.Values)
  Console.Write (s + " ");              // first! second! third!

StringComparer
StringComparer is a predefined plug-in class for equating and comparing strings,
allowing you to specify language and case sensitivity. StringComparer implements
both IEqualityComparer and IComparer (and their generic versions), so you can
use it with any type of dictionary or sorted collection.

Because StringComparer is abstract, you obtain instances via its static properties.
StringComparer.Ordinal mirrors the default behavior for string equality compari‐
son and StringComparer.CurrentCulture for order comparison. Here are all of its
static members:

public static StringComparer CurrentCulture { get; }
public static StringComparer CurrentCultureIgnoreCase { get; }
public static StringComparer InvariantCulture { get; }
public static StringComparer InvariantCultureIgnoreCase { get; }
public static StringComparer Ordinal { get; }
public static StringComparer OrdinalIgnoreCase { get; }
public static StringComparer Create (CultureInfo culture,
                                       bool ignoreCase);

In the following example, an ordinal case-insensitive dictionary is created such that
dict["Joe"] and dict["JOE"] mean the same thing:

var dict = new Dictionary<string, int> (StringComparer.OrdinalIgnoreCase);

In the next example, an array of names is sorted, using Australian English:

string[] names = { "Tom", "HARRY", "sheila" };
CultureInfo ci = new CultureInfo ("en-AU");
Array.Sort<string> (names, StringComparer.Create (ci, false));

The final example is a culture-aware version of the SurnameComparer we wrote in
the previous section (to compare names suitable for a phonebook listing):

class SurnameComparer : Comparer<string>
{
  StringComparer strCmp;

  public SurnameComparer (CultureInfo ci)
  {
    // Create a case-sensitive, culture-sensitive string comparer
    strCmp = StringComparer.Create (ci, false);
  }

  string Normalize (string s)
  {
    s = s.Trim();
    if (s.ToUpper().StartsWith ("MC")) s = "MAC" + s.Substring (2);
    return s;
  }
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  public override int Compare (string x, string y)
  {
    // Directly call Compare on our culture-aware StringComparer
    return strCmp.Compare (Normalize (x), Normalize (y));
  }
}

IStructuralEquatable and IStructuralComparable
As we discussed in Chapter 6, structs implement structural comparison by default:
two structs are equal if all of their fields are equal. Sometimes, however, structural
equality and order comparison are useful as plug-in options on other types, as
well—such as arrays. The following interfaces help with this:

public interface IStructuralEquatable
{
  bool Equals (object other, IEqualityComparer comparer);
  int GetHashCode (IEqualityComparer comparer);
}

public interface IStructuralComparable
{
  int CompareTo (object other, IComparer comparer);
}

The IEqualityComparer/IComparer that you pass in are applied to each individual
element in the composite object. We can demonstrate this by using arrays. In
the following example, we compare two arrays for equality, first using the default
Equals method, then using IStructuralEquatable’s version:

int[] a1 = { 1, 2, 3 };
int[] a2 = { 1, 2, 3 };
IStructuralEquatable se1 = a1;
Console.Write (a1.Equals (a2));                                  // False
Console.Write (se1.Equals (a2, EqualityComparer<int>.Default));  // True

Here’s another example:

string[] a1 = "the quick brown fox".Split();
string[] a2 = "THE QUICK BROWN FOX".Split();
IStructuralEquatable se1 = a1;
bool isTrue = se1.Equals (a2, StringComparer.InvariantCultureIgnoreCase);
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8
LINQ Queries

LINQ, or Language Integrated Query, is a set of language and runtime features for
writing structured type-safe queries over local object collections and remote data
sources.

LINQ enables you to query any collection implementing IEnumerable<T>, whether
an array, list, or XML Document Object Model (DOM), as well as remote data
sources, such as tables in an SQL Server database. LINQ offers the benefits of both
compile-time type checking and dynamic query composition.

This chapter describes the LINQ architecture and the fundamentals of writing quer‐
ies. All core types are defined in the System.Linq and System.Linq.Expressions
namespaces.

The examples in this and the following two chapters are pre‐
loaded into an interactive querying tool called LINQPad. You
can download LINQPad from http://www.linqpad.net.

Getting Started
The basic units of data in LINQ are sequences and elements. A sequence is any object
that implements IEnumerable<T>, and an element is each item in the sequence. In
the following example, names is a sequence, and "Tom", "Dick", and "Harry" are
elements:

string[] names = { "Tom", "Dick", "Harry" };

We call this a local sequence because it represents a local collection of objects in
memory.

A query operator is a method that transforms a sequence. A typical query operator
accepts an input sequence and emits a transformed output sequence. In the Enumera
ble class in System.Linq, there are around 40 query operators—all implemented as
static extension methods. These are called standard query operators.
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Queries that operate over local sequences are called local quer‐
ies or LINQ-to-objects queries.
LINQ also supports sequences that can be dynamically fed
from a remote data source such as an SQL Server database.
These sequences additionally implement the IQueryable<T>
interface and are supported through a matching set of stan‐
dard query operators in the Queryable class. We discuss this
further in “Interpreted Queries” on page 448.

A query is an expression that, when enumerated, transforms sequences with query
operators. The simplest query comprises one input sequence and one operator. For
instance, we can apply the Where operator on a simple array to extract those strings
whose length is at least four characters, as follows:

string[] names = { "Tom", "Dick", "Harry" };
IEnumerable<string> filteredNames = System.Linq.Enumerable.Where
                                    (names, n => n.Length >= 4);
foreach (string n in filteredNames)
  Console.WriteLine (n);

Dick
Harry

Because the standard query operators are implemented as extension methods, we
can call Where directly on names, as though it were an instance method:

IEnumerable<string> filteredNames = names.Where (n => n.Length >= 4);

For this to compile, you must import the System.Linq namespace. Here’s a com‐
plete example:

using System;
using System.Collections.Generic;
using System.Linq;

string[] names = { "Tom", "Dick", "Harry" };

IEnumerable<string> filteredNames = names.Where (n => n.Length >= 4);
foreach (string name in filteredNames) Console.WriteLine (name);

Dick
Harry

We could further shorten our code by implicitly typing filter
edNames:

var filteredNames = names.Where (n => n.Length >= 4);

This can hinder readability, however, outside of an IDE, where
there are no tool tips to help. For this reason, we make less use
of implicit typing in this chapter than you might in your own
projects.

420 | Chapter 8: LINQ Queries



1 The term is based on Eric Evans and Martin Fowler’s work on fluent interfaces.

Most query operators accept a lambda expression as an argument. The lambda
expression helps guide and shape the query. In our example, the lambda expression
is as follows:

n => n.Length >= 4

The input argument corresponds to an input element. In this case, the input argu‐
ment n represents each name in the array and is of type string. The Where operator
requires that the lambda expression return a bool value, which if true, indicates
that the element should be included in the output sequence. Here’s its signature:

public static IEnumerable<TSource> Where<TSource>
  (this IEnumerable<TSource> source, Func<TSource,bool> predicate)

The following query extracts all names that contain the letter “a”:

IEnumerable<string> filteredNames = names.Where (n => n.Contains ("a"));

foreach (string name in filteredNames)
  Console.WriteLine (name);             // Harry

So far, we’ve built queries using extension methods and lambda expressions. As
you’ll see shortly, this strategy is highly composable in that it allows the chaining
of query operators. In this book, we refer to this as fluent syntax.1 C# also provides
another syntax for writing queries, called query expression syntax. Here’s our preced‐
ing query written as a query expression:

IEnumerable<string> filteredNames = from n in names
                                    where n.Contains ("a")
                                    select n;

Fluent syntax and query syntax are complementary. In the following two sections,
we explore each in more detail.

Fluent Syntax
Fluent syntax is the most flexible and fundamental. In this section, we describe how
to chain query operators to form more complex queries—and show why extension
methods are important to this process. We also describe how to formulate lambda
expressions for a query operator and introduce several new query operators.

Chaining Query Operators
In the preceding section, we showed two simple queries, each comprising a single
query operator. To build more complex queries, you append additional query oper‐
ators to the expression, creating a chain. To illustrate, the following query extracts
all strings containing the letter “a,” sorts them by length, and then converts the
results to uppercase:

Fluent Syntax | 421

LIN
Q

 Q
ueries



using System;
using System.Collections.Generic;
using System.Linq;

string[] names = { "Tom", "Dick", "Harry", "Mary", "Jay" };

IEnumerable<string> query = names
  .Where   (n => n.Contains ("a"))
  .OrderBy (n => n.Length)
  .Select  (n => n.ToUpper());

foreach (string name in query) Console.WriteLine (name);

JAY
MARY
HARRY

The variable, n, in our example, is privately scoped to each of
the lambda expressions. We can reuse the identifier n for the
same reason that we can reuse the identifier c in the following
method:

void Test()
{
  foreach (char c in "string1") Console.Write (c);
  foreach (char c in "string2") Console.Write (c);
  foreach (char c in "string3") Console.Write (c);
}

Where, OrderBy, and Select are standard query operators that resolve to extension
methods in the Enumerable class (if you import the System.Linq namespace).

We already introduced the Where operator, which emits a filtered version of the
input sequence. The OrderBy operator emits a sorted version of its input sequence;
the Select method emits a sequence in which each input element is transformed
or projected with a given lambda expression (n.ToUpper(), in this case). Data flows
from left to right through the chain of operators, so the data is first filtered, then
sorted, and then projected.

A query operator never alters the input sequence; instead, it
returns a new sequence. This is consistent with the functional
programming paradigm from which LINQ was inspired.

Here are the signatures of each of these extension methods (with the OrderBy
signature slightly simplified):

public static IEnumerable<TSource> Where<TSource>
  (this IEnumerable<TSource> source, Func<TSource,bool> predicate)

public static IEnumerable<TSource> OrderBy<TSource,TKey>
  (this IEnumerable<TSource> source, Func<TSource,TKey> keySelector)

public static IEnumerable<TResult> Select<TSource,TResult>
  (this IEnumerable<TSource> source, Func<TSource,TResult> selector)
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When query operators are chained as in this example, the output sequence of
one operator is the input sequence of the next. The complete query resembles a
production line of conveyor belts, as illustrated in Figure 8-1.

Figure 8-1. Chaining query operators

We can construct the identical query progressively, as follows:

// You must import the System.Linq namespace for this to compile:

IEnumerable<string> filtered   = names   .Where   (n => n.Contains ("a"));
IEnumerable<string> sorted     = filtered.OrderBy (n => n.Length);
IEnumerable<string> finalQuery = sorted  .Select  (n => n.ToUpper());

finalQuery is compositionally identical to the query we constructed previously.
Further, each intermediate step also comprises a valid query that we can execute:

foreach (string name in filtered)
  Console.Write (name + "|");        // Harry|Mary|Jay|

Console.WriteLine();
foreach (string name in sorted)
  Console.Write (name + "|");        // Jay|Mary|Harry|

Console.WriteLine();
foreach (string name in finalQuery)
  Console.Write (name + "|");        // JAY|MARY|HARRY|

Why extension methods are important
Instead of using extension method syntax, you can use conventional static method
syntax to call the query operators:

IEnumerable<string> filtered = Enumerable.Where (names,
                                                 n => n.Contains ("a"));
IEnumerable<string> sorted = Enumerable.OrderBy (filtered, n => n.Length);
IEnumerable<string> finalQuery = Enumerable.Select (sorted,
                                                    n => n.ToUpper());

This is, in fact, how the compiler translates extension method calls. Shunning
extension methods comes at a cost, however, if you want to write a query in a
single statement as we did earlier. Let’s revisit the single-statement query—first in
extension method syntax:
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IEnumerable<string> query = names.Where   (n => n.Contains ("a"))
                                 .OrderBy (n => n.Length)
                                 .Select  (n => n.ToUpper());

Its natural linear shape reflects the left-to-right flow of data and also keeps lambda
expressions alongside their query operators (infix notation). Without extension
methods, the query loses its fluency:

IEnumerable<string> query =
  Enumerable.Select (
    Enumerable.OrderBy (
      Enumerable.Where (
        names, n => n.Contains ("a")
      ), n => n.Length
    ), n => n.ToUpper()
  );

Composing Lambda Expressions
In previous examples, we fed the following lambda expression to the Where
operator:

n => n.Contains ("a")      // Input type = string, return type = bool.

A lambda expression that takes a value and returns a bool is
called a predicate.

The purpose of the lambda expression depends on the particular query operator.
With the Where operator, it indicates whether an element should be included in the
output sequence. In the case of the OrderBy operator, the lambda expression maps
each element in the input sequence to its sorting key. With the Select operator,
the lambda expression determines how each element in the input sequence is
transformed before being fed to the output sequence.

A lambda expression in a query operator always works on
individual elements in the input sequence—not the sequence
as a whole.

The query operator evaluates your lambda expression upon demand, typically once
per element in the input sequence. Lambda expressions allow you to feed your
own logic into the query operators. This makes the query operators versatile as
well as being simple under the hood. Here’s a complete implementation of Enumera
ble.Where, exception handling aside:

public static IEnumerable<TSource> Where<TSource>
  (this IEnumerable<TSource> source, Func<TSource,bool> predicate)
{
  foreach (TSource element in source)
    if (predicate (element))
      yield return element;
}
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Lambda expressions and Func signatures
The standard query operators utilize generic Func delegates. Func is a family of
general-purpose generic delegates in the System namespace, defined with the fol‐
lowing intent:

The type arguments in Func appear in the same order as they do in lambda
expressions.

Hence, Func<TSource,bool> matches a TSource=>bool lambda expression: one that
accepts a TSource argument and returns a bool value.

Similarly, Func<TSource,TResult> matches a TSource=>TResult lambda
expression.

The Func delegates are listed in “Lambda Expressions” on page 188.

Lambda expressions and element typing
The standard query operators use the following type parameter names:

Generic type letter Meaning

TSource Element type for the input sequence

TResult Element type for the output sequence (if different from TSource)

TKey Element type for the key used in sorting, grouping, or joining

TSource is determined by the input sequence. TResult and TKey are typically
inferred from your lambda expression.

For example, consider the signature of the Select query operator:

public static IEnumerable<TResult> Select<TSource,TResult>
  (this IEnumerable<TSource> source, Func<TSource,TResult> selector)

Func<TSource,TResult> matches a TSource=>TResult lambda expression: one that
maps an input element to an output element. TSource and TResult can be different
types, so the lambda expression can change the type of each element. Further, the
lambda expression determines the output sequence type. The following query uses
Select to transform string type elements to integer type elements:

string[] names = { "Tom", "Dick", "Harry", "Mary", "Jay" };
IEnumerable<int> query = names.Select (n => n.Length);

foreach (int length in query)
  Console.Write (length + "|");    // 3|4|5|4|3|

The compiler can infer the type of TResult from the return value of the lambda
expression. In this case, n.Length returns an int value, so TResult is inferred to be
int.
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The Where query operator is simpler and requires no type inference for the output
because input and output elements are of the same type. This makes sense because
the operator merely filters elements; it does not transform them:

public static IEnumerable<TSource> Where<TSource>
  (this IEnumerable<TSource> source, Func<TSource,bool> predicate)

Finally, consider the signature of the OrderBy operator:

// Slightly simplified:
public static IEnumerable<TSource> OrderBy<TSource,TKey>
  (this IEnumerable<TSource> source, Func<TSource,TKey> keySelector)

Func<TSource,TKey> maps an input element to a sorting key. TKey is inferred
from your lambda expression and is separate from the input and output element
types. For instance, we could choose to sort a list of names by length (int key) or
alphabetically (string key):

string[] names = { "Tom", "Dick", "Harry", "Mary", "Jay" };
IEnumerable<string> sortedByLength, sortedAlphabetically;
sortedByLength       = names.OrderBy (n => n.Length);   // int key
sortedAlphabetically = names.OrderBy (n => n);          // string key

You can call the query operators in Enumerable with tra‐
ditional delegates that refer to methods instead of lambda
expressions. This approach is effective in simplifying certain
kinds of local queries—particularly with LINQ to XML—and
is demonstrated in Chapter 10. It doesn’t work with IQuerya
ble<T>-based sequences, however (e.g., when querying a data‐
base), because the operators in Queryable require lambda
expressions in order to emit expression trees. We discuss this
later in “Interpreted Queries” on page 448.

Natural Ordering
The original ordering of elements within an input sequence is significant in LINQ.
Some query operators rely on this ordering, such as Take, Skip, and Reverse.

The Take operator outputs the first x elements, discarding the rest:

int[] numbers  = { 10, 9, 8, 7, 6 };
IEnumerable<int> firstThree = numbers.Take (3);     // { 10, 9, 8 }

The Skip operator ignores the first x elements and outputs the rest:

IEnumerable<int> lastTwo    = numbers.Skip (3);     // { 7, 6 }

Reverse does exactly as it says:

IEnumerable<int> reversed   = numbers.Reverse();    // { 6, 7, 8, 9, 10 }

With local queries (LINQ-to-objects), operators such as Where and Select preserve
the original ordering of the input sequence (as do all other query operators, except
for those that specifically change the ordering).
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Other Operators
Not all query operators return a sequence. The element operators extract one ele‐
ment from the input sequence; examples are First, Last, and ElementAt:

int[] numbers    = { 10, 9, 8, 7, 6 };
int firstNumber  = numbers.First();                        // 10
int lastNumber   = numbers.Last();                         // 6
int secondNumber = numbers.ElementAt(1);                   // 9
int secondLowest = numbers.OrderBy(n=>n).Skip(1).First();  // 7

Because these operators return a single element, you don’t usually call further query
operators on their result unless that element itself is a collection.

The aggregation operators return a scalar value, usually of numeric type:

int count = numbers.Count();          // 5;
int min = numbers.Min();              // 6;

The quantifiers return a bool value:

bool hasTheNumberNine = numbers.Contains (9);          // true
bool hasMoreThanZeroElements = numbers.Any();          // true
bool hasAnOddElement = numbers.Any (n => n % 2 != 0);  // true

Some query operators accept two input sequences. Examples are Concat, which
appends one sequence to another, and Union, which does the same but with dupli‐
cates removed:

int[] seq1 = { 1, 2, 3 };
int[] seq2 = { 3, 4, 5 };
IEnumerable<int> concat = seq1.Concat (seq2);    //  { 1, 2, 3, 3, 4, 5 }
IEnumerable<int> union  = seq1.Union (seq2);     //  { 1, 2, 3, 4, 5 }

The joining operators also fall into this category. Chapter 9 covers all of the query
operators in detail.

Query Expressions
C# provides a syntactic shortcut for writing LINQ queries, called query expressions.
Contrary to popular belief, a query expression is not a means of embedding SQL
into C#. In fact, the design of query expressions was inspired primarily by list
comprehensions from functional programming languages such as LISP and Haskell,
although SQL had a cosmetic influence.

In this book, we refer to query expression syntax simply as
query syntax.
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In the preceding section, we wrote a fluent-syntax query to extract strings contain‐
ing the letter “a,” sorted by length and converted to uppercase. Here’s the same thing
in query syntax:

using System;
using System.Collections.Generic;
using System.Linq;

string[] names = { "Tom", "Dick", "Harry", "Mary", "Jay" };

IEnumerable<string> query =
  from    n in names
  where   n.Contains ("a")     // Filter elements
  orderby n.Length             // Sort elements
  select  n.ToUpper();         // Translate each element (project)

foreach (string name in query) Console.WriteLine (name);

JAY
MARY
HARRY

Query expressions always start with a from clause and end with either a select
or group clause. The from clause declares a range variable (in this case, n), which
you can think of as traversing the input sequence—rather like foreach. Figure 8-2
illustrates the complete syntax as a railroad diagram.

To read this diagram, start at the left and then proceed along
the track as if you were a train. For instance, after the manda‐
tory from clause, you can optionally include an orderby,
where, let, or join clause. After that, you can either continue
with a select or group clause, or go back and include another
from, orderby, where, let, or join clause.
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Figure 8-2. Query syntax

The compiler processes a query expression by translating it into fluent syntax. It
does this in a fairly mechanical fashion—much like it translates foreach statements
into calls to GetEnumerator and MoveNext. This means that anything you can
write in query syntax you can also write in fluent syntax. The compiler (initially)
translates our example query into the following:

IEnumerable<string> query = names.Where   (n => n.Contains ("a"))
                                 .OrderBy (n => n.Length)
                                 .Select  (n => n.ToUpper());

The Where, OrderBy, and Select operators then resolve using the same rules that
would apply if the query were written in fluent syntax. In this case, they bind to
extension methods in the Enumerable class because the System.Linq namespace
is imported and names implements IEnumerable<string>. The compiler doesn’t
specifically favor the Enumerable class, however, when translating query expres‐
sions. You can think of the compiler as mechanically injecting the words “Where,”
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“OrderBy,” and “Select” into the statement and then compiling it as though you had
typed the method names yourself. This offers flexibility in how they resolve. The
operators in the database queries that we write in later sections, for instance, will
bind instead to extension methods in Queryable.

If we remove the using System.Linq directive from our pro‐
gram, the query would not compile, since the Where, OrderBy,
and Select methods would have nowhere to bind. Query
expressions cannot compile unless you import System.Linq
or another namespace with an implementation of these query
methods.

Range Variables
The identifier immediately following the from keyword syntax is called the range
variable. A range variable refers to the current element in the sequence on which the
operation is to be performed.

In our examples, the range variable n appears in every clause in the query. And yet,
the variable actually enumerates over a different sequence with each clause:

from    n in names           // n is our range variable
where   n.Contains ("a")     // n = directly from the array
orderby n.Length             // n = subsequent to being filtered
select  n.ToUpper()          // n = subsequent to being sorted

This becomes clear when we examine the compiler’s mechanical translation to
fluent syntax:

names.Where   (n => n.Contains ("a"))      // Locally scoped n
     .OrderBy (n => n.Length)              // Locally scoped n
     .Select  (n => n.ToUpper())           // Locally scoped n

As you can see, each instance of n is scoped privately to its own lambda expression.

Query expressions also let you introduce new range variables via the following
clauses:

• let•

• into•

• An additional from clause•

• join•

We cover these later in this chapter in “Composition Strategies” on page 442 as well
as in Chapter 9, in “Projecting” on page 473 and “Joining” on page 473.

Query Syntax Versus SQL Syntax
Query expressions look superficially like SQL, yet the two are very different. A
LINQ query boils down to a C# expression, and so follows standard C# rules. For
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example, with LINQ, you cannot use a variable before you declare it. In SQL, you
can reference a table alias in the SELECT clause before defining it in a FROM clause.

A subquery in LINQ is just another C# expression and so requires no special syntax.
Subqueries in SQL are subject to special rules.

With LINQ, data logically flows from left to right through the query. With SQL, the
order is less well structured with regard to data flow.

A LINQ query comprises a conveyor belt or pipeline of operators that accept and
emit sequences whose element order can matter. An SQL query comprises a network
of clauses that work mostly with unordered sets.

Query Syntax Versus Fluent Syntax
Query and fluent syntax each have advantages.

Query syntax is simpler for queries that involve any of the following:

• A let clause for introducing a new variable alongside the range variable•

• SelectMany, Join, or GroupJoin, followed by an outer range variable reference•

(We describe the let clause in “Composition Strategies” on page 442; we describe
SelectMany, Join, and GroupJoin in Chapter 9.)

The middle ground is queries that involve the simple use of Where, OrderBy, and
Select. Either syntax works well; the choice here is largely personal.

For queries that comprise a single operator, fluent syntax is shorter and less
cluttered.

Finally, there are many operators that have no keyword in query syntax. These
require that you use fluent syntax—at least in part. This means any operator outside
of the following:

Where, Select, SelectMany
OrderBy, ThenBy, OrderByDescending, ThenByDescending
GroupBy, Join, GroupJoin

Mixed-Syntax Queries
If a query operator has no query-syntax support, you can mix query syntax and
fluent syntax. The only restriction is that each query-syntax component must be
complete (i.e., start with a from clause and end with a select or group clause).

Assuming this array declaration

string[] names = { "Tom", "Dick", "Harry", "Mary", "Jay" };

the following example counts the number of names containing the letter “a”:

int matches = (from n in names where n.Contains ("a") select n).Count();
// 3
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The next query obtains the first name in alphabetical order:

string first = (from n in names orderby n select n).First();   // Dick

The mixed-syntax approach is sometimes beneficial in more complex queries. With
these simple examples, however, we could stick to fluent syntax throughout without
penalty:

int matches = names.Where (n => n.Contains ("a")).Count();   // 3
string first = names.OrderBy (n => n).First();               // Dick

There are times when mixed-syntax queries offer by far the
highest “bang for the buck” in terms of function and simplic‐
ity. It’s important not to unilaterally favor either query or flu‐
ent syntax; otherwise, you’ll be unable to write mixed-syntax
queries when they are the best option.

Where applicable, the remainder of this chapter shows key concepts in both fluent
and query syntax.

Deferred Execution
An important feature of most query operators is that they execute not when con‐
structed but when enumerated (in other words, when MoveNext is called on its
enumerator). Consider the following query:

var numbers = new List<int> { 1 };

IEnumerable<int> query = numbers.Select (n => n * 10);    // Build query

numbers.Add (2);                    // Sneak in an extra element

foreach (int n in query)
  Console.Write (n + "|");          // 10|20|

The extra number that we sneaked into the list after constructing the query is
included in the result because it’s not until the foreach statement runs that any
filtering or sorting takes place. This is called deferred or lazy execution and is the
same as what happens with delegates:

Action a = () => Console.WriteLine ("Foo");
// We’ve not written anything to the Console yet. Now let’s run it:
a();  // Deferred execution!

All standard query operators provide deferred execution, with the following
exceptions:

• Operators that return a single element or scalar value, such as First or Count•
• The following conversion operators:•

ToArray, ToList, ToDictionary, ToLookup, ToHashSet
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These operators cause immediate query execution because their result types have
no mechanism to provide deferred execution. The Count method, for instance,
returns a simple integer, which doesn’t then get enumerated. The following query is
executed immediately:

int matches = numbers.Where (n => n <= 2).Count();    // 1

Deferred execution is important because it decouples query construction from query
execution. This allows you to construct a query in several steps and also makes
database queries possible.

Subqueries provide another level of indirection. Everything in
a subquery is subject to deferred execution, including aggre‐
gation and conversion methods. We describe this in “Subquer‐
ies” on page 438.

Reevaluation
Deferred execution has another consequence: a deferred execution query is reevalu‐
ated when you reenumerate:

var numbers = new List<int>() { 1, 2 };

IEnumerable<int> query = numbers.Select (n => n * 10);
foreach (int n in query) Console.Write (n + "|");   // 10|20|

numbers.Clear();
foreach (int n in query) Console.Write (n + "|");   // <nothing>

There are a couple of reasons why reevaluation is sometimes disadvantageous:

• Sometimes, you want to “freeze” or cache the results at a certain point in time.•
• Some queries are computationally intensive (or rely on querying a remote•

database), so you don’t want to unnecessarily repeat them.

You can defeat reevaluation by calling a conversion operator such as ToArray or
ToList. ToArray copies the output of a query to an array; ToList copies to a generic
List<T>:

var numbers = new List<int>() { 1, 2 };

List<int> timesTen = numbers
  .Select (n => n * 10)

  .ToList();                // Executes immediately into a List<int>

numbers.Clear();
Console.WriteLine (timesTen.Count);      // Still 2
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Captured Variables
If your query’s lambda expressions capture outer variables, the query will honor the
value of those variables at the time the query runs:

int[] numbers = { 1, 2 };

int factor = 10;
IEnumerable<int> query = numbers.Select (n => n * factor);
factor = 20;
foreach (int n in query) Console.Write (n + "|");   // 20|40|

This can be a trap when building up a query within a for loop. For example,
suppose that we want to remove all vowels from a string. The following, although
inefficient, gives the correct result:

IEnumerable<char> query = "Not what you might expect";

query = query.Where (c => c != 'a');
query = query.Where (c => c != 'e');
query = query.Where (c => c != 'i');
query = query.Where (c => c != 'o');
query = query.Where (c => c != 'u');

foreach (char c in query) Console.Write (c);  // Nt wht y mght xpct

Now watch what happens when we refactor this with a for loop:

IEnumerable<char> query = "Not what you might expect";
string vowels = "aeiou";

for (int i = 0; i < vowels.Length; i++)
  query = query.Where (c => c != vowels[i]);

foreach (char c in query) Console.Write (c);

An IndexOutOfRangeException is thrown upon enumerating the query because, as
we saw in Chapter 4 (see “Capturing Outer Variables” on page 190), the compiler
scopes the iteration variable in the for loop as if it were declared outside the loop.
Hence, each closure captures the same variable (i) whose value is 5 when the query
is actually enumerated. To solve this, you must assign the loop variable to another
variable declared inside the statement block:

for (int i = 0; i < vowels.Length; i++)
{
  char vowel = vowels[i];
  query = query.Where (c => c != vowel);
}

This forces a fresh local variable to be captured on each loop iteration.

Another way to solve the problem is to replace the for loop
with a foreach loop:

foreach (char vowel in vowels)
  query = query.Where (c => c != vowel);
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How Deferred Execution Works
Query operators provide deferred execution by returning decorator sequences.

Unlike a traditional collection class such as an array or linked list, a decorator
sequence (in general) has no backing structure of its own to store elements. Instead,
it wraps another sequence that you supply at runtime, to which it maintains a
permanent dependency. Whenever you request data from a decorator, it in turn
must request data from the wrapped input sequence.

The query operator’s transformation constitutes the “decora‐
tion.” If the output sequence performed no transformation, it
would be a proxy rather than a decorator.

Calling Where merely constructs the decorator wrapper sequence, which holds a
reference to the input sequence, the lambda expression, and any other arguments
supplied. The input sequence is enumerated only when the decorator is enumerated.

Figure 8-3 illustrates the composition of the following query:

IEnumerable<int> lessThanTen = new int[] { 5, 12, 3 }.Where (n => n < 10);

Figure 8-3. Decorator sequence

When you enumerate lessThanTen, you are, in effect, querying the array through
the Where decorator.

The good news—should you ever want to write your own query operator—is that
implementing a decorator sequence is easy with a C# iterator. Here’s how you can
write your own Select method:

public static IEnumerable<TResult> MySelect<TSource,TResult>
  (this IEnumerable<TSource> source, Func<TSource,TResult> selector)
{
  foreach (TSource element in source)
    yield return selector (element);
}
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This method is an iterator by virtue of the yield return statement. Functionally,
it’s a shortcut for the following:

public static IEnumerable<TResult> MySelect<TSource,TResult>
  (this IEnumerable<TSource> source, Func<TSource,TResult> selector)
{
  return new SelectSequence (source, selector);
}

where SelectSequence is a (compiler-written) class whose enumerator encapsulates
the logic in the iterator method.

Hence, when you call an operator such as Select or Where, you’re doing nothing
more than instantiating an enumerable class that decorates the input sequence.

Chaining Decorators
Chaining query operators creates a layering of decorators. Consider the following
query:

IEnumerable<int> query = new int[] { 5, 12, 3 }.Where   (n => n < 10)
                                               .OrderBy (n => n)
                                               .Select  (n => n * 10);

Each query operator instantiates a new decorator that wraps the previous sequence
(rather like a Russian nesting doll). Figure 8-4 illustrates the object model of this
query. Note that this object model is fully constructed prior to any enumeration.

Figure 8-4. Layered decorator sequences

When you enumerate query, you’re querying the original array, transformed
through a layering or chain of decorators.
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Adding ToList onto the end of this query would cause the
preceding operators to execute immediately, collapsing the
whole object model into a single list.

Figure 8-5 shows the same object composition in Unified Modeling Language
(UML) syntax. Select’s decorator references the OrderBy decorator, which refer‐
ences Where’s decorator, which references the array. A feature of deferred execution
is that you build the identical object model if you compose the query progressively:

IEnumerable<int>
  source    = new int[] { 5, 12, 3 },
  filtered  = source   .Where   (n => n < 10),
  sorted    = filtered .OrderBy (n => n),
  query     = sorted   .Select  (n => n * 10);

Figure 8-5. UML decorator composition

How Queries Are Executed
Here are the results of enumerating the preceding query:

foreach (int n in query) Console.WriteLine (n);

30
50

Behind the scenes, the foreach calls GetEnumerator on Select’s decorator (the
last or outermost operator), which kicks off everything. The result is a chain of
enumerators that structurally mirrors the chain of decorator sequences. Figure 8-6
illustrates the flow of execution as enumeration proceeds.
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Figure 8-6. Execution of a local query

In the first section of this chapter, we depicted a query as a production line of
conveyor belts. Extending this analogy, we can say a LINQ query is a lazy produc‐
tion line, where the conveyor belts roll elements only upon demand. Constructing
a query constructs a production line—with everything in place—but with nothing
rolling. Then, when the consumer requests an element (enumerates over the query),
the rightmost conveyor belt activates; this in turn triggers the others to roll—as
and when input sequence elements are needed. LINQ follows a demand-driven pull
model, rather than a supply-driven push model. This is important—as you’ll see
later—in allowing LINQ to scale to querying SQL databases.

Subqueries
A subquery is a query contained within another query’s lambda expression. The
following example uses a subquery to sort musicians by their last name:

string[] musos = 
  { "David Gilmour", "Roger Waters", "Rick Wright", "Nick Mason" };

IEnumerable<string> query = musos.OrderBy (m => m.Split().Last());

m.Split converts each string into a collection of words, upon which we then call the
Last query operator. m.Split().Last is the subquery; query references the outer
query.
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Subqueries are permitted because you can put any valid C# expression on the right‐
hand side of a lambda. A subquery is simply another C# expression. This means
that the rules for subqueries are a consequence of the rules for lambda expressions
(and the behavior of query operators in general).

The term subquery, in the general sense, has a broader mean‐
ing. For the purpose of describing LINQ, we use the term only
for a query referenced from within the lambda expression of
another query. In a query expression, a subquery amounts to a
query referenced from an expression in any clause except the
from clause.

A subquery is privately scoped to the enclosing expression and can reference
parameters in the outer lambda expression (or range variables in a query
expression).

m.Split().Last is a very simple subquery. The next query retrieves all strings in an
array whose length matches that of the shortest string:

string[] names = { "Tom", "Dick", "Harry", "Mary", "Jay" };

IEnumerable<string> outerQuery = names
  .Where (n => n.Length == names.OrderBy (n2 => n2.Length)
                                .Select  (n2 => n2.Length).First());

// Tom, Jay

Here’s the same thing as a query expression:

IEnumerable<string> outerQuery =
  from   n in names
  where  n.Length ==
           (from n2 in names orderby n2.Length select n2.Length).First()
  select n;

Because the outer range variable (n) is in scope for a subquery, we cannot reuse n as
the subquery’s range variable.

A subquery is executed whenever the enclosing lambda expression is evaluated.
This means that a subquery is executed upon demand, at the discretion of the outer
query. You could say that execution proceeds from the outside in. Local queries
follow this model literally; interpreted queries (e.g., database queries) follow this
model conceptually.
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The subquery executes as and when required, to feed the outer query. As Figures
8-7 and 8-8 illustrate, the subquery in our example (the top conveyor belt in
Figure 8-7) executes once for every outer loop iteration.

Figure 8-7. Subquery composition

We can express our preceding subquery more succinctly as follows:

IEnumerable<string> query =
  from   n in names
  where  n.Length == names.OrderBy (n2 => n2.Length).First().Length
  select n;

With the Min aggregation function, we can simplify the query further:

IEnumerable<string> query =
  from   n in names
  where  n.Length == names.Min (n2 => n2.Length)
  select n;

In “Interpreted Queries” on page 448, we describe how remote sources such as
SQL tables can be queried. Our example makes an ideal database query because it
would be processed as a unit, requiring only one round trip to the database server.
This query, however, is inefficient for a local collection because the subquery is
recalculated on each outer loop iteration. We can avoid this inefficiency by running
the subquery separately (so that it’s no longer a subquery):

int shortest = names.Min (n => n.Length);

IEnumerable<string> query = from   n in names
                            where  n.Length == shortest
                            select n;
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Figure 8-8. UML subquery composition

Factoring out subqueries in this manner is nearly always
desirable when querying local collections. An exception is
when the subquery is correlated, meaning that it references
the outer range variable. We explore correlated subqueries in
“Projecting” on page 473.

Subqueries and Deferred Execution
An element or aggregation operator such as First or Count in a subquery doesn’t
force the outer query into immediate execution—deferred execution still holds
for the outer query. This is because subqueries are called indirectly—through a
delegate in the case of a local query, or through an expression tree in the case of an
interpreted query.

An interesting case arises when you include a subquery within a Select expression.
In the case of a local query, you’re actually projecting a sequence of queries—each
itself subject to deferred execution. The effect is generally transparent, and it
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serves to further improve efficiency. We revisit Select subqueries in some detail
in Chapter 9.

Composition Strategies
In this section, we describe three strategies for building more complex queries:

• Progressive query construction•

• Using the into keyword•
• Wrapping queries•

All are chaining strategies and produce identical runtime queries.

Progressive Query Building
At the start of the chapter, we demonstrated how you could build a fluent query
progressively:

var filtered   = names    .Where   (n => n.Contains ("a"));
var sorted     = filtered .OrderBy (n => n);
var query      = sorted   .Select  (n => n.ToUpper());

Because each of the participating query operators returns a decorator sequence,
the resultant query is the same chain or layering of decorators that you would get
from a single-expression query. There are a couple of potential benefits, however, to
building queries progressively:

• It can make queries easier to write.•
• You can add query operators conditionally. For example,•

if (includeFilter) query = query.Where (...)

is more efficient than
query = query.Where (n => !includeFilter || <expression>)

because it avoids adding an extra query operator if includeFilter is false.

A progressive approach is often useful in query comprehensions. Imagine that we
want to remove all vowels from a list of names and then present in alphabetical
order those whose length is still more than two characters. In fluent syntax, we
could write this query as a single expression—by projecting before we filter:

IEnumerable<string> query = names
  .Select  (n => n.Replace ("a", "").Replace ("e", "").Replace ("i", "")
                  .Replace ("o", "").Replace ("u", ""))
  .Where   (n => n.Length > 2)
  .OrderBy (n => n);

// Dck
// Hrry
// Mry
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Rather than calling string’s Replace method five times, we
could remove vowels from a string more efficiently with a
regular expression:

n => Regex.Replace (n, "[aeiou]", "")

string’s Replace method has the advantage, though, of also
working in database queries.

Translating this directly into a query expression is troublesome because the select
clause must come after the where and orderby clauses. And if we rearrange the
query so as to project last, the result would be different:

IEnumerable<string> query =
  from    n in names
  where   n.Length > 2
  orderby n
  select  n.Replace ("a", "").Replace ("e", "").Replace ("i", "")
           .Replace ("o", "").Replace ("u", "");

// Dck
// Hrry
// Jy
// Mry
// Tm

Fortunately, there are a number of ways to get the original result in query syntax.
The first is by querying progressively:

IEnumerable<string> query =
  from   n in names
  select n.Replace ("a", "").Replace ("e", "").Replace ("i", "")
          .Replace ("o", "").Replace ("u", "");

query = from n in query where n.Length > 2 orderby n select n;

// Dck
// Hrry
// Mry

The into Keyword
The into keyword is interpreted in two very different ways by
query expressions, depending on context. The meaning we’re
describing now is for signaling query continuation (the other is
for signaling a GroupJoin).

The into keyword lets you “continue” a query after a projection and is a shortcut for
progressively querying. With into, we can rewrite the preceding query as follows:

IEnumerable<string> query =
  from   n in names
  select n.Replace ("a", "").Replace ("e", "").Replace ("i", "")
          .Replace ("o", "").Replace ("u", "")
  into noVowel
    where noVowel.Length > 2 orderby noVowel select noVowel;
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The only place you can use into is after a select or group clause. into “restarts” a
query, allowing you to introduce fresh where, orderby, and select clauses.

Although it’s easiest to think of into as restarting a query
from the perspective of a query expression, it’s all one query
when translated to its final fluent form. Hence, there’s no
intrinsic performance hit with into. Nor do you lose any
points for its use!

The equivalent of into in fluent syntax is simply a longer chain of operators.

Scoping rules
All range variables are out of scope following an into keyword. The following will
not compile:

var query =
  from n1 in names
  select n1.ToUpper()
  into n2                              // Only n2 is visible from here on.
    where n1.Contains ("x")            // Illegal: n1 is not in scope.
    select n2;

To see why, consider how this maps to fluent syntax:

var query = names
  .Select (n1 => n1.ToUpper())
  .Where  (n2 => n1.Contains ("x"));     // Error: n1 no longer in scope

The original name (n1) is lost by the time the Where filter runs. Where’s input
sequence contains only uppercase names, so it cannot filter based on n1.

Wrapping Queries
A query built progressively can be formulated into a single statement by wrapping
one query around another. In general terms,

var tempQuery = tempQueryExpr
var finalQuery = from ... in tempQuery ...

can be reformulated as:

var finalQuery = from ... in (tempQueryExpr)

Wrapping is semantically identical to progressive query building or using the into
keyword (without the intermediate variable). The end result in all cases is a linear
chain of query operators. For example, consider the following query:

IEnumerable<string> query =
  from   n in names
  select n.Replace ("a", "").Replace ("e", "").Replace ("i", "")
          .Replace ("o", "").Replace ("u", "");

query = from n in query where n.Length > 2 orderby n select n;
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Reformulated in wrapped form, it’s the following:

IEnumerable<string> query =
  from n1 in
  (
    from   n2 in names
    select n2.Replace ("a", "").Replace ("e", "").Replace ("i", "")
             .Replace ("o", "").Replace ("u", "")
  )
  where n1.Length > 2 orderby n1 select n1;

When converted to fluent syntax, the result is the same linear chain of operators as
in previous examples:

IEnumerable<string> query = names
  .Select  (n => n.Replace ("a", "").Replace ("e", "").Replace ("i", "")
                  .Replace ("o", "").Replace ("u", ""))
  .Where   (n => n.Length > 2)
  .OrderBy (n => n);

(The compiler does not emit the final .Select (n => n), because it’s redundant.)

Wrapped queries can be confusing because they resemble the subqueries we wrote
earlier. Both have the concept of an inner and outer query. When converted to
fluent syntax, however, you can see that wrapping is simply a strategy for sequen‐
tially chaining operators. The end result bears no resemblance to a subquery, which
embeds an inner query within the lambda expression of another.

Returning to a previous analogy: when wrapping, the “inner” query amounts to the
preceding conveyor belts. In contrast, a subquery rides above a conveyor belt and is
activated upon demand through the conveyor belt’s lambda worker (as illustrated in
Figure 8-7).

Projection Strategies
Object Initializers
So far, all of our select clauses have projected scalar element types. With C# object
initializers, you can project into more complex types. For example, suppose, as a
first step in a query, we want to strip vowels from a list of names while still retaining
the original versions alongside, for the benefit of subsequent queries. We can write
the following class to assist:

class TempProjectionItem
{
  public string Original;    // Original name
  public string Vowelless;   // Vowel-stripped name
}
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We then can project into it with object initializers:

string[] names = { "Tom", "Dick", "Harry", "Mary", "Jay" };

IEnumerable<TempProjectionItem> temp =
  from n in names
  select new TempProjectionItem
  {
    Original  = n,
    Vowelless = n.Replace ("a", "").Replace ("e", "").Replace ("i", "")
                 .Replace ("o", "").Replace ("u", "")
  };

The result is of type IEnumerable<TempProjectionItem>, which we can subse‐
quently query:

IEnumerable<string> query = from   item in temp
                            where  item.Vowelless.Length > 2
                            select item.Original;
// Dick
// Harry
// Mary

Anonymous Types
Anonymous types allow you to structure your intermediate results without writing
special classes. We can eliminate the TempProjectionItem class in our previous
example with anonymous types:

var intermediate = from n in names

  select new
  {
    Original = n,
    Vowelless = n.Replace ("a", "").Replace ("e", "").Replace ("i", "")
                 .Replace ("o", "").Replace ("u", "")
  };

IEnumerable<string> query = from   item in intermediate
                            where  item.Vowelless.Length > 2
                            select item.Original;

This gives the same result as the previous example, but without needing to write
a one-off class. The compiler does the job instead, generating a temporary class
with fields that match the structure of our projection. This means, however, that the
intermediate query has the following type:

IEnumerable <random-compiler-generated-name>

The only way we can declare a variable of this type is with the var keyword. In this
case, var is more than just a clutter reduction device; it’s a necessity.

We can write the entire query more succinctly with the into keyword:
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var query = from n in names
  select new
  {
     Original = n,
     Vowelless = n.Replace ("a", "").Replace ("e", "").Replace ("i", "")
                  .Replace ("o", "").Replace ("u", "")
  }
  into temp
  where temp.Vowelless.Length > 2
  select temp.Original;

Query expressions provide a shortcut for writing this kind of query: the let
keyword.

The let Keyword
The let keyword introduces a new variable alongside the range variable.

With let, we can write a query extracting strings whose length, excluding vowels,
exceeds two characters, as follows:

string[] names = { "Tom", "Dick", "Harry", "Mary", "Jay" };

IEnumerable<string> query =
  from n in names
  let vowelless = n.Replace ("a", "").Replace ("e", "").Replace ("i", "")
                   .Replace ("o", "").Replace ("u", "")
  where vowelless.Length > 2
  orderby vowelless
  select n;       // Thanks to let, n is still in scope.

The compiler resolves a let clause by projecting into a temporary anonymous type
that contains both the range variable and the new expression variable. In other
words, the compiler translates this query into the preceding example.

let accomplishes two things:

• It projects new elements alongside existing elements.•
• It allows an expression to be used repeatedly in a query without being•

rewritten.

The let approach is particularly advantageous in this example because it allows the
select clause to project either the original name (n) or its vowel-removed version
(vowelless).

You can have any number of let statements before or after a where statement
(see Figure 8-2). A let statement can reference variables introduced in earlier let
statements (subject to the boundaries imposed by an into clause). let reprojects all
existing variables transparently.

A let expression need not evaluate to a scalar type: sometimes it’s useful to have it
evaluate to a subsequence, for instance.
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Interpreted Queries
LINQ provides two parallel architectures: local queries for local object collections
and interpreted queries for remote data sources. So far, we’ve examined the architec‐
ture of local queries, which operate over collections implementing IEnumerable<T>.
Local queries resolve to query operators in the Enumerable class (by default), which
in turn resolve to chains of decorator sequences. The delegates that they accept—
whether expressed in query syntax, fluent syntax, or traditional delegates—are fully
local to Intermediate Language (IL) code, just like any other C# method.

By contrast, interpreted queries are descriptive. They operate over sequences that
implement IQueryable<T>, and they resolve to the query operators in the Querya
ble class, which emit expression trees that are interpreted at runtime. These expres‐
sion trees can be translated, for instance, to SQL queries, allowing you to use LINQ
to query a database.

The query operators in Enumerable can actually work with
IQueryable<T> sequences. The difficulty is that the resultant
queries always execute locally on the client. This is why a
second set of query operators is provided in the Queryable
class.

To write interpreted queries, you need to start with an API that exposes sequences
of type IQueryable<T>. An example is Microsoft’s Entity Framework Core (EF
Core), which allows you to query a variety of databases, including SQL Server,
Oracle, MySQL, PostgreSQL, and SQLite.

It’s also possible to generate an IQueryable<T> wrapper around an ordinary enu‐
merable collection by calling the AsQueryable method. We describe AsQueryable in
“Building Query Expressions” on page 466.

IQueryable<T> is an extension of IEnumerable<T> with addi‐
tional methods for constructing expression trees. Most of the
time you can ignore the details of these methods; they’re called
indirectly by the runtime. “Building Query Expressions” on
page 466 covers IQueryable<T> in more detail.

To illustrate, let’s create a simple customer table in SQL Server and populate it with a
few names using the following SQL script:

create table Customer
(
  ID int not null primary key,
  Name varchar(30)
)
insert Customer values (1, 'Tom')
insert Customer values (2, 'Dick')
insert Customer values (3, 'Harry')
insert Customer values (4, 'Mary')
insert Customer values (5, 'Jay')
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With this table in place, we can write an interpreted LINQ query in C# that uses EF
Core to retrieve customers whose name contains the letter “a,” as follows:

using System;
using System.Linq;
using Microsoft.EntityFrameworkCore;

using var dbContext = new NutshellContext();

IQueryable<string> query = from c in dbContext.Customers
  where   c.Name.Contains ("a")
  orderby c.Name.Length
  select  c.Name.ToUpper();

foreach (string name in query) Console.WriteLine (name);

public class Customer
{
  public int ID { get; set; }
  public string Name { get; set; }
}

// We’ll explain the following class in more detail in the next section.
public class NutshellContext : DbContext
{
  public virtual DbSet<Customer> Customers { get; set; }

  protected override void OnConfiguring (DbContextOptionsBuilder builder)
    => builder.UseSqlServer ("...connection string...");

  protected override void OnModelCreating (ModelBuilder modelBuilder)
    => modelBuilder.Entity<Customer>().ToTable ("Customer")
                                      .HasKey (c => c.ID);
}

EF Core translates this query into the following SQL:

SELECT UPPER([c].[Name])
FROM [Customers] AS [c]
WHERE CHARINDEX(N'a', [c].[Name]) > 0
ORDER BY CAST(LEN([c].[Name]) AS int)

Here’s the end result:

// JAY
// MARY
// HARRY
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How Interpreted Queries Work
Let’s examine how the preceding query is processed.

First, the compiler converts query syntax to fluent syntax. This is done exactly as
with local queries:

IQueryable<string> query = dbContext.customers
                                    .Where   (n => n.Name.Contains ("a"))
                                    .OrderBy (n => n.Name.Length)
                                    .Select  (n => n.Name.ToUpper());

Next, the compiler resolves the query operator methods. Here’s where local and
interpreted queries differ—interpreted queries resolve to query operators in the
Queryable class instead of the Enumerable class.

To see why, we need to look at the dbContext.Customers variable, the source upon
which the entire query builds. dbContext.Customers is of type DbSet<T>, which
implements IQueryable<T> (a subtype of IEnumerable<T>). This means that the
compiler has a choice in resolving Where: it could call the extension method in
Enumerable or the following extension method in Queryable:

public static IQueryable<TSource> Where<TSource> (this
  IQueryable<TSource> source, Expression <Func<TSource,bool>> predicate)

The compiler chooses Queryable.Where because its signature is a more specific
match.

Queryable.Where accepts a predicate wrapped in an Expression<TDelegate>
type. This instructs the compiler to translate the supplied lambda expression—
in other words, n=>n.Name.Contains("a")—to an expression tree rather than a
compiled delegate. An expression tree is an object model based on the types in
System.Linq.Expressions that can be inspected at runtime (so that EF Core can
later translate it to an SQL statement).

Because Queryable.Where also returns IQueryable<T>, the same process follows
with the OrderBy and Select operators. Figure 8-9 illustrates the end result. In the
shaded box, there is an expression tree describing the entire query, which can be
traversed at runtime.
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Figure 8-9. Interpreted query composition

Execution
Interpreted queries follow a deferred execution model—just like local queries. This
means that the SQL statement is not generated until you start enumerating the
query. Further, enumerating the same query twice results in the database being
queried twice.

Under the hood, interpreted queries differ from local queries in how they execute.
When you enumerate over an interpreted query, the outermost sequence runs a
program that traverses the entire expression tree, processing it as a unit. In our
example, EF Core translates the expression tree to an SQL statement, which it then
executes, yielding the results as a sequence.

To work, EF Core needs to understand the schema of the data‐
base. It does this by leveraging conventions, code attributes,
and a fluent configuration API. We’ll explore this in detail
later in the chapter.

We said previously that a LINQ query is like a production line. However, when you
enumerate an IQueryable conveyor belt, it doesn’t start up the whole production
line, like with a local query. Instead, just the IQueryable belt starts up, with a special
enumerator that calls upon a production manager. The manager reviews the entire
production line—which consists not of compiled code but of dummies (method
call expressions) with instructions pasted to their foreheads (expression trees). The
manager then traverses all the expressions, in this case transcribing them to a single
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piece of paper (an SQL statement), which it then executes, feeding the results back
to the consumer. Only one belt turns; the rest of the production line is a network of
empty shells, existing just to describe what needs to be done.

This has some practical implications. For instance, with local queries, you can
write your own query methods (fairly easily, with iterators) and then use them
to supplement the predefined set. With remote queries, this is difficult and even
undesirable. If you wrote a MyWhere extension method accepting IQueryable<T>, it
would be like putting your own dummy into the production line. The production
manager wouldn’t know what to do with your dummy. Even if you intervened
at this stage, your solution would be hardwired to a particular provider, such as
EF Core, and would not work with other IQueryable implementations. Part of
the benefit of having a standard set of methods in Queryable is that they define
a standard vocabulary for querying any remote collection. As soon as you try to
extend the vocabulary, you’re no longer interoperable.

Another consequence of this model is that an IQueryable provider might be unable
to cope with some queries—even if you stick to the standard methods. EF Core is
limited by the capabilities of the database server; some LINQ queries have no SQL
translation. If you’re familiar with SQL, you’ll have a good intuition for what these
are, although at times you’ll need to experiment to see what causes a runtime error;
it can be surprising what does work!

Combining Interpreted and Local Queries
A query can include both interpreted and local operators. A typical pattern is to
have the local operators on the outside and the interpreted components on the
inside; in other words, the interpreted queries feed the local queries. This pattern
works well when querying a database.

For instance, suppose that we write a custom extension method to pair up strings in
a collection:

public static IEnumerable<string> Pair (this IEnumerable<string> source)
{
  string firstHalf = null;
  foreach (string element in source)
    if (firstHalf == null)
      firstHalf = element;
    else
    {
      yield return firstHalf + ", " + element;
      firstHalf = null;
    }
}

We can use this extension method in a query that mixes EF Core and local
operators:

using var dbContext = new NutshellContext ();
IEnumerable<string> q = dbContext.Customers
  .Select (c => c.Name.ToUpper())
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  .OrderBy (n => n)
  .Pair()                         // Local from this point on.
  .Select ((n, i) => "Pair " + i.ToString() + " = " + n);

foreach (string element in q) Console.WriteLine (element);

// Pair 0 = DICK, HARRY
// Pair 1 = JAY, MARY

Because dbContext.Customers is of a type implementing IQueryable<T>, the
Select operator resolves to Queryable.Select. This returns an output sequence
also of type IQueryable<T>, so the OrderBy operator similarly resolves to
Queryable.OrderBy. But the next query operator, Pair, has no overload accepting
IQueryable<T>—only the less specific IEnumerable<T>. So, it resolves to our local
Pair method—wrapping the interpreted query in a local query. Pair also returns
IEnumerable, so the Select that follows resolves to another local operator.

On the EF Core side, the resulting SQL statement is equivalent to this:

SELECT UPPER([c].[Name]) FROM [Customers] AS [c] ORDER BY UPPER([c].[Name])

The remaining work is done locally. In effect, we end up with a local query (on the
outside) whose source is an interpreted query (the inside).

AsEnumerable
Enumerable.AsEnumerable is the simplest of all query operators. Here’s its complete
definition:

public static IEnumerable<TSource> AsEnumerable<TSource>
              (this IEnumerable<TSource> source)
{
    return source;
}

Its purpose is to cast an IQueryable<T> sequence to IEnumerable<T>, forcing sub‐
sequent query operators to bind to Enumerable operators instead of Queryable
operators. This causes the remainder of the query to execute locally.

To illustrate, suppose that we had a MedicalArticles table in SQL Server and
wanted to use EF Core to retrieve all articles on influenza whose abstract contained
fewer than 100 words. For the latter predicate, we need a regular expression:

Regex wordCounter = new Regex (@"\b(\w|[-'])+\b");

using var dbContext = new NutshellContext ();

var query = dbContext.MedicalArticles
  .Where (article => article.Topic == "influenza" &&
                     wordCounter.Matches (article.Abstract).Count < 100);

The problem is that SQL Server doesn’t support regular expressions, so EF Core
will throw an exception, complaining that the query cannot be translated to SQL.
We can solve this by querying in two steps: first retrieving all articles on influenza
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through an EF Core query, and then filtering locally for abstracts of fewer than 100
words:

Regex wordCounter = new Regex (@"\b(\w|[-'])+\b");

using var dbContext = new NutshellContext ();

IEnumerable<MedicalArticle> efQuery = dbContext.MedicalArticles
  .Where (article => article.Topic == "influenza");

IEnumerable<MedicalArticle> localQuery = efQuery
  .Where (article => wordCounter.Matches (article.Abstract).Count < 100);

Because efQuery is of type IEnumerable<MedicalArticle>, the second query binds
to the local query operators, forcing that part of the filtering to run on the client.

With AsEnumerable, we can do the same in a single query:

Regex wordCounter = new Regex (@"\b(\w|[-'])+\b");

using var dbContext = new NutshellContext ();

var query = dbContext.MedicalArticles
  .Where (article => article.Topic == "influenza")

  .AsEnumerable()
  .Where (article => wordCounter.Matches (article.Abstract).Count < 100);

An alternative to calling AsEnumerable is to call ToArray or ToList. The advantage
of AsEnumerable is that it doesn’t force immediate query execution, nor does it
create any storage structure.

Moving query processing from the database server to the cli‐
ent can hurt performance, especially if it means retrieving
more rows. A more efficient (though more complex) way
to solve our example would be to use SQL CLR integration
to expose a function on the database that implemented the
regular expression.

We further demonstrate combined interpreted and local queries in Chapter 10.

EF Core
Throughout this and Chapter 9, we use EF Core to demonstrate interpreted queries.
Let’s now examine the key features of this technology.

EF Core Entity Classes
EF Core lets you use any class to represent data, as long as it contains a public
property for each column that you want to query.

For instance, we could define the following entity class to query and update a
Customers table in the database:
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public class Customer
{
  public int ID { get; set; } 
  public string Name { get; set; }
}

DbContext
After defining entity classes, the next step is to subclass DbContext. An instance
of that class represents your sessions working with the database. Typically, your
DbContext subclass will contain one DbSet<T> property for each entity in your
model:

public class NutshellContext : DbContext
{
  public DbSet<Customer> Customers { get; set; }
  ... properties for other tables ...

}

A DbContext object does three things:

• It acts as a factory for generating DbSet<> objects that you can query.•
• It keeps track of any changes that you make to your entities so that you can•

write them back (see “Change Tracking” on page 461).
• It provides virtual methods that you can override to configure the connection•

and model.

Configuring the connection
By overriding the OnConfiguring method, you can specify the database provider
and connection string:

public class NutshellContext : DbContext
{
  ...
  protected override void OnConfiguring (DbContextOptionsBuilder 
                                         optionsBuilder) =>
    optionsBuilder.UseSqlServer 
      (@"Server=(local);Database=Nutshell;Trusted_Connection=True");
}

In this example, the connection string is specified as a string literal. Produc‐
tion applications would typically retrieve it from a configuration file such as
appsettings.json.

UseSqlServer is an extension method defined in an assembly that’s part of the
Microsoft.EntityFramework.SqlServer NuGet package. Packages are available for
other database providers, including Oracle, MySQL, PostgreSQL, and SQLite.
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If you’re using ASP.NET, you can allow its dependency injec‐
tion framework to preconfigure optionsBuilder; in most
cases, this lets you avoid overriding OnConfiguring altogether.
To enable this, define a constructor on DbContext as follows:

public NutshellContext (DbContextOptions<NutshellContext>
                        options)
  : base(options) { }

If you do choose to override OnConfiguring (perhaps to pro‐
vide a configuration if your DbContext is used in another
scenario), you can check whether options have already been
configured as follows:

protected override void OnConfiguring (
  DbContextOptionsBuilder optionsBuilder)
{
  if (!optionsBuilder.IsConfigured)
  {
    ...
  }
}

In the OnConfiguring method, you can enable other options, including lazy loading
(see “Lazy loading” on page 464).

Configuring the model
By default, EF Core is convention based, meaning that it infers the database schema
from your class and property names.

You can override the defaults using the fluent api by overriding OnModelCreating
and calling extension methods on the ModelBuilder parameter. For example, we
can explicitly specify the database table name for our Customer entity as follows:

protected override void OnModelCreating (ModelBuilder modelBuilder) =>
  modelBuilder.Entity<Customer>()
    .ToTable ("Customer");   // Table is called 'Customer'

Without this code, EF Core would map this entity to a table named “Customers”
rather than “Customer”, because we have a DbSet<Customer> property in our
DbContext called Customers:

public DbSet<Customer> Customers { get; set; }
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The following code maps all of your entities to table names
that match the entity class name (which is typically singular)
rather than the DbSet<T> property name (which is typically
plural):

protected override void OnModelCreating (ModelBuilder
                                        modelBuilder)
{
  foreach (IMutableEntityType entityType in
           modelBuilder.Model.GetEntityTypes())
  {
    modelBuilder.Entity (entityType.Name)
      .ToTable (entityType.ClrType.Name);
  }
}

The fluent API offers an expanded syntax for configuring columns. In the next
example, we use two popular methods:

• HasColumnName, which maps a property to a differently named column•

• IsRequired, which indicates that a column is not nullable•

protected override void OnModelCreating (ModelBuilder modelBuilder) =>
  modelBuilder.Entity<Customer> (entity =>
  {
      entity.ToTable ("Customer");
      entity.Property (e => e.Name)
            .HasColumnName ("Full Name")  // Column name is 'Full Name'
            .IsRequired();                // Column is not nullable
  });

Table 8-1 lists some of the most important methods in the fluent API.

Instead of using the fluent API, you can configure your model
by applying special attributes to your entity classes and prop‐
erties (“data annotations”). This approach is less flexible in
that the configuration must be fixed at compile-time, and
is less powerful in that there are some options that can be
configured only via the fluent API.

Table 8-1. Fluent API model configuration methods

Method Purpose Example

ToTable Specify the database table name
for a given entity

builder
  .Entity<Customer>()
  .ToTable("Customer");

HasColumnName Specify the column name for a
given property

builder.Entity<Customer>()
  .Property(c => c.Name)
  .HasColumnName("Full Name");

HasKey Specify a key (usually that deviates
from convention)

builder.Entity<Customer>()
  .HasKey(c => c.CustomerNr);
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Method Purpose Example

IsRequired Specify that the property requires
a value (is not nullable)

builder.Entity<Customer>()
  .Property(c => c.Name)
  .IsRequired();

HasMaxLength Specify the maximum length of
a variable-length type (usually a
string) whose width can vary

builder.Entity<Customer>()
  .Property(c => c.Name)
  .HasMaxLength(60);

HasColumnType Specify the database data type for
a column

builder.Entity<Purchase>()
  .Property(p => p.Description)
  .HasColumnType("varchar(80)");

Ignore Ignore a type builder.Ignore<Products>();

Ignore Ignore a property of a type builder.Entity<Customer>()
  .Ignore(c => c.ChatName);

HasIndex Specify a property (or combination
of properties) should serve in the
database as an index

// Compound index:
builder.Entity<Purchase>()
  .HasIndex(p =>
     new { p.Date, p.Price });

// Unique index on one property
builder
  .Entity<MedicalArticle>()
  .HasIndex(a => a.Topic)
  .IsUnique();

HasOne See “Navigation Properties” on
page 462

builder.Entity<Purchase>()
  .HasOne(p => p.Customer)
  .WithMany(c => c.Purchases);

HasMany See “Navigation Properties” on
page 462

builder.Entity<Customer>()
  .HasMany(c => c.Purchases)
  .WithOne(p => p.Customer);

Creating the database
EF Core supports a code-first approach, which means that you can start by defining
entity classes and then ask EF Core to create the database. The easiest way to do the
latter is to call the following method on a DbContext instance:

dbContext.Database.EnsureCreated();

A better approach, however, is to use EF Core’s migrations feature, which not
only creates the database but configures it such that EF Core can automatically
update the schema in the future when your entity classes change. You can enable
migrations in Visual Studio’s Package Manager Console and ask it to create the
database with the following commands:
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Install-Package Microsoft.EntityFrameworkCore.Tools
Add-Migration InitialCreate
Update-Database

The first command installs tools to manage EF Core from within Visual Studio.
The second command generates a special C# class known as a code migration that
contains instructions to create the database. The final command runs those instruc‐
tions against the database connection string specified in the project’s application
configuration file.

Using DbContext
After you’ve defined Entity classes and subclassed DbContext, you can instantiate
your DbContext and query the database, as follows:

using var dbContext = new NutshellContext();
Console.WriteLine (dbContext.Customers.Count());
// Executes "SELECT COUNT(*) FROM [Customer] AS [c]"

You can also use your DbContext instance to write to the database. The following
code inserts a row into the Customer table:

using var dbContext = new NutshellContext();
Customer cust = new Customer()
{
  Name = "Sara Wells"
};
dbContext.Customers.Add (cust);
dbContext.SaveChanges();    // Writes changes back to database

The following queries the database for the customer that was just inserted:

using var dbContext = new NutshellContext();
Customer cust = dbContext.Customers
  .Single (c => c.Name == "Sara Wells")

The following updates that customer’s name and writes the change to the database:

cust.Name = "Dr. Sara Wells";
dbContext.SaveChanges();

The Single operator is ideal for retrieving a row by primary
key. Unlike First, it throws an exception if more than one
element is returned.

Object Tracking
A DbContext instance keeps track of all the entities it instantiates, so it can feed the
same ones back to you whenever you request the same rows in a table. In other
words, a context in its lifetime will never emit two separate entities that refer to the
same row in a table (where a row is identified by primary key). This capability is
called object tracking.
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To illustrate, suppose the customer whose name is alphabetically first also has the
lowest ID. In the following example, a and b will reference the same object:

using var dbContext = new NutshellContext ();

Customer a = dbContext.Customers.OrderBy (c => c.Name).First();
Customer b = dbContext.Customers.OrderBy (c => c.ID).First();

Disposing DbContext
Although DbContext implements IDisposable, you can (in general) get away with
not disposing instances. Disposing forces the context’s connection to dispose—but
this is usually unnecessary because EF Core closes connections automatically when‐
ever you finish retrieving results from a query.

Disposing a context prematurely can actually be problematic because of lazy evalua‐
tion. Consider the following:

IQueryable<Customer> GetCustomers (string prefix)
{
  using (var dbContext = new NutshellContext ())
    return dbContext.Customers
                    .Where (c => c.Name.StartsWith (prefix));
}
...
foreach (Customer c in GetCustomers ("a"))
  Console.WriteLine (c.Name);

This will fail because the query is evaluated when we enumerate it—which is after
disposing its DbContext.

There are some caveats, though, on not disposing contexts:

• It relies on the connection object releasing all unmanaged resources on the•
Close method. Even though this holds true with SqlConnection, it’s theoreti‐
cally possible for a third-party connection to keep resources open if you call
Close but not Dispose (though this would arguably violate the contract defined
by IDbConnection.Close).

• If you manually call GetEnumerator on a query (instead of using foreach)•
and then fail to either dispose the enumerator or consume the sequence, the
connection will remain open. Disposing the DbContext provides a backup in
such scenarios.

• Some people feel that it’s tidier to dispose contexts (and all objects that imple‐•
ment IDisposable).

If you want to explicitly dispose contexts, you must pass a DbContext instance into
methods such as GetCustomers to avoid the problem described. In scenarios such
as ASP.NET Core MVC where the context instance is provided via dependency
injection (DI), the DI infrastructure will manage the context lifetime. It will be
created when a unit of work (such as an HTTP request processed in the controller)
begins and disposed when that unit of work ends.
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Consider what happens when EF Core encounters the second query. It starts by
querying the database—and obtaining a single row. It then reads the primary key
of this row and performs a lookup in the context’s entity cache. Seeing a match, it
returns the existing object without updating any values. So, if another user had just
updated that customer’s Name in the database, the new value would be ignored. This
is essential for avoiding unexpected side effects (the Customer object could be in use
elsewhere) and also for managing concurrency. If you had altered properties on the
Customer object and not yet called SaveChanges, you wouldn’t want your properties
automatically overwritten.

You can disable object tracking by chaining the AsNo

Tracking extension method to your query or by setting
ChangeTracker.QueryTrackingBehavior on the context to
QueryTrackingBehavior.NoTracking. No-tracking queries
are useful when data is used read-only as it improves perfor‐
mance and reduces memory use.

To get fresh information from the database, you must either instantiate a new
context or call the Reload method, as follows:

dbContext.Entry (myCustomer).Reload();

The best practice is to use a fresh DbContext instance per unit of work so that the
need to manually reload an entity is rare.

Change Tracking
When you change a property value in an entity loaded via DbContext, EF Core rec‐
ognizes the change and updates the database accordingly upon calling SaveChanges.
To do that, it creates a snapshot of the state of entities loaded through your DbCon
text subclass and compares the current state to the original one when SaveChanges
is called (or when you manually query change tracking, as you’ll see in a moment).
You can enumerate the tracked changes in a DbContext as follows:

foreach (var e in dbContext.ChangeTracker.Entries())
{
  Console.WriteLine ($"{e.Entity.GetType().FullName} is {e.State}");
  foreach (var m in e.Members)
    Console.WriteLine (
      $"  {m.Metadata.Name}: '{m.CurrentValue}' modified: {m.IsModified}");
}

When you call SaveChanges, EF Core uses the information in the ChangeTracker to
construct SQL statements that will update the database to match the changes in your
objects, issuing insert statements to add new rows, update statements to modify
data, and delete statements to remove rows that were removed from the object
graph in your DbContext subclass. Any TransactionScope is honored; if none is
present, it wraps all statements in a new transaction.

You can optimize change tracking by implementing INotifyPropertyChanged and,
optionally, INotifyPropertyChanging in your entities. The former allows EF Core
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to avoid the overhead of comparing modified with original entities; the latter
allows EF Core to avoid storing the original values altogether. After implementing
these interfaces, call the HasChangeTrackingStrategy method on the ModelBuilder
when configuring the model in order to activate the optimized change tracking.

Navigation Properties
Navigation properties allow you to do the following:

• Query related tables without having to manually join•
• Insert, remove, and update related rows without explicitly updating foreign•

keys

For example, suppose that a customer can have a number of purchases. We can
represent a one-to-many relationship between Customer and Purchase with the
following entities:

public class Customer
{
  public int ID { get; set; }
  public string Name { get; set; }

  // Child navigation property, which must be of type ICollection<T>:
  public virtual List<Purchase> Purchases {get;set;} = new List<Purchase>();
}

public class Purchase
{        
  public int ID { get; set; }
  public DateTime Date { get; set; }
  public string Description { get; set; }
  public decimal Price { get; set; }
  public int CustomerID? { get; set; }     // Foreign key field

  public Customer Customer { get; set; }   // Parent navigation property
}

EF Core is able to infer from these entities that CustomerID is a foreign key to the
Customer table, because the name “CustomerID” follows a popular naming conven‐
tion. If we were to ask EF Core to create a database from these entities, it would
create a foreign key constraint between Purchase.CustomerID and Customer.ID.

If EF Core is unable to infer the relationship, you can config‐
ure it explicitly in the OnModelCreating method as follows:

modelBuilder.Entity<Purchase>()
  .HasOne (e => e.Customer)
  .WithMany (e => e.Purchases)
  .HasForeignKey (e => e.CustomerID);

With these navigation properties set up, we can write queries such as this:

var customersWithPurchases = Customers.Where (c => c.Purchases.Any());
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We cover how to write such queries in detail in Chapter 9.

Adding and removing entities from navigation collections
When you add new entities to a collection navigation property, EF Core automati‐
cally populates the foreign keys upon calling SaveChanges:

Customer cust = dbContext.Customers.Single (c => c.ID == 1);

Purchase p1 = new Purchase { Description="Bike",  Price=500 };
Purchase p2 = new Purchase { Description="Tools", Price=100 };

cust.Purchases.Add (p1);
cust.Purchases.Add (p2);

dbContext.SaveChanges();

In this example, EF Core automatically writes 1 into the CustomerID column of each
of the new purchases and writes the database-generated ID for each purchase to
Purchase.ID.

When you remove an entity from a collection navigation property and call Save
Changes, EF Core will either clear the foreign key field or delete the corresponding
row from the database, depending on how the relationship has been configured
or inferred. In this case, we’ve defined Purchase.CustomerID as a nullable integer
(so that we can represent purchases without a customer, or cash transactions), so
removing a purchase from a customer would clear its foreign key field rather than
deleting it from the database.

Loading navigation properties
When EF Core populates an entity, it does not (by default) populate its navigation
properties:

using var dbContext = new NutshellContext();
var cust = dbContext.Customers.First();
Console.WriteLine (cust.Purchases.Count);    // Always 0

One solution is to use the Include extension method, which instructs EF Core to
eagerly load navigation properties:

var cust = dbContext.Customers 
  .Include (c => c.Purchases)
  .Where (c => c.ID == 2).First();

Another solution is to use a projection. This technique is particularly useful when
you need to work with only some of the entity properties, because it reduces data
transfer:

var custInfo = dbContext.Customers 
  .Where (c => c.ID == 2)
  .Select (c => new
    {
      Name = c.Name,
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      Purchases = c.Purchases.Select (p => new { p.Description, p.Price })
    })
  .First();

Both of these techniques inform EF Core what data you require so that it can be
fetched in a single database query. It’s also possible to manually instruct EF Core to
populate a navigation property as needed:

dbContext.Entry (cust).Collection (b => b.Purchases).Load();
// cust.Purchases is now populated.

This is called explicit loading. Unlike the preceding approaches, this generates an
extra round trip to the database.

Lazy loading
Another approach for loading navigation properties is called lazy loading. When
enabled, EF Core populates navigation properties on demand by generating a proxy
class for each of your entity classes that intercepts attempts to access unloaded
navigation properties. For this to work, each navigation property must be virtual,
and the class it’s defined in must be inheritable (not sealed). Also, the context must
not have been disposed when the lazy load occurs, so that an additional database
request can be performed.

You can enable lazy loading in the OnConfiguring method of your DbContext
subclass, as follows:

protected override void OnConfiguring (DbContextOptionsBuilder 
                                       optionsBuilder)
{
  optionsBuilder
    .UseLazyLoadingProxies()
    ...
}

(You will also need to add a reference to the Microsoft.EntityFramework
Core.Proxies NuGet package.)

The cost of lazy loading is that EF Core must make an additional request to the
database each time you access an unloaded navigation property. If you make many
such requests, performance can suffer as a result of excessive round-tripping.

With lazy loading enabled, the runtime type of your classes is
a proxy derived from your entity class. For example:

using var dbContext = new NutshellContext();
var cust = dbContext.Customers.First();  
Console.WriteLine (cust.GetType());
// Castle.Proxies.CustomerProxy

Deferred Execution
EF Core queries are subject to deferred execution, just like local queries. This allows
you to build queries progressively. There is one aspect, however, in which EF Core
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has special deferred execution semantics, and that is when a subquery appears
within a Select expression.

With local queries, you get double-deferred execution, because from a functional
perspective, you’re selecting a sequence of queries. So, if you enumerate the outer
result sequence but never enumerate the inner sequences, the subquery will never
execute.

With EF Core, the subquery is executed at the same time as the main outer query.
This prevents excessive round-tripping.

For example, the following query executes in a single round trip upon reaching the
first foreach statement:

using var dbContext = new NutshellContext ();

var query = from c in dbContext.Customers
            select
               from p in c.Purchases
               select new { c.Name, p.Price };

foreach (var customerPurchaseResults in query)
  foreach (var namePrice in customerPurchaseResults)
    Console.WriteLine ($"{ namePrice.Name} spent { namePrice.Price}");

Any navigation properties that you explicitly project are fully populated in a single
round trip:

var query = from c in dbContext.Customers
            select new { c.Name, c.Purchases };

foreach (var row in query)
  foreach (Purchase p in row.Purchases)   // No extra round-tripping
    Console.WriteLine (row.Name + " spent " + p.Price);

But if we enumerate a navigation property without first having either eagerly loaded
or projected, deferred execution rules apply. In the following example, EF Core
executes another Purchases query on each loop iteration (assuming lazy loading is
enabled):

foreach (Customer c in dbContext.Customers.ToArray())
  foreach (Purchase p in c.Purchases)    // Another SQL round-trip
    Console.WriteLine (c.Name + " spent " + p.Price);

This model is advantageous when you want to selectively execute the inner loop,
based on a test that can be performed only on the client:

foreach (Customer c in dbContext.Customers.ToArray())
  if (myWebService.HasBadCreditHistory (c.ID))
    foreach (Purchase p in c.Purchases)   // Another SQL round trip
      Console.WriteLine (c.Name + " spent " + p.Price);
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Note the use of ToArray in the previous two queries. By
default, SQL Server cannot initiate a new query while the
results of the current query are still being processed. Calling
ToArray materializes the customers so that additional queries
can be issued to retrieve purchases per customer. It is possible
to configure SQL Server to allow multiple active result sets
(MARS) by appending ;MultipleActiveResultSets=True to
the database connection string. Use MARS with caution as it
can mask a chatty database design that could be improved by
eager loading and/or projecting the required data.

(In Chapter 9, we explore Select subqueries in more detail, in “Projecting” on page
473.)

Building Query Expressions
So far in this chapter, when we’ve needed to dynamically compose queries, we’ve
done so by conditionally chaining query operators. Although this is adequate in
many scenarios, sometimes you need to work at a more granular level and dynami‐
cally compose the lambda expressions that feed the operators.

In this section, we assume the following Product class:

public class Product
{
  public int ID { get; set; }
  public string Description { get; set; }
  public bool Discontinued { get; set; }
  public DateTime LastSale { get; set; }
}

Delegates Versus Expression Trees
Recall that:

• Local queries, which use Enumerable operators, take delegates.•

• Interpreted queries, which use Queryable operators, take expression trees.•

We can see this by comparing the signature of the Where operator in Enumerable
and Queryable:

public static IEnumerable<TSource> Where<TSource> (this
  IEnumerable<TSource> source, Func<TSource,bool> predicate)

public static IQueryable<TSource> Where<TSource> (this
  IQueryable<TSource> source, Expression<Func<TSource,bool>> predicate)

When embedded within a query, a lambda expression looks identical whether it
binds to Enumerable’s operators or Queryable’s operators:

IEnumerable<Product> q1 = localProducts.Where (p => !p.Discontinued);
IQueryable<Product>  q2 = sqlProducts.Where   (p => !p.Discontinued);
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When you assign a lambda expression to an intermediate variable, however, you
must be explicit about whether to resolve to a delegate (i.e., Func<>) or an expres‐
sion tree (i.e., Expression<Func<>>). In the following example, predicate1 and
predicate2 are not interchangeable:

Func <Product, bool> predicate1 = p => !p.Discontinued;
IEnumerable<Product> q1 = localProducts.Where (predicate1);

Expression <Func <Product, bool>> predicate2 = p => !p.Discontinued;
IQueryable<Product> q2 = sqlProducts.Where (predicate2);

Compiling expression trees
You can convert an expression tree to a delegate by calling Compile. This is of par‐
ticular value when writing methods that return reusable expressions. To illustrate,
let’s add a static method to the Product class that returns a predicate evaluating to
true if a product is not discontinued and has sold in the past 30 days:

public class Product
{
  public static Expression<Func<Product, bool>> IsSelling()
  {
    return p => !p.Discontinued && p.LastSale > DateTime.Now.AddDays (-30);
  }
}

The method just written can be used both in interpreted and local queries, as
follows:

void Test()
{
  var dbContext = new NutshellContext();
  Product[] localProducts = dbContext.Products.ToArray();

  IQueryable<Product> sqlQuery =
    dbContext.Products.Where (Product.IsSelling());

  IEnumerable<Product> localQuery =
    localProducts.Where (Product.IsSelling().Compile());
}

.NET does not provide an API to convert in the reverse
direction, from a delegate to an expression tree. This makes
expression trees more versatile.

AsQueryable
The AsQueryable operator lets you write whole queries that can run over either local
or remote sequences:

IQueryable<Product> FilterSortProducts (IQueryable<Product> input)
{
  return from p in input
         where ...
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         orderby ...
         select p;
}

void Test()
{
  var dbContext = new NutshellContext();
  Product[] localProducts = dbContext.Products.ToArray();

  var sqlQuery   = FilterSortProducts (dbContext.Products);
  var localQuery = FilterSortProducts (localProducts.AsQueryable());
  ...
}

AsQueryable wraps IQueryable<T> clothing around a local sequence so that subse‐
quent query operators resolve to expression trees. When you later enumerate over
the result, the expression trees are implicitly compiled (at a small performance cost),
and the local sequence enumerates as it would ordinarily.

Expression Trees
We said previously that an implicit conversion from a lambda expression to Expres
sion<TDelegate> causes the C# compiler to emit code that builds an expression
tree. With some programming effort, you can do the same thing manually at
runtime—in other words, dynamically build an expression tree from scratch. The
result can be cast to an Expression<TDelegate> and used in EF Core queries or
compiled into an ordinary delegate by calling Compile.

The Expression DOM
An expression tree is a miniature code DOM. Each node in the tree is represented
by a type in the System.Linq.Expressions namespace. Figure 8-10 illustrates these
types.

Figure 8-10. Expression types
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The base class for all nodes is the (nongeneric) Expression class. The generic
Expression<TDelegate> class actually means “typed lambda expression” and might
have been named LambdaExpression<TDelegate> if it wasn’t for the clumsiness of
this:

LambdaExpression<Func<Customer,bool>> f = ...

Expression<T>’s base type is the (nongeneric) LambdaExpression class. Lamdba
Expression provides type unification for lambda expression trees: any typed
Expression<T> can be cast to a LambdaExpression.

The thing that distinguishes LambdaExpressions from ordinary Expressions is that
lambda expressions have parameters.

To create an expression tree, don’t instantiate node types directly; rather, call static
methods provided on the Expression class, such as Add, And, Call, Constant,
LessThan, and so on.

Figure 8-11 shows the expression tree that the following assignment creates:

Expression<Func<string, bool>> f = s => s.Length < 5;

Figure 8-11. Expression tree

We can demonstrate this as follows:

Console.WriteLine (f.Body.NodeType);                     // LessThan
Console.WriteLine (((BinaryExpression) f.Body).Right);   // 5

Let’s now build this expression from scratch. The principle is that you start from the
bottom of the tree and work your way up. The bottommost thing in our tree is a
ParameterExpression, the lambda expression parameter called “s” of type string:

ParameterExpression p = Expression.Parameter (typeof (string), "s");

Building Query Expressions | 469

LIN
Q

 Q
ueries



The next step is to build the MemberExpression and ConstantExpression. In the
former case, we need to access the Length property of our parameter, “s”:

MemberExpression stringLength = Expression.Property (p, "Length");
ConstantExpression five = Expression.Constant (5);

Next is the LessThan comparison:

BinaryExpression comparison = Expression.LessThan (stringLength, five);

The final step is to construct the lambda expression, which links an expression Body
to a collection of parameters:

Expression<Func<string, bool>> lambda
  = Expression.Lambda<Func<string, bool>> (comparison, p);

A convenient way to test our lambda is by compiling it to a delegate:

Func<string, bool> runnable = lambda.Compile();

Console.WriteLine (runnable ("kangaroo"));           // False
Console.WriteLine (runnable ("dog"));                // True

The easiest way to determine which expression type to use is
to examine an existing lambda expression in the Visual Studio
debugger.

We continue this discussion online, at http://www.albahari.com/expressions.
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9
LINQ Operators

This chapter describes each of the LINQ query operators. As well as serving as a
reference, two of the sections, “Projecting” on page 473 and “Joining” on page 473,
cover a number of conceptual areas:

• Projecting object hierarchies•

• Joining with Select, SelectMany, Join, and GroupJoin•
• Query expressions with multiple range variables•

All of the examples in this chapter assume that a names array is defined as follows:

string[] names = { "Tom", "Dick", "Harry", "Mary", "Jay" };

Examples that query a database assume that a variable called dbContext is instanti‐
ated as

var dbContext = new NutshellContext();

where NutshellContext is defined as follows:

public class NutshellContext : DbContext
{
  public DbSet<Customer> Customers { get; set; }
  public DbSet<Purchase> Purchases { get; set; }

  protected override void OnModelCreating(ModelBuilder modelBuilder)
  {
    modelBuilder.Entity<Customer>(entity =>
    {
      entity.ToTable("Customer");
      entity.Property(e => e.Name).IsRequired();  // Column is not nullable
    });
    modelBuilder.Entity<Purchase>(entity =>
    {
      entity.ToTable("Purchase");
      entity.Property(e => e.Date).IsRequired();     
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      entity.Property(e => e.Description).IsRequired();     
    });
  }
}

public class Customer
{
  public int ID { get; set; }
  public string Name { get; set; }

  public virtual List<Purchase> Purchases { get; set; }
    = new List<Purchase>();
}

public class Purchase
{        
  public int ID { get; set; }
  public int? CustomerID { get; set; }
  public DateTime Date { get; set; }
  public string Description { get; set; }
  public decimal Price { get; set; }

  public virtual Customer Customer { get; set; }
}

All of the examples in this chapter are preloaded into LINQ‐
Pad, along with a sample database with a matching schema.
You can download LINQPad from http://www.linqpad.net.

Here are corresponding SQL Server table definitions:

CREATE TABLE Customer (
  ID int NOT NULL IDENTITY PRIMARY KEY,
  Name nvarchar(30) NOT NULL
)

CREATE TABLE Purchase (
  ID int NOT NULL IDENTITY PRIMARY KEY,
  CustomerID int NOT NULL REFERENCES Customer(ID),
  Date datetime NOT NULL,
  Description nvarchar(30) NOT NULL,
  Price decimal NOT NULL
)

Overview
In this section, we provide an overview of the standard query operators. They fall
into three categories:

• Sequence in, sequence out (sequence→sequence)•
• Sequence in, single element or scalar value out•
• Nothing in, sequence out (generation methods)•
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We first present each of the three categories and the query operators they include,
and then we take up each individual query operator in detail.

Sequence→Sequence
Most query operators fall into this category—accepting one or more sequences as
input and emitting a single output sequence. Figure 9-1 illustrates those operators
that restructure the shape of the sequences.

Figure 9-1. Shape-changing operators

Filtering
IEnumerable<TSource> →IEnumerable<TSource>

Returns a subset of the original elements.

Where, Take, TakeLast, TakeWhile, Skip, SkipLast, SkipWhile, 
Distinct, DistinctBy

Projecting
IEnumerable<TSource>→IEnumerable<TResult>

Transforms each element with a lambda function. SelectMany flattens nested
sequences; Select and SelectMany perform inner joins, left outer joins, cross joins,
and non-equi joins with EF Core.

Select, SelectMany

Joining
IEnumerable<TOuter>, IEnumerable<TInner>→IEnumerable<TResult>

Meshes elements of one sequence with another. Join and GroupJoin operators are
designed to be efficient with local queries and support inner and left outer joins.
The Zip operator enumerates two sequences in step, applying a function over each
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element pair. Rather than naming the type arguments TOuter and TInner, the Zip
operator names them TFirst and TSecond:

IEnumerable<TFirst>, IEnumerable<TSecond>→IEnumerable<TResult>

Join, GroupJoin, Zip

Ordering
IEnumerable<TSource>→IOrderedEnumerable<TSource>

Returns a reordering of a sequence.

OrderBy, OrderByDescending, ThenBy, ThenByDescending, Reverse

Grouping
IEnumerable<TSource>→IEnumerable<IGrouping<TKey,TElement>>

IEnumerable<TSource>→IEnumerable<TElement[]>

Groups a sequence into subsequences.

GroupBy, Chunk

Set operators
IEnumerable<TSource>, IEnumerable<TSource>→IEnumerable<TSource>

Takes two same-typed sequences and returns their commonality, sum, or difference.

Concat, Union, UnionBy, Intersect, IntersectBy, Except, ExceptBy

Conversion methods: Import
IEnumerable→IEnumerable<TResult>

OfType, Cast

Conversion methods: Export
IEnumerable<TSource>→An array, list, dictionary, lookup, or sequence

ToArray, ToList, ToDictionary, ToLookup, AsEnumerable, AsQueryable

Sequence→Element or Value
The following query operators accept an input sequence and emit a single element
or value.

Element operators
IEnumerable<TSource>→TSource

Picks a single element from a sequence.
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First, FirstOrDefault, Last, LastOrDefault, Single, SingleOrDefault,
ElementAt, ElementAtOrDefault, MinBy, MaxBy, DefaultIfEmpty

Aggregation methods
IEnumerable<TSource>→scalar

Performs a computation across a sequence, returning a scalar value (typically a
number).

Aggregate, Average, Count, LongCount, Sum, Max, Min

Quantifiers
IEnumerable<TSource>→bool

An aggregation returning true or false.

All, Any, Contains, SequenceEqual

Void→Sequence
In the third and final category are query operators that produce an output sequence
from scratch.

Generation methods
void→IEnumerable<TResult>

Manufactures a simple sequence.

Empty, Range, Repeat

Filtering
IEnumerable<TSource>→IEnumerable<TSource>

Method Description SQL equivalents

Where Returns a subset of elements that satisfy a given
condition

WHERE

Take Returns the first count elements and discards
the rest

WHERE ROW_NUMBER()...

or TOP n subquery

Skip Ignores the first count elements and returns
the rest

WHERE ROW_NUMBER()...

or NOT IN (SELECT TOP n...)

TakeLast Takes only the last count elements Exception thrown

SkipLast Ignores the last count element Exception thrown

TakeWhile Emits elements from the input sequence until the
predicate is false

Exception thrown
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Method Description SQL equivalents

SkipWhile Ignores elements from the input sequence until
the predicate is false, and then emits the rest

Exception thrown

Distinct,
DistinctBy

Returns a sequence that excludes duplicates SELECT DISTINCT...

The “SQL equivalents” column in the reference tables in this
chapter do not necessarily correspond to what an IQueryable
implementation such as EF Core will produce. Rather, it indi‐
cates what you’d typically use to do the same job if you were
writing the SQL query yourself. Where there is no simple
translation, the column is left blank. Where there is no trans‐
lation at all, the column reads “Exception thrown.”

Enumerable implementation code, when shown, excludes
checking for null arguments and indexing predicates.

With each of the filtering methods, you always end up with either the same number
or fewer elements than you started with. You can never get more! The elements are
also identical when they come out; they are not transformed in any way.

Where

Argument Type

Source sequence IEnumerable<TSource>

Predicate TSource => bool or (TSource,int) => boola

a Prohibited with LINQ to SQL and Entity Framework

Query syntax
where bool-expression

Enumerable.Where implementation
The internal implementation of Enumerable.Where, null checking aside, is function‐
ally equivalent to the following:

public static IEnumerable<TSource> Where<TSource>
  (this IEnumerable<TSource> source, Func <TSource, bool> predicate)
{
  foreach (TSource element in source)
    if (predicate (element))
      yield return element;
}
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Overview
Where returns the elements from the input sequence that satisfy the given predicate.

For instance:

string[] names = { "Tom", "Dick", "Harry", "Mary", "Jay" };
IEnumerable<string> query = names.Where (name => name.EndsWith ("y"));

// Harry
// Mary
// Jay

In query syntax:

IEnumerable<string> query = from n in names
                            where n.EndsWith ("y")
                            select n;

A where clause can appear more than once in a query and be interspersed with let,
orderby, and join clauses:

from n in names
where n.Length > 3
let u = n.ToUpper()
where u.EndsWith ("Y")
select u;           
  
// HARRY
// MARY

Standard C# scoping rules apply to such queries. In other words, you cannot refer to
a variable prior to declaring it with a range variable or a let clause.

Indexed filtering
Where’s predicate optionally accepts a second argument, of type int. This is fed with
the position of each element within the input sequence, allowing the predicate to
use this information in its filtering decision. For example, the following skips every
second element:

IEnumerable<string> query = names.Where ((n, i) => i % 2 == 0);

// Tom
// Harry
// Jay

An exception is thrown if you use indexed filtering in EF Core.

SQL LIKE comparisons in EF Core
The following methods on string translate to SQL’s LIKE operator:

Contains, StartsWith, EndsWith
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For instance, c.Name.Contains ("abc") translates to customer.Name LIKE

'%abc%' (or more accurately, a parameterized version of this). Contains lets you
compare only against a locally evaluated expression; to compare against another
column, you must use the EF.Functions.Like method:

... where EF.Functions.Like (c.Description, "%" + c.Name + "%")

EF.Functions.Like also lets you perform more complex comparisons (e.g., LIKE
'abc%def%').

< and > string comparisons in EF Core
You can perform order comparison on strings with string’s CompareTo method; this
maps to SQL’s < and > operators:

dbContext.Purchases.Where (p => p.Description.CompareTo ("C") < 0)

WHERE x IN (…, …, …) in EF Core
With EF Core, you can apply the Contains operator to a local collection within a
filter predicate. For instance:

string[] chosenOnes = { "Tom", "Jay" };

from c in dbContext.Customers
where chosenOnes.Contains (c.Name)
...

This maps to SQL’s IN operator. In other words:

WHERE customer.Name IN ("Tom", "Jay")

If the local collection is an array of entities or nonscalar types, EF Core might
instead emit an EXISTS clause.

Take, TakeLast, Skip, SkipLast

Argument Type

Source sequence IEnumerable<TSource>

Number of elements to take or skip int

Take emits the first n elements and discards the rest; Skip discards the first n ele‐
ments and emits the rest. The two methods are useful together when implementing
a web page allowing a user to navigate through a large set of matching records. For
instance, suppose that a user searches a book database for the term “mercury”, and
there are 100 matches. The following returns the first 20:

IQueryable<Book> query = dbContext.Books
  .Where   (b => b.Title.Contains ("mercury"))
  .OrderBy (b => b.Title)
  .Take (20);
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The next query returns books 21 to 40:

IQueryable<Book> query = dbContext.Books
  .Where   (b => b.Title.Contains ("mercury"))
  .OrderBy (b => b.Title)
  .Skip (20).Take (20);

EF Core translates Take and Skip to the ROW_NUMBER function in SQL Server 2005,
or a TOP n subquery in earlier versions of SQL Server.

The TakeLast and SkipLast methods take or skip the last n elements.

From .NET 6, the Take method is overloaded to accept a Range variable. This
overload can subsume the functionality of all four methods; for instance, Take(5..)
is equivalent to Skip(5), and Take(..^5) is equivalent to SkipLast(5).

TakeWhile and SkipWhile

Argument Type

Source sequence IEnumerable<TSource>

Predicate TSource => bool or (TSource,int) => bool

TakeWhile enumerates the input sequence, emitting each item until the given predi‐
cate is false. It then ignores the remaining elements:

int[] numbers      = { 3, 5, 2, 234, 4, 1 };
var takeWhileSmall = numbers.TakeWhile (n => n < 100);   // { 3, 5, 2 }

SkipWhile enumerates the input sequence, ignoring each item until the given predi‐
cate is false. It then emits the remaining elements:

int[] numbers      = { 3, 5, 2, 234, 4, 1 };
var skipWhileSmall = numbers.SkipWhile (n => n < 100);   // { 234, 4, 1 }

TakeWhile and SkipWhile have no translation to SQL and throw an exception if
used in an EF Core query.

Distinct and DistinctBy
Distinct returns the input sequence, stripped of duplicates. You can optionally pass
in a custom equality comparer. The following returns distinct letters in a string:

char[] distinctLetters = "HelloWorld".Distinct().ToArray();
string s = new string (distinctLetters);                     // HeloWrd

We can call LINQ methods directly on a string because string implements
IEnumerable<char>.

The DistinctBy method was introduced in .NET 6 and lets you specify a key
selector to be applied before performing equality comparison. The result of the
following expression is {1,2,3}:
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new[] { 1.0, 1.1, 2.0, 2.1, 3.0, 3.1 }.DistinctBy (n => Math.Round (n, 0))

Projecting
IEnumerable<TSource>→ IEnumerable<TResult>

Method Description SQL equivalents

Select Transforms each input element with the given lambda expression SELECT

SelectMany Transforms each input element, and then flattens and concatenates
the resultant subsequences

INNER JOIN,
LEFT OUTER JOIN,
CROSS JOIN

When querying a database, Select and SelectMany are the
most versatile joining constructs; for local queries, Join and
GroupJoin are the most efficient joining constructs.

Select

Argument Type

Source sequence IEnumerable<TSource>

Result selector TSource => TResult or (TSource,int) => TResulta

a Prohibited with EF Core

Query syntax
select projection-expression

Enumerable implementation
public static IEnumerable<TResult> Select<TSource,TResult>
  (this IEnumerable<TSource> source, Func<TSource,TResult> selector)
{
  foreach (TSource element in source)
    yield return selector (element);
}

Overview
With Select, you always get the same number of elements that you started with.
Each element, however, can be transformed in any manner by the lambda function.

The following selects the names of all fonts installed on the computer (from
System.Drawing):

IEnumerable<string> query = from f in FontFamily.Families
                            select f.Name;
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foreach (string name in query) Console.WriteLine (name);

In this example, the select clause converts a FontFamily object to its name. Here’s
the lambda equivalent:

IEnumerable<string> query = FontFamily.Families.Select (f => f.Name);

Select statements are often used to project into anonymous types:

var query =
  from f in FontFamily.Families
  select new { f.Name, LineSpacing = f.GetLineSpacing (FontStyle.Bold) };

A projection with no transformation is sometimes used with query syntax to satisfy
the requirement that the query end in a select or group clause. The following
selects fonts supporting strikeout:

IEnumerable<FontFamily> query =
  from f in FontFamily.Families
  where f.IsStyleAvailable (FontStyle.Strikeout)
  select f;

foreach (FontFamily ff in query) Console.WriteLine (ff.Name);

In such cases, the compiler omits the projection when translating to fluent syntax.

Indexed projection
The selector expression can optionally accept an integer argument, which acts as
an indexer, providing the expression with the position of each input in the input
sequence. This works only with local queries:

string[] names = { "Tom", "Dick", "Harry", "Mary", "Jay" };

IEnumerable<string> query = names
  .Select ((s,i) => i + "=" + s);     //  { "0=Tom", "1=Dick", ... }

Select subqueries and object hierarchies
You can nest a subquery in a select clause to build an object hierarchy. The
following example returns a collection describing each directory under Path.Get
TempPath(), with a subcollection of files under each directory:

string tempPath = Path.GetTempPath();
DirectoryInfo[] dirs = new DirectoryInfo (tempPath).GetDirectories();

var query =
  from d in dirs
  where (d.Attributes & FileAttributes.System) == 0
  select new
  {
    DirectoryName = d.FullName,
    Created = d.CreationTime,
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    Files = from f in d.GetFiles()
            where (f.Attributes & FileAttributes.Hidden) == 0
            select new { FileName = f.Name, f.Length, }
  };

foreach (var dirFiles in query)
{
  Console.WriteLine ("Directory: " + dirFiles.DirectoryName);
  foreach (var file in dirFiles.Files)
    Console.WriteLine ("  " + file.FileName + " Len: " + file.Length);
}

The inner portion of this query can be called a correlated subquery. A subquery is
correlated if it references an object in the outer query—in this case, it references d,
the directory being enumerated.

A subquery inside a Select allows you to map one object
hierarchy to another, or map a relational object model to a
hierarchical object model.

With local queries, a subquery within a Select causes double-deferred execution. In
our example, the files aren’t filtered or projected until the inner foreach statement
enumerates.

Subqueries and joins in EF Core
Subquery projections work well in EF Core, and you can use them to do the work
of SQL-style joins. Here’s how we retrieve each customer’s name along with their
high-value purchases:

var query =
  from c in dbContext.Customers
  select new {
               c.Name,
               Purchases = (from p in dbContext.Purchases
                           where p.CustomerID == c.ID && p.Price > 1000
                           select new { p.Description, p.Price })
                           .ToList()
             };

foreach (var namePurchases in query)
{
  Console.WriteLine ("Customer: " + namePurchases.Name);
  foreach (var purchaseDetail in namePurchases.Purchases)
    Console.WriteLine ("  - $$$: " + purchaseDetail.Price);
}

Note the use of ToList in the subquery. EF Core 3 cannot cre‐
ate queryables from the subquery result when that subquery
references the DbContext. This issue is being tracked by the EF
Core team and might be resolved in a future release.
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This style of query is ideally suited to interpreted queries. The
outer query and subquery are processed as a unit, preventing
unnecessary round-tripping. With local queries, however, it’s
inefficient because every combination of outer and inner ele‐
ments must be enumerated to get the few matching combina‐
tions. A better choice for local queries is Join or GroupJoin,
described in the following sections.

This query matches up objects from two disparate collections, and it can be thought
of as a “join.” The difference between this and a conventional database join (or
subquery) is that we’re not flattening the output into a single two-dimensional result
set. We’re mapping the relational data to hierarchical data, rather than to flat data.

Here’s the same query simplified by using the Purchases collection navigation
property on the Customer entity:

from c in dbContext.Customers
select new
{
  c.Name,
  Purchases = from p in c.Purchases    // Purchases is List<Purchase>
              where p.Price > 1000
              select new { p.Description, p.Price }
};

(EF Core 3 does not require ToList when performing the subquery on a navigation
property.)

Both queries are analogous to a left outer join in SQL in the sense that we get all
customers in the outer enumeration, regardless of whether they have any purchases.
To emulate an inner join—whereby customers without high-value purchases are
excluded—we would need to add a filter condition on the purchases collection:

from c in dbContext.Customers
where c.Purchases.Any (p => p.Price > 1000)
select new {
             c.Name,
             Purchases = from p in c.Purchases
                         where p.Price > 1000
                         select new { p.Description, p.Price }
           };

This is slightly untidy, however, in that we’ve written the same predicate (Price >
1000) twice. We can avoid this duplication with a let clause:

from c in dbContext.Customers
let highValueP = from p in c.Purchases
                 where p.Price > 1000
                 select new { p.Description, p.Price }
where highValueP.Any()
select new { c.Name, Purchases = highValueP };
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This style of query is flexible. By changing Any to Count, for instance, we can modify
the query to retrieve only customers with at least two high-value purchases:

...
where highValueP.Count() >= 2
select new { c.Name, Purchases = highValueP };

Projecting into concrete types
In the examples so far, we’ve instantiated anonymous types in the output. It can
also be useful to instantiate (ordinary) named classes, which you populate with
object initializers. Such classes can include custom logic and can be passed between
methods and assemblies without using type information.

A typical example is a custom business entity. A custom business entity is simply
a class that you write with some properties but is designed to hide lower-level
(database-related) details. You might exclude foreign key fields from business-entity
classes, for instance. Assuming that we wrote custom entity classes called Customer
Entity and PurchaseEntity, here’s how we could project into them:

IQueryable<CustomerEntity> query =
  from c in dbContext.Customers
  select new CustomerEntity
  {
    Name = c.Name,
    Purchases =
      (from p in c.Purchases
       where p.Price > 1000
       select new PurchaseEntity {
                                   Description = p.Description,
                                   Value = p.Price
                                 }
      ).ToList()
  };

// Force query execution, converting output to a more convenient List:
List<CustomerEntity> result = query.ToList();

When created to transfer data between tiers in a program or
between separate systems, custom business entity classes are
often called data transfer objects (DTO). DTOs contain no
business logic.

Notice that so far, we’ve not had to use a Join or SelectMany statement. This is
because we’re maintaining the hierarchical shape of the data, as illustrated in Fig‐
ure 9-2. With LINQ, you can often avoid the traditional SQL approach of flattening
tables into a two-dimensional result set.
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Figure 9-2. Projecting an object hierarchy

SelectMany

Argument Type

Source sequence IEnumerable<TSource>

Result selector TSource => IEnumerable<TResult>

or (TSource,int) => IEnumerable<TResult>a

a Prohibited with EF Core

Query syntax
from identifier1 in enumerable-expression1
from identifier2 in enumerable-expression2
...

Enumerable implementation
public static IEnumerable<TResult> SelectMany<TSource,TResult>
  (IEnumerable<TSource> source,
   Func <TSource,IEnumerable<TResult>> selector)
{
  foreach (TSource element in source)
    foreach (TResult subElement in selector (element))
      yield return subElement;
}

Overview
SelectMany concatenates subsequences into a single flat output sequence.

Recall that for each input element, Select yields exactly one output element. In
contrast, SelectMany yields 0..n output elements. The 0..n elements come from a
subsequence or child sequence that the lambda expression must emit.
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You can use SelectMany to expand child sequences, flatten nested collections, and
join two collections into a flat output sequence. Using the conveyor belt analogy,
SelectMany funnels fresh material onto a conveyor belt. With SelectMany, each
input element is the trigger for the introduction of fresh material. The fresh material
is emitted by the selector lambda expression and must be a sequence. In other
words, the lambda expression must emit a child sequence per input element. The
final result is a concatenation of the child sequences emitted for each input element.

Starting with a simple example, suppose that we have the following array of names,

string[] fullNames = { "Anne Williams", "John Fred Smith", "Sue Green" };

that we want to convert to a single flat collection of words—in other words:

"Anne", "Williams", "John", "Fred", "Smith", "Sue", Green"

SelectMany is ideal for this task, because we’re mapping each input element to a
variable number of output elements. All we must do is come up with a selector
expression that converts each input element to a child sequence. string.Split does
the job nicely: it takes a string and splits it into words, emitting the result as an
array:

string testInputElement = "Anne Williams";
string[] childSequence  = testInputElement.Split();

// childSequence is { "Anne", "Williams" };

So, here’s our SelectMany query and the result:

IEnumerable<string> query = fullNames.SelectMany (name => name.Split());

foreach (string name in query)
  Console.Write (name + "|");  // Anne|Williams|John|Fred|Smith|Sue|Green|

If you replace SelectMany with Select, you get the same
results in hierarchical form. The following emits a sequence
of string arrays, requiring nested foreach statements to
enumerate:

IEnumerable<string[]> query =
  fullNames.Select (name => name.Split());

foreach (string[] stringArray in query)
  foreach (string name in stringArray)
    Console.Write (name + "|");

The benefit of SelectMany is that it yields a single flat result
sequence.

SelectMany is supported in query syntax and is invoked by having an additional
generator—in other words, an extra from clause in the query. The from keyword
has two meanings in query syntax. At the start of a query, it introduces the original
range variable and input sequence. Anywhere else in the query, it translates to
SelectMany. Here’s our query in query syntax:
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IEnumerable<string> query =
  from fullName in fullNames
  from name in fullName.Split()     // Translates to SelectMany
  select name;

Note that the additional generator introduces a new range variable—in this case,
name. The old range variable stays in scope, however, and we can subsequently
access both.

Multiple range variables
In the preceding example, both name and fullName remain in scope until the query
either ends or reaches an into clause. The extended scope of these variables is the
killer scenario for query syntax over fluent syntax.

To illustrate, we can take the preceding query and include fullName in the final
projection:

IEnumerable<string> query =
  from fullName in fullNames
  from name in fullName.Split()
  select name + " came from " + fullName;

Anne came from Anne Williams
Williams came from Anne Williams
John came from John Fred Smith
...

Behind the scenes, the compiler must pull some tricks to let you access both
variables. A good way to appreciate this is to try writing the same query in fluent
syntax. It’s tricky! It becomes yet more difficult if you insert a where or orderby
clause before projecting:

from fullName in fullNames
from name in fullName.Split()
orderby fullName, name
select name + " came from " + fullName;

The problem is that SelectMany emits a flat sequence of child elements—in our
case, a flat collection of words. The original “outer” element from which it came
(fullName) is lost. The solution is to “carry” the outer element with each child, in a
temporary anonymous type:

from fullName in fullNames
from x in fullName.Split().Select (name => new { name, fullName } )
orderby x.fullName, x.name
select x.name + " came from " + x.fullName;

The only change here is that we’re wrapping each child element (name) in an
anonymous type that also contains its fullName. This is similar to how a let clause
is resolved. Here’s the final conversion to fluent syntax:
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IEnumerable<string> query = fullNames
  .SelectMany (fName => fName.Split()
                             .Select (name => new { name, fName } ))
  .OrderBy (x => x.fName)
  .ThenBy  (x => x.name)
  .Select  (x => x.name + " came from " + x.fName);

Thinking in query syntax
As we just demonstrated, there are good reasons to use query syntax if you need
multiple range variables. In such cases, it helps to not only use query syntax but also
to think directly in its terms.

There are two basic patterns when writing additional generators. The first is
expanding and flattening subsequences. To do this, you call a property or method on
an existing range variable in your additional generator. We did this in the previous
example:

from fullName in fullNames
from name in fullName.Split()

Here, we’ve expanded from enumerating full names to enumerating words. An
analogous EF Core query is when you expand collection navigation properties. The
following query lists all customers along with their purchases:

IEnumerable<string> query = from c in dbContext.Customers
                            from p in c.Purchases
                            select c.Name + " bought a " + p.Description;

Tom bought a Bike
Tom bought a Holiday
Dick bought a Phone
Harry bought a Car
...

Here, we’ve expanded each customer into a subsequence of purchases.

The second pattern is performing a cartesian product, or cross join, in which every
element of one sequence is matched with every element of another. To do this,
introduce a generator whose selector expression returns a sequence unrelated to a
range variable:

int[] numbers = { 1, 2, 3 };  string[] letters = { "a", "b" };

IEnumerable<string> query = from n in numbers
                            from l in letters
                            select n.ToString() + l;

// RESULT: { "1a", "1b", "2a", "2b", "3a", "3b" }

This style of query is the basis of SelectMany-style joins.
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Joining with SelectMany
You can use SelectMany to join two sequences simply by filtering the results of a
cross product. For instance, suppose that we want to match players for a game. We
could start as follows:

string[] players = { "Tom", "Jay", "Mary" };

IEnumerable<string> query = from name1 in players
                            from name2 in players
                            select name1 + " vs " + name2;

//RESULT: { "Tom vs Tom", "Tom vs Jay", "Tom vs Mary",
//          "Jay vs Tom", "Jay vs Jay", "Jay vs Mary",
//          "Mary vs Tom", "Mary vs "Jay", "Mary vs Mary" }

The query reads “For every player, reiterate every player, selecting player 1 versus
player 2.” Although we got what we asked for (a cross join), the results are not useful
until we add a filter:

IEnumerable<string> query = from name1 in players
                            from name2 in players
                            where name1.CompareTo (name2) < 0
                            orderby name1, name2
                            select name1 + " vs " + name2;

//RESULT: { "Jay vs Mary", "Jay vs Tom", "Mary vs Tom" }

The filter predicate constitutes the join condition. Our query can be called a non-
equi join because the join condition doesn’t use an equality operator.

SelectMany in EF Core
SelectMany in EF Core can perform cross joins, non-equi joins, inner joins, and left
outer joins. You can use SelectMany with both predefined associations and ad hoc
relationships—just as with Select. The difference is that SelectMany returns a flat
rather than a hierarchical result set.

An EF Core cross join is written just as in the preceding section. The following
query matches every customer to every purchase (a cross join):

var query = from c in dbContext.Customers
            from p in dbContext.Purchases
            select c.Name + " might have bought a " + p.Description;

More typically, though, you’d want to match customers to only their own purchases.
You achieve this by adding a where clause with a joining predicate. This results in a
standard SQL-style equi-join:

var query = from c in dbContext.Customers
            from p in dbContext.Purchases
            where c.ID == p.CustomerID
            select c.Name + " bought a " + p.Description;
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This translates well to SQL. In the next section, we see how
it extends to support outer joins. Reformulating such queries
with LINQ’s Join operator actually makes them less extensi‐
ble—LINQ is opposite to SQL in this sense.

If you have collection navigation properties in your entities, you can express the
same query by expanding the subcollection instead of filtering the cross product:

from c in dbContext.Customers
from p in c.Purchases
select new { c.Name, p.Description };

The advantage is that we’ve eliminated the joining predicate. We’ve gone from
filtering a cross product to expanding and flattening.

You can add where clauses to such a query for additional filtering. For instance, if
we want only customers whose names started with “T”, we could filter as follows:

from c in dbContext.Customers
where c.Name.StartsWith ("T")
from p in c.Purchases
select new { c.Name, p.Description };

This EF Core query would work equally well if the where clause were moved one
line down because the same SQL is generated in both cases. If it is a local query,
however, moving the where clause down would make it less efficient. With local
queries, you should filter before joining.

You can introduce new tables into the mix with additional from clauses. For
instance, if each purchase had purchase item child rows, you could produce a flat
result set of customers with their purchases, each with their purchase detail lines as
follows:

from c in dbContext.Customers
from p in c.Purchases
from pi in p.PurchaseItems
select new { c.Name, p.Description, pi.Detail };

Each from clause introduces a new child table. To include data from a parent table
(via a navigation property), you don’t add a from clause—you simply navigate to the
property. For example, if each customer has a salesperson whose name you want to
query, just do this:

from c in dbContext.Customers
select new { Name = c.Name, SalesPerson = c.SalesPerson.Name };

You don’t use SelectMany in this case because there’s no subcollection to flatten.
Parent navigation properties return a single item.
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Outer joins with SelectMany
We saw previously that a Select subquery yields a result analogous to a left outer
join:

from c in dbContext.Customers
select new {
             c.Name,
             Purchases = from p in c.Purchases
                         where p.Price > 1000
                         select new { p.Description, p.Price }
           };

In this example, every outer element (customer) is included, regardless of whether
the customer has any purchases. But suppose that we rewrite this query with
SelectMany so that we can obtain a single flat collection rather than a hierarchical
result set:

from c in dbContext.Customers
from p in c.Purchases
where p.Price > 1000
select new { c.Name, p.Description, p.Price };

In the process of flattening the query, we’ve switched to an inner join: customers are
now included only for whom one or more high-value purchases exist. To get a left
outer join with a flat result set, we must apply the DefaultIfEmpty query operator
on the inner sequence. This method returns a sequence with a single null element if
its input sequence has no elements. Here’s such a query, price predicate aside:

from c in dbContext.Customers
from p in c.Purchases.DefaultIfEmpty()
select new { c.Name, p.Description, Price = (decimal?) p.Price };

This works perfectly with EF Core, returning all customers—even if they have no
purchases. But if we were to run this as a local query, it would crash because when
p is null, p.Description and p.Price throw a NullReferenceException. We can
make our query robust in either scenario, as follows:

from c in dbContext.Customers
from p in c.Purchases.DefaultIfEmpty()
select new {
             c.Name,
             Descript = p == null ? null : p.Description,
             Price = p == null ? (decimal?) null : p.Price
           };

Let’s now reintroduce the price filter. We cannot use a where clause as we did before,
because it would execute after DefaultIfEmpty:

from c in dbContext.Customers
from p in c.Purchases.DefaultIfEmpty()
where p.Price > 1000...
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The correct solution is to splice the Where clause before DefaultIfEmpty with a
subquery:

from c in dbContext.Customers
from p in c.Purchases.Where (p => p.Price > 1000).DefaultIfEmpty()
select new {
             c.Name,
             Descript = p == null ? null : p.Description,
             Price = p == null ? (decimal?) null : p.Price
           };

EF Core translates this to a left outer join. This is an effective pattern for writing
such queries.

If you’re used to writing outer joins in SQL, you might be
tempted to overlook the simpler option of a Select subquery
for this style of query in favor of the awkward but familiar
SQL-centric flat approach. The hierarchical result set from
a Select subquery is often better suited to outer join–style
queries because there are no additional nulls to deal with.

Joining

Method Description SQL equivalents

Join Applies a lookup strategy to match elements from two collections,
emitting a flat result set

INNER JOIN

GroupJoin Similar to Join, but emits a hierarchical result set INNER JOIN,
LEFT OUTER JOIN

Zip Enumerates two sequences in step (like a zipper), applying a function
over each element pair

Exception thrown

Join and GroupJoin
IEnumerable<TOuter>, IEnumerable<TInner>→IEnumerable<TResult>

Join arguments

Argument Type

Outer sequence IEnumerable<TOuter>

Inner sequence IEnumerable<TInner>

Outer key selector TOuter => TKey

Inner key selector TInner => TKey

Result selector (TOuter,TInner) => TResult
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GroupJoin arguments

Argument Type

Outer sequence IEnumerable<TOuter>

Inner sequence IEnumerable<TInner>

Outer key selector TOuter => TKey

Inner key selector TInner => TKey

Result selector (TOuter,IEnumerable<TInner>) => TResult

Query syntax
from outer-var in outer-enumerable
join inner-var in inner-enumerable on outer-key-expr equals inner-key-expr
 [ into identifier ]

Overview
Join and GroupJoin mesh two input sequences into a single output sequence. Join
emits flat output; GroupJoin emits hierarchical output.

Join and GroupJoin provide an alternative strategy to Select and SelectMany.
The advantage of Join and GroupJoin is that they execute efficiently over local
in-memory collections because they first load the inner sequence into a keyed
lookup, avoiding the need to repeatedly enumerate over every inner element. The
disadvantage is that they offer the equivalent of inner and left outer joins only; cross
joins and non-equi joins must still be done using Select/SelectMany. With EF Core
queries, Join and GroupJoin offer no real benefits over Select and SelectMany.

Table 9-1 summarizes the differences between each of the joining strategies.

Table 9-1. Joining strategies

Strategy Result
shape

Local query
efficiency

Inner
joins

Left
outer
joins

Cross
joins

Non-
equi
joins

Select + SelectMany Flat Bad Yes Yes Yes Yes

Select + Select Nested Bad Yes Yes Yes Yes

Join Flat Good Yes — — —

GroupJoin Nested Good Yes Yes — —

GroupJoin + SelectMany Flat Good Yes Yes — —
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Join
The Join operator performs an inner join, emitting a flat output sequence.

The following query lists all customers alongside their purchases without using a
navigation property:

IQueryable<string> query =
  from c in dbContext.Customers
  join p in dbContext.Purchases on c.ID equals p.CustomerID
  select c.Name + " bought a " + p.Description;

The results match what we would get from a SelectMany-style query:

Tom bought a Bike
Tom bought a Holiday
Dick bought a Phone
Harry bought a Car

To see the benefit of Join over SelectMany, we must convert this to a local query.
We can demonstrate this by first copying all customers and purchases to arrays and
then querying the arrays:

Customer[] customers = dbContext.Customers.ToArray();
Purchase[] purchases = dbContext.Purchases.ToArray();
var slowQuery = from c in customers
                from p in purchases where c.ID == p.CustomerID
                select c.Name + " bought a " + p.Description;

var fastQuery = from c in customers
                join p in purchases on c.ID equals p.CustomerID
                select c.Name + " bought a " + p.Description;

Although both queries yield the same results, the Join query is considerably
faster because its implementation in Enumerable preloads the inner collection
(purchases) into a keyed lookup.

The query syntax for join can be written in general terms, as follows:

join inner-var in inner-sequence on outer-key-expr equals inner-key-expr

Join operators in LINQ differentiate between the outer sequence and inner sequence.
Syntactically:

• The outer sequence is the input sequence (customers, in this case).•

• The inner sequence is the new collection you introduce (purchases, in this•
case).

Join performs inner joins, meaning customers without purchases are excluded
from the output. With inner joins, you can swap the inner and outer sequences in
the query and still get the same results:

from p in purchases                                // p is now outer
join c in customers on p.CustomerID equals c.ID    // c is now inner
...
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You can add further join clauses to the same query. If each purchase, for instance,
has one or more purchase items, you could join the purchase items, as follows:

from c in customers
join p in purchases on c.ID equals p.CustomerID           // first join
join pi in purchaseItems on p.ID equals pi.PurchaseID     // second join
...

purchases acts as the inner sequence in the first join and as the outer sequence
in the second join. You could obtain the same results (inefficiently) using nested
foreach statements, as follows:

foreach (Customer c in customers)
  foreach (Purchase p in purchases)
    if (c.ID == p.CustomerID)
      foreach (PurchaseItem pi in purchaseItems)
        if (p.ID == pi.PurchaseID)
          Console.WriteLine (c.Name + "," + p.Price + "," + pi.Detail);

In query syntax, variables from earlier joins remain in scope—just as they do with
SelectMany-style queries. You’re also permitted to insert where and let clauses in
between join clauses.

Joining on multiple keys
You can join on multiple keys with anonymous types, as follows:

from x in sequenceX
join y in sequenceY on new { K1 = x.Prop1, K2 = x.Prop2 }
                equals new { K1 = y.Prop3, K2 = y.Prop4 }
...

For this to work, the two anonymous types must be structured identically. The
compiler then implements each with the same internal type, making the joining
keys compatible.

Joining in fluent syntax
The following query syntax join

 from c in customers
 join p in purchases on c.ID equals p.CustomerID
 select new { c.Name, p.Description, p.Price };

in fluent syntax is as follows:

 customers.Join (                // outer collection
       purchases,                // inner collection
       c => c.ID,                // outer key selector
       p => p.CustomerID,        // inner key selector
       (c, p) => new
          { c.Name, p.Description, p.Price }    // result selector
 );
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The result selector expression at the end creates each element in the output
sequence. If you have additional clauses prior to projecting, such as orderby in
this example:

from c in customers
join p in purchases on c.ID equals p.CustomerID
orderby p.Price
select c.Name + " bought a " + p.Description;

you must manufacture a temporary anonymous type in the result selector in fluent
syntax. This keeps both c and p in scope following the join:

customers.Join (                  // outer collection
      purchases,                  // inner collection
      c => c.ID,                  // outer key selector
      p => p.CustomerID,          // inner key selector
      (c, p) => new { c, p } )    // result selector
  .OrderBy (x => x.p.Price)
  .Select  (x => x.c.Name + " bought a " + x.p.Description);

Query syntax is usually preferable when joining; it’s less fiddly.

GroupJoin
GroupJoin does the same work as Join, but instead of yielding a flat result, it yields
a hierarchical result, grouped by each outer element. It also allows left outer joins.
GroupJoin is not currently supported in EF Core.

The query syntax for GroupJoin is the same as for Join, but is followed by the into
keyword.

Here’s the most basic example, using a local query:

Customer[] customers = dbContext.Customers.ToArray();
Purchase[] purchases = dbContext.Purchases.ToArray();

IEnumerable<IEnumerable<Purchase>> query =
  from c in customers
  join p in purchases on c.ID equals p.CustomerID
  into custPurchases
  select custPurchases;   // custPurchases is a sequence

An into clause translates to GroupJoin only when it appears
directly after a join clause. After a select or group clause,
it means query continuation. The two uses of the into key‐
word are quite different, although they have one feature in
common: they both introduce a new range variable.

The result is a sequence of sequences, which we could enumerate as follows:

foreach (IEnumerable<Purchase> purchaseSequence in query)
  foreach (Purchase p in purchaseSequence)
    Console.WriteLine (p.Description);
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This isn’t very useful, however, because purchaseSequence has no reference to the
customer. More commonly, you’d do this:

from c in customers
join p in purchases on c.ID equals p.CustomerID
into custPurchases
select new { CustName = c.Name, custPurchases };

This gives the same results as the following (inefficient) Select subquery:

from c in customers
select new
{
  CustName = c.Name,
  custPurchases = purchases.Where (p => c.ID == p.CustomerID)
};

By default, GroupJoin does the equivalent of a left outer join. To get an inner
join—whereby customers without purchases are excluded—you need to filter on
custPurchases:

from c in customers join p in purchases on c.ID equals p.CustomerID
into custPurchases
where custPurchases.Any()
select ...

Clauses after a group-join into operate on subsequences of inner child elements, not
individual child elements. This means that to filter individual purchases, you’d need
to call Where before joining:

from c in customers
join p in purchases.Where (p2 => p2.Price > 1000)
  on c.ID equals p.CustomerID
into custPurchases ...

You can construct lambda queries with GroupJoin as you would with Join.

Flat outer joins
You run into a dilemma if you want both an outer join and a flat result set.
GroupJoin gives you the outer join; Join gives you the flat result set. The solution
is to first call GroupJoin, then DefaultIfEmpty on each child sequence, and then
finally SelectMany on the result:

from c in customers
join p in purchases on c.ID equals p.CustomerID into custPurchases
from cp in custPurchases.DefaultIfEmpty()
select new
{
  CustName = c.Name,
  Price = cp == null ? (decimal?) null : cp.Price
};

DefaultIfEmpty emits a sequence with a single null value if a subsequence of
purchases is empty. The second from clause translates to SelectMany. In this role, it
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expands and flattens all the purchase subsequences, concatenating them into a single
sequence of purchase elements.

Joining with lookups
The Join and GroupJoin methods in Enumerable work in two steps. First, they
load the inner sequence into a lookup. Second, they query the outer sequence in
combination with the lookup.

A lookup is a sequence of groupings that can be accessed directly by key. Another
way to think of it is as a dictionary of sequences—a dictionary that can accept
many elements under each key (sometimes called a multidictionary). Lookups are
read-only and defined by the following interface:

public interface ILookup<TKey,TElement> :
   IEnumerable<IGrouping<TKey,TElement>>, IEnumerable
{
  int Count { get; }
  bool Contains (TKey key);
  IEnumerable<TElement> this [TKey key] { get; }
}

The joining operators—like other sequence-emitting opera‐
tors—honor deferred or lazy execution semantics. This means
the lookup is not built until you begin enumerating the output
sequence (and then the entire lookup is built right then).

You can create and query lookups manually as an alternative strategy to using the
joining operators when dealing with local collections. There are a couple of benefits
to doing so:

• You can reuse the same lookup over multiple queries—as well as in ordinary•
imperative code.

• Querying a lookup is an excellent way of understanding how Join and Group•
Join work.

The ToLookup extension method creates a lookup. The following loads all purchases
into a lookup—keyed by their CustomerID:

ILookup<int?,Purchase> purchLookup =
  purchases.ToLookup (p => p.CustomerID, p => p);

The first argument selects the key; the second argument selects the objects that are
to be loaded as values into the lookup.

Reading a lookup is rather like reading a dictionary except that the indexer returns
a sequence of matching items rather than a single matching item. The following
enumerates all purchases made by the customer whose ID is 1:

foreach (Purchase p in purchLookup [1])
  Console.WriteLine (p.Description);
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With a lookup in place, you can write SelectMany/Select queries that execute as
efficiently as Join/GroupJoin queries. Join is equivalent to using SelectMany on a
lookup:

from c in customers
from p in purchLookup [c.ID]
select new { c.Name, p.Description, p.Price };

Tom Bike 500
Tom Holiday 2000
Dick Bike 600
Dick Phone 300
...

Adding a call to DefaultIfEmpty makes this into an outer join:

from c in customers
from p in purchLookup [c.ID].DefaultIfEmpty()
 select new {
              c.Name,
              Descript = p == null ? null : p.Description,
              Price = p == null ? (decimal?) null : p.Price
            };

GroupJoin is equivalent to reading the lookup inside a projection:

from c in customers
select new {
             CustName = c.Name,
             CustPurchases = purchLookup [c.ID]
           };

Enumerable implementations
Here’s the simplest valid implementation of Enumerable.Join, null checking aside:

public static IEnumerable <TResult> Join
                                    <TOuter,TInner,TKey,TResult> (
  this IEnumerable <TOuter>     outer,
  IEnumerable <TInner>          inner,
  Func <TOuter,TKey>            outerKeySelector,
  Func <TInner,TKey>            innerKeySelector,
  Func <TOuter,TInner,TResult>  resultSelector)
{
  ILookup <TKey, TInner> lookup = inner.ToLookup (innerKeySelector);
  return
    from outerItem in outer
    from innerItem in lookup [outerKeySelector (outerItem)]
    select resultSelector (outerItem, innerItem);
}
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GroupJoin’s implementation is like that of Join but simpler:

public static IEnumerable <TResult> GroupJoin
                                    <TOuter,TInner,TKey,TResult> (
  this IEnumerable <TOuter>     outer,
  IEnumerable <TInner>          inner,
  Func <TOuter,TKey>            outerKeySelector,
  Func <TInner,TKey>            innerKeySelector,
  Func <TOuter,IEnumerable<TInner>,TResult>  resultSelector)
{
  ILookup <TKey, TInner> lookup = inner.ToLookup (innerKeySelector);
  return
    from outerItem in outer
    select resultSelector
     (outerItem, lookup [outerKeySelector (outerItem)]);
}

The Zip Operator
IEnumerable<TFirst>, IEnumerable<TSecond>→IEnumerable<TResult>

The Zip operator enumerates two sequences in step (like a zipper), returning a
sequence based on applying a function over each element pair. For instance, the
following:

int[] numbers = { 3, 5, 7 };
string[] words = { "three", "five", "seven", "ignored" };
IEnumerable<string> zip = numbers.Zip (words, (n, w) => n + "=" + w);

produces a sequence with the following elements:

3=three
5=five
7=seven

Extra elements in either input sequence are ignored. Zip is not supported by EF
Core.

Ordering
IEnumerable<TSource>→IOrderedEnumerable<TSource>

Method Description SQL equivalents

OrderBy, ThenBy Sorts a sequence in ascending order ORDER BY ...

OrderByDescending, 

ThenByDescending

Sorts a sequence in descending order ORDER BY ... DESC

Reverse Returns a sequence in reverse order Exception thrown

Ordering operators return the same elements in a different order.
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OrderBy, OrderByDescending, ThenBy, ThenByDescending

OrderBy and OrderByDescending arguments

Argument Type

Input sequence IEnumerable<TSource>

Key selector TSource => TKey

Return type = IOrderedEnumerable<TSource>

ThenBy and ThenByDescending arguments

Argument Type

Input sequence IOrderedEnumerable<TSource>

Key selector TSource => TKey

Query syntax
orderby expression1 [descending] [, expression2 [descending] ... ]

Overview
OrderBy returns a sorted version of the input sequence, using the keySelector
expression to make comparisons. The following query emits a sequence of names in
alphabetical order:

IEnumerable<string> query = names.OrderBy (s => s);

The following sorts names by length:

IEnumerable<string> query = names.OrderBy (s => s.Length);

// Result: { "Jay", "Tom", "Mary", "Dick", "Harry" };

The relative order of elements with the same sorting key (in this case, Jay/Tom and
Mary/Dick) is indeterminate—unless you append a ThenBy operator:

IEnumerable<string> query = names.OrderBy (s => s.Length).ThenBy (s => s);

// Result: { "Jay", "Tom", "Dick", "Mary", "Harry" };

ThenBy reorders only elements that had the same sorting key in the preceding sort.
You can chain any number of ThenBy operators. The following sorts first by length,
then by the second character, and finally by the first character:

names.OrderBy (s => s.Length).ThenBy (s => s[1]).ThenBy (s => s[0]);
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Here’s the equivalent in query syntax:

from s in names
orderby s.Length, s[1], s[0]
select s;

The following variation is incorrect—it will actually order first
by s[1] and then by s.Length (or in the case of a database
query, it will order only by s[1] and discard the former
ordering):

from s in names
orderby s.Length
orderby s[1]
...

LINQ also provides OrderByDescending and ThenByDescending operators, which
do the same things, emitting the results in reverse order. The following EF Core
query retrieves purchases in descending order of price, with those of the same price
listed alphabetically:

dbContext.Purchases.OrderByDescending (p => p.Price)
                     .ThenBy (p => p.Description);

In query syntax:

from p in dbContext.Purchases
orderby p.Price descending, p.Description
select p;

Comparers and collations
In a local query, the key selector objects themselves determine the ordering algo‐
rithm via their default IComparable implementation (see Chapter 7). You can
override the sorting algorithm by passing in an IComparer object. The following
performs a case-insensitive sort:

names.OrderBy (n => n, StringComparer.CurrentCultureIgnoreCase);

Passing in a comparer is not supported in query syntax or in any way by EF
Core. When querying a database, the comparison algorithm is determined by the
participating column’s collation. If the collation is case sensitive, you can request a
case-insensitive sort by calling ToUpper in the key selector:

from p in dbContext.Purchases
orderby p.Description.ToUpper()
select p;

IOrderedEnumerable and IOrderedQueryable
The ordering operators return special subtypes of IEnumerable<T>. Those in
Enumerable return IOrderedEnumerable<TSource>; those in Queryable return
IOrderedQueryable<TSource>. These subtypes allow a subsequent ThenBy operator
to refine rather than replace the existing ordering.
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The additional members that these subtypes define are not publicly exposed, so they
present like ordinary sequences. The fact that they are different types comes into
play when building queries progressively:

IOrderedEnumerable<string> query1 = names.OrderBy (s => s.Length);
IOrderedEnumerable<string> query2 = query1.ThenBy (s => s);

If we instead declare query1 of type IEnumerable<string>, the second line would
not compile—ThenBy requires an input of type IOrderedEnumerable<string>. You
can avoid worrying about this by implicitly typing range variables:

var query1 = names.OrderBy (s => s.Length);
var query2 = query1.ThenBy (s => s);

Implicit typing can create problems of its own, though. The following will not
compile:

var query = names.OrderBy (s => s.Length);
query = query.Where (n => n.Length > 3);       // Compile-time error

The compiler infers query to be of type IOrderedEnumerable<string>, based on
OrderBy’s output sequence type. However, the Where on the next line returns an
ordinary IEnumerable<string>, which cannot be assigned back to query. You can
work around this either with explicit typing or by calling AsEnumerable() after
OrderBy:

var query = names.OrderBy (s => s.Length).AsEnumerable();
query = query.Where (n => n.Length > 3);                   // OK

The equivalent in interpreted queries is to call AsQueryable.

Grouping

Method Description SQL equivalents

GroupBy Groups a sequence into subsequences GROUP BY

Chunk Groups a sequence into arrays of a fixed size  

GroupBy
IEnumerable<TSource>→IEnumerable<IGrouping<TKey,TElement>>

Argument Type

Input sequence IEnumerable<TSource>

Key selector TSource => TKey

Element selector (optional) TSource => TElement

Comparer (optional) IEqualityComparer<TKey>
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Query syntax
group element-expression by key-expression

Overview
GroupBy organizes a flat input sequence into sequences of groups. For example, the
following organizes all of the files in Path.GetTempPath() by extension:

string[] files = Directory.GetFiles (Path.GetTempPath());

IEnumerable<IGrouping<string,string>> query =
  files.GroupBy (file => Path.GetExtension (file));

Or, with implicit typing:

var query = files.GroupBy (file => Path.GetExtension (file));

Here’s how to enumerate the result:

foreach (IGrouping<string,string> grouping in query)
{
  Console.WriteLine ("Extension: " + grouping.Key);
  foreach (string filename in grouping)
    Console.WriteLine ("   - " + filename);
}

Extension: .pdf
  -- chapter03.pdf
  -- chapter04.pdf
Extension: .doc
  -- todo.doc
  -- menu.doc
  -- Copy of menu.doc
...

Enumerable.GroupBy works by reading the input elements into a temporary dictio‐
nary of lists so that all elements with the same key end up in the same sublist. It then
emits a sequence of groupings. A grouping is a sequence with a Key property:

public interface IGrouping <TKey,TElement> : IEnumerable<TElement>,
                                             IEnumerable
{
  TKey Key { get; }    // Key applies to the subsequence as a whole
}

By default, the elements in each grouping are untransformed input elements unless
you specify an elementSelector argument. The following projects each input ele‐
ment to uppercase:

files.GroupBy (file => Path.GetExtension (file), file => file.ToUpper());

An elementSelector is independent of the keySelector. In our case, this means
that the Key on each grouping is still in its original case:
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Extension: .pdf
  -- CHAPTER03.PDF
  -- CHAPTER04.PDF
Extension: .doc
  -- TODO.DOC

Note that the subcollections are not emitted in alphabetical order of key. GroupBy
merely groups; it does not sort. In fact, it preserves the original ordering. To sort,
you must add an OrderBy operator:

files.GroupBy (file => Path.GetExtension (file), file => file.ToUpper())
     .OrderBy (grouping => grouping.Key);

GroupBy has a simple and direct translation in query syntax:

group element-expr by key-expr

Here’s our example in query syntax:

from file in files
group file.ToUpper() by Path.GetExtension (file);

As with select, group “ends” a query—unless you add a query continuation clause:

from file in files
group file.ToUpper() by Path.GetExtension (file) into grouping
orderby grouping.Key
select grouping;

Query continuations are often useful in a group by query. The next query filters out
groups that have fewer than five files in them:

from file in files
group file.ToUpper() by Path.GetExtension (file) into grouping
where grouping.Count() >= 5
select grouping;

A where after a group by is equivalent to HAVING in SQL.
It applies to each subsequence or grouping as a whole rather
than the individual elements.

Sometimes, you’re interested purely in the result of an aggregation on a grouping
and so can abandon the subsequences:

string[] votes = { "Dogs", "Cats", "Cats", "Dogs", "Dogs" };

IEnumerable<string> query = from vote in votes
                            group vote by vote into g
                            orderby g.Count() descending
                            select g.Key;

string winner = query.First();    // Dogs
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GroupBy in EF Core
Grouping works in the same way when querying a database. If you have navigation
properties set up, you’ll find, however, that the need to group arises less frequently
than with standard SQL. For instance, to select customers with at least two purcha‐
ses, you don’t need to group; the following query does the job nicely:

from c in dbContext.Customers
where c.Purchases.Count >= 2
select c.Name + " has made " + c.Purchases.Count + " purchases";

An example of when you might use grouping is to list total sales by year:

from p in dbContext.Purchases
group p.Price by p.Date.Year into salesByYear
select new {
             Year       = salesByYear.Key,
             TotalValue = salesByYear.Sum()
           };

LINQ’s grouping is more powerful than SQL’s GROUP BY in that you can fetch all
detail rows without any aggregation:

from p in dbContext.Purchases
group p by p.Date.Year
Date.Year

However, this doesn’t work in EF Core. An easy workaround is to call .AsEnumera
ble() just before grouping so that the grouping happens on the client. This is no
less efficient as long as you perform any filtering before grouping so that you only
fetch the data you need from the server.

Another departure from traditional SQL comes in there being no obligation to
project the variables or expressions used in grouping or sorting.

Grouping by multiple keys
You can group by a composite key, using an anonymous type:

from n in names
group n by new { FirstLetter = n[0], Length = n.Length };

Custom equality comparers
You can pass a custom equality comparer into GroupBy, in a local query, to change
the algorithm for key comparison. Rarely is this required, though, because changing
the key selector expression is usually sufficient. For instance, the following creates a
case-insensitive grouping:

group n by n.ToUpper()
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Chunk
IEnumerable<TSource>→IEnumerable<TElement[]>

Argument Type

Input sequence IEnumerable<TSource>

size int

Introduced in .NET 6, Chunk groups a sequence into chunks of a given size (or
fewer, if there aren’t enough elements):

foreach (int[] chunk in new[] { 1, 2, 3, 4, 5, 6, 7, 8 }.Chunk (3))
  Console.WriteLine (string.Join (", ", chunk));

Output:

1, 2, 3
4, 5, 6
7, 8

Set Operators
IEnumerable<TSource>, IEnumerable<TSource>→IEnumerable<TSource>

Method Description SQL equivalents

Concat Returns a concatenation of elements in each of
the two sequences

UNION ALL

Union, UnionBy Returns a concatenation of elements in each of
the two sequences, excluding duplicates

UNION

Intersect,
IntersectBy

Returns elements present in both sequences WHERE ... IN (...)

Except,
ExceptBy

Returns elements present in the first but not
the second sequence

EXCEPT or
WHERE ... NOT IN (...)

Concat, Union, UnionBy
Concat returns all the elements of the first sequence, followed by all the elements of
the second. Union does the same but removes any duplicates:

int[] seq1 = { 1, 2, 3 }, seq2 = { 3, 4, 5 };

IEnumerable<int>
  concat = seq1.Concat (seq2),    //  { 1, 2, 3, 3, 4, 5 }
  union  = seq1.Union  (seq2);    //  { 1, 2, 3, 4, 5 }

Specifying the type argument explicitly is useful when the sequences are differently
typed but the elements have a common base type. For instance, with the reflection
API (Chapter 18), methods and properties are represented with MethodInfo and
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PropertyInfo classes, which have a common base class called MemberInfo. We can
concatenate methods and properties by stating that base class explicitly when calling
Concat:

MethodInfo[] methods = typeof (string).GetMethods();
PropertyInfo[] props = typeof (string).GetProperties();
IEnumerable<MemberInfo> both = methods.Concat<MemberInfo> (props);

In the next example, we filter the methods before concatenating:

var methods = typeof (string).GetMethods().Where (m => !m.IsSpecialName);
var props = typeof (string).GetProperties();
var both = methods.Concat<MemberInfo> (props);

This example relies on interface type parameter variance: methods is of type
IEnumerable<MethodInfo>, which requires a covariant conversion to IEnumerable
<MemberInfo>. It’s a good illustration of how variance makes things work more like
you’d expect.

UnionBy (introduced in .NET 6) takes a keySelector, which is used in determin‐
ing whether an element is a duplicate. In the following example, we perform a
case-insensitive union:

string[] seq1 = { "A", "b", "C" };
string[] seq2 = { "a", "B", "c" };
var union = seq1.UnionBy (seq2, x => x.ToUpperInvariant());
// union is { "A", "b", "C" }

In this case, the same thing can be accomplished with Union, if we supply an
equality comparer:

var union = seq1.Union (seq2, StringComparer.InvariantCultureIgnoreCase);

Intersect, Intersect By, Except, and ExceptBy
Intersect returns the elements that two sequences have in common. Except
returns the elements in the first input sequence that are not present in the second:

int[] seq1 = { 1, 2, 3 }, seq2 = { 3, 4, 5 };

IEnumerable<int>
  commonality = seq1.Intersect (seq2),    //  { 3 }
  difference1 = seq1.Except    (seq2),    //  { 1, 2 }
  difference2 = seq2.Except    (seq1);    //  { 4, 5 }

Enumerable.Except works internally by loading all of the elements in the first
collection into a dictionary and then removing from the dictionary all elements
present in the second sequence. The equivalent in SQL is a NOT EXISTS or NOT IN
subquery:

SELECT number FROM numbers1Table
WHERE number NOT IN (SELECT number FROM numbers2Table)
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The IntersectBy and ExceptBy methods (from .NET 6) let you specify a key
selector that’s applied before performing equality comparison (see the discussion on
UnionBy in the preceding section).

Conversion Methods
LINQ deals primarily in sequences; in other words, collections of type IEnumera
ble<T>. The conversion methods convert to and from other types of collections:

Method Description

OfType Converts IEnumerable to IEnumerable<T>, discarding wrongly typed elements

Cast Converts IEnumerable to IEnumerable<T>, throwing an exception if there are any
wrongly typed elements

ToArray Converts IEnumerable<T> to T[]

ToList Converts IEnumerable<T> to List<T>

ToDictionary Converts IEnumerable<T> to Dictionary<TKey,TValue>

ToLookup Converts IEnumerable<T> to ILookup<TKey,TElement>

AsEnumerable Upcasts to IEnumerable<T>

AsQueryable Casts or converts to IQueryable<T>

OfType and Cast
OfType and Cast accept a nongeneric IEnumerable collection and emit a generic
IEnumerable<T> sequence that you can subsequently query:

ArrayList classicList = new ArrayList();          // in System.Collections
classicList.AddRange ( new int[] { 3, 4, 5 } );
IEnumerable<int> sequence1 = classicList.Cast<int>();

Cast and OfType differ in their behavior when encountering an input element that’s
of an incompatible type. Cast throws an exception; OfType ignores the incompatible
element. Continuing the preceding example:

DateTime offender = DateTime.Now;
classicList.Add (offender);
IEnumerable<int>
  sequence2 = classicList.OfType<int>(), // OK - ignores offending DateTime
  sequence3 = classicList.Cast<int>();   // Throws exception

The rules for element compatibility exactly follow those of C#’s is operator, and
therefore consider only reference conversions and unboxing conversions. We can
see this by examining the internal implementation of OfType:

public static IEnumerable<TSource> OfType <TSource> (IEnumerable source)
{
  foreach (object element in source)
    if (element is TSource)
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      yield return (TSource)element;
}

Cast has an identical implementation, except that it omits the type compatibility
test:

public static IEnumerable<TSource> Cast <TSource> (IEnumerable source)
{
  foreach (object element in source)
    yield return (TSource)element;
}

A consequence of these implementations is that you cannot use Cast to perform
numeric or custom conversions (for these, you must perform a Select operation
instead). In other words, Cast is not as flexible as C#’s cast operator:

int i = 3;
long l = i;         // Implicit numeric conversion int->long
int i2 = (int) l;   // Explicit numeric conversion long->int

We can demonstrate this by attempting to use OfType or Cast to convert a sequence
of ints to a sequence of longs:

int[] integers = { 1, 2, 3 };

IEnumerable<long> test1 = integers.OfType<long>();
IEnumerable<long> test2 = integers.Cast<long>();

When enumerated, test1 emits zero elements and test2 throws an exception.
Examining OfType’s implementation, it’s fairly clear why. After substituting TSource,
we get the following expression:

(element is long)

This returns false for an int element, due to the lack of an inheritance
relationship.

The reason that test2 throws an exception when enumerated
is more subtle. Notice in Cast’s implementation that element
is of type object. When TSource is a value type, the CLR
assumes this is an unboxing conversion and synthesizes a
method that reproduces the scenario described in the section
“Boxing and Unboxing” on page 139:

int value = 123;
object element = value;
long result = (long) element;  // exception

Because the element variable is declared of type object, an
object-to-long cast is performed (an unboxing) rather than
an int-to-long numeric conversion. Unboxing operations
require an exact type match, so the object-to-long unbox
fails when given an int.
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As we suggested previously, the solution is to use an ordinary Select:

IEnumerable<long> castLong = integers.Select (s => (long) s);

OfType and Cast are also useful in downcasting elements in a generic input
sequence. For instance, if you have an input sequence of type IEnumerable<Fruit>,
OfType<Apple> would return just the apples. This is particularly useful in LINQ to
XML (see Chapter 10).

Cast has query syntax support: simply precede the range variable with a type:

from TreeNode node in myTreeView.Nodes
...

ToArray, ToList, ToDictionary, ToHashSet, ToLookup
ToArray, ToList, and ToHashSet emit the results into an array, List<T> or Hash
Set<T>. When they execute, these operators force the immediate enumeration of the
input sequence. For examples, refer to “Deferred Execution” on page 432.

ToDictionary and ToLookup accept the following arguments:

Argument Type

Input sequence IEnumerable<TSource>

Key selector TSource => TKey

Element selector (optional) TSource => TElement

Comparer (optional) IEqualityComparer<TKey>

ToDictionary also forces immediate execution of a sequence, writing the results to
a generic Dictionary. The keySelector expression you provide must evaluate to
a unique value for each element in the input sequence; otherwise, an exception is
thrown. In contrast, ToLookup allows many elements of the same key. We described
lookups in “Joining with lookups” on page 498.

AsEnumerable and AsQueryable
AsEnumerable upcasts a sequence to IEnumerable<T>, forcing the compiler to bind
subsequent query operators to methods in Enumerable instead of Queryable. For an
example, see “Combining Interpreted and Local Queries” on page 452.

AsQueryable downcasts a sequence to IQueryable<T> if it implements that inter‐
face. Otherwise, it instantiates an IQueryable<T> wrapper over the local query.
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Element Operators
IEnumerable<TSource>→ TSource

Method Description SQL equivalents

First, FirstOrDefault Returns the first element in the sequence, optionally
satisfying a predicate

SELECT TOP 1 ...
ORDER BY ...

Last,
LastOrDefault

Returns the last element in the sequence, optionally
satisfying a predicate

SELECT TOP 1 ...
ORDER BY ... DESC

Single, 

SingleOrDefault

Equivalent to First/FirstOrDefault, but
throws an exception if there is more than one match

 

ElementAt, 

ElementAtOrDefault

Returns the element at the specified position Exception thrown

MinBy, MaxBy Returns the element with the smallest or largest
value

Exception thrown

DefaultIfEmpty Returns a single-element sequence whose value
is default(TSource) if the sequence has no
elements

OUTER JOIN

Methods ending in “OrDefault” return default(TSource) rather than throwing an
exception if the input sequence is empty or if no elements match the supplied
predicate.

default(TSource) is null for reference type elements, false for the bool type, and
zero for numeric types.

First, Last, and Single

Argument Type

Source sequence IEnumerable<TSource>

Predicate (optional) TSource => bool

The following example demonstrates First and Last:

int[] numbers  = { 1, 2, 3, 4, 5 };
int first      = numbers.First();                      // 1
int last       = numbers.Last();                       // 5
int firstEven  = numbers.First  (n => n % 2 == 0);     // 2
int lastEven   = numbers.Last   (n => n % 2 == 0);     // 4

The following demonstrates First versus FirstOrDefault:

int firstBigError  = numbers.First          (n => n > 10);   // Exception
int firstBigNumber = numbers.FirstOrDefault (n => n > 10);   // 0

512 | Chapter 9: LINQ Operators



To prevent an exception, Single requires exactly one matching element; SingleOr
Default requires one or zero matching elements:

int onlyDivBy3 = numbers.Single (n => n % 3 == 0);   // 3
int divBy2Err  = numbers.Single (n => n % 2 == 0);   // Error: 2 & 4 match

int singleError = numbers.Single          (n => n > 10);      // Error
int noMatches   = numbers.SingleOrDefault (n => n > 10);      // 0
int divBy2Error = numbers.SingleOrDefault (n => n % 2 == 0);  // Error

Single is the “fussiest” in this family of element operators. FirstOrDefault and
LastOrDefault are the most tolerant.

In EF Core, Single is often used to retrieve a row from a table by primary key:

Customer cust = dataContext.Customers.Single (c => c.ID == 3);

ElementAt

Argument Type

Source sequence IEnumerable<TSource>

Index of element to return int

ElementAt picks the nth element from the sequence:

int[] numbers  = { 1, 2, 3, 4, 5 };
int third      = numbers.ElementAt (2);            // 3
int tenthError = numbers.ElementAt (9);            // Exception
int tenth      = numbers.ElementAtOrDefault (9);   // 0

Enumerable.ElementAt is written such that if the input sequence happens to imple‐
ment IList<T>, it calls IList<T>’s indexer. Otherwise, it enumerates n times and
then returns the next element. ElementAt is not supported in EF Core.

MinBy and MaxBy
MinBy and MaxBy (introduced in .NET 6) return the element with the smallest or
largest value, as determined by a keySelector:

string[] names = { "Tom", "Dick", "Harry", "Mary", "Jay" };
Console.WriteLine (names.MaxBy (n => n.Length));   // Harry

In contrast, Min and Max (which we will cover in the following section) return the
smallest or largest value itself:

Console.WriteLine (names.Max   (n => n.Length));   // 5

If two or more elements share a minimum/maximum value, MinBy/MaxBy returns
the first:

Console.WriteLine (names.MinBy (n => n.Length));   // Tom

Element Operators | 513

LIN
Q

 O
p

erato
rs



If the input sequence is empty, MinBy and MaxBy return null if the element type is
nullable (or throw an exception if the element type is not nullable).

DefaultIfEmpty
DefaultIfEmpty returns a sequence containing a single element whose value is
default(TSource) if the input sequence has no elements; otherwise, it returns the
input sequence unchanged. You use this in writing flat outer joins: see “Outer joins
with SelectMany” on page 491 and “Flat outer joins” on page 497.

Aggregation Methods
IEnumerable<TSource>→scalar

Method Description SQL equivalents

Count, 

LongCount

Returns the number of elements in the input sequence,
optionally satisfying a predicate

COUNT (...)

Min, Max Returns the smallest or largest element in the sequence MIN (...), 

MAX (...)

Sum, Average Calculates a numeric sum or average over elements in the
sequence

SUM (...), 

AVG (...)

Aggregate Performs a custom aggregation Exception thrown

Count and LongCount

Argument Type

Source sequence IEnumerable<TSource>

Predicate (optional) TSource => bool

Count simply enumerates over a sequence, returning the number of items:

int fullCount = new int[] { 5, 6, 7 }.Count();    // 3

The internal implementation of Enumerable.Count tests the input sequence to see
whether it happens to implement ICollection<T>. If it does, it simply calls ICollec
tion<T>.Count; otherwise, it enumerates over every item, incrementing a counter.

You can optionally supply a predicate:

int digitCount = "pa55w0rd".Count (c => char.IsDigit (c));   // 3

LongCount does the same job as Count but returns a 64-bit integer, allowing for
sequences of greater than two billion elements.
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Min and Max

Argument Type

Source sequence IEnumerable<TSource>

Result selector (optional) TSource => TResult

Min and Max return the smallest or largest element from a sequence:

int[] numbers = { 28, 32, 14 };
int smallest = numbers.Min();  // 14;
int largest  = numbers.Max();  // 32;

If you include a selector expression, each element is first projected:

int smallest = numbers.Max (n => n % 10);  // 8;

A selector expression is mandatory if the items themselves are not intrinsically
comparable—in other words, if they do not implement IComparable<T>:

Purchase runtimeError = dbContext.Purchases.Min ();             // Error
decimal? lowestPrice = dbContext.Purchases.Min (p => p.Price);  // OK

A selector expression determines not only how elements are compared, but also
the final result. In the preceding example, the final result is a decimal value, not a
purchase object. To get the cheapest purchase, you need a subquery:

Purchase cheapest = dbContext.Purchases
  .Where (p => p.Price == dbContext.Purchases.Min (p2 => p2.Price))
  .FirstOrDefault();

In this case, you could also formulate the query without an aggregation by using an
OrderBy followed by FirstOrDefault.

Sum and Average

Argument Type

Source sequence IEnumerable<TSource>

Result selector (optional) TSource => TResult

Sum and Average are aggregation operators that are used in a similar manner to Min
and Max:

decimal[] numbers  = { 3, 4, 8 };
decimal sumTotal   = numbers.Sum();               // 15
decimal average    = numbers.Average();           // 5   (mean value)

The following returns the total length of each of the strings in the names array:

int combinedLength = names.Sum (s => s.Length);   // 19
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Sum and Average are fairly restrictive in their typing. Their definitions are hard‐
wired to each of the numeric types (int, long, float, double, decimal, and their
nullable versions). In contrast, Min and Max can operate directly on anything that
implements IComparable<T>—such as a string, for instance.

Further, Average always returns either decimal, float, or double, according to the
following table:

Selector type Result type

decimal decimal

float float

int, long, double double

This means that the following does not compile (“cannot convert double to int”):

int avg = new int[] { 3, 4 }.Average();

But this will compile:

double avg = new int[] { 3, 4 }.Average();   // 3.5

Average implicitly upscales the input values to prevent loss of precision. In this
example, we averaged integers and got 3.5 without needing to resort to an input
element cast:

double avg = numbers.Average (n => (double) n);

When querying a database, Sum and Average translate to the standard SQL aggrega‐
tions. The following query returns customers whose average purchase was more
than $500:

from c in dbContext.Customers
where c.Purchases.Average (p => p.Price) > 500
select c.Name;

Aggregate
Aggregate allows you to specify a custom accumulation algorithm for implement‐
ing unusual aggregations. Aggregate is not supported in EF Core and is somewhat
specialized in its use cases. The following demonstrates how Aggregate can do the
work of Sum:

int[] numbers = { 1, 2, 3 };
int sum = numbers.Aggregate (0, (total, n) => total + n);   // 6

The first argument to Aggregate is the seed, from which accumulation starts. The
second argument is an expression to update the accumulated value, given a fresh
element. You can optionally supply a third argument to project the final result value
from the accumulated value.
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Most problems for which Aggregate has been designed can be
solved as easily with a foreach loop—and with more familiar
syntax. The advantage of using Aggregate is that with large
or complex aggregations, you can automatically parallelize the
operation with PLINQ (see Chapter 22).

Unseeded aggregations
You can omit the seed value when calling Aggregate, in which case the first element
becomes the implicit seed, and aggregation proceeds from the second element.
Here’s the preceding example, unseeded:

int[] numbers = { 1, 2, 3 };
int sum = numbers.Aggregate ((total, n) => total + n);   // 6

This gives the same result as before, but we’re actually doing a different calculation.
Before, we were calculating 0 + 1 + 2 + 3; now we’re calculating 1 + 2 + 3. We can
better illustrate the difference by multiplying instead of adding:

int[] numbers = { 1, 2, 3 };
int x = numbers.Aggregate (0, (prod, n) => prod * n);   // 0*1*2*3 = 0
int y = numbers.Aggregate (   (prod, n) => prod * n);   //   1*2*3 = 6

As you’ll see in Chapter 22, unseeded aggregations have the advantage of being
parallelizable without requiring the use of special overloads. However, there are
some traps with unseeded aggregations.

Traps with unseeded aggregations
The unseeded aggregation methods are intended for use with delegates that are
commutative and associative. If used otherwise, the result is either unintuitive (with
ordinary queries) or nondeterministic (in the case that you parallelize the query with
PLINQ). For example, consider the following function:

(total, n) => total + n * n

This is neither commutative nor associative. (For example, 1 + 2 * 2 != 2 + 1 * 1.)
Let’s see what happens when we use it to sum the square of the numbers 2, 3, and 4:

int[] numbers = { 2, 3, 4 };
int sum = numbers.Aggregate ((total, n) => total + n * n);    // 27

Instead of calculating

2*2 + 3*3 + 4*4    // 29

it calculates:

2 + 3*3 + 4*4      // 27

We can fix this in a number of ways. First, we could include 0 as the first element:

int[] numbers = { 0, 2, 3, 4 };
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Not only is this inelegant, but it will still give incorrect results if parallelized—
because PLINQ uses the function’s assumed associativity by selecting multiple ele‐
ments as seeds. To illustrate, if we denote our aggregation function as follows:

f(total, n) => total + n * n

LINQ to Objects would calculate this:

f(f(f(0, 2),3),4)

whereas PLINQ might do this:

f(f(0,2),f(3,4))

with the following result:

First partition:   a = 0 + 2*2  (= 4)
Second partition:  b = 3 + 4*4  (= 19)
Final result:          a + b*b  (= 365)
OR EVEN:               b + a*a  (= 35) 

There are two good solutions. The first is to turn this into a seeded aggregation
with 0 as the seed. The only complication is that with PLINQ, we’d need to use a
special overload in order for the query not to execute sequentially (see “Optimizing
PLINQ” on page 942).

The second solution is to restructure the query such that the aggregation function is
commutative and associative:

int sum = numbers.Select (n => n * n).Aggregate ((total, n) => total + n);

Of course, in such simple scenarios you can (and should) use
the Sum operator instead of Aggregate:

int sum = numbers.Sum (n => n * n);

You can actually go quite far just with Sum and Average.
For instance, you can use Average to calculate a root-mean-
square:

Math.Sqrt (numbers.Average (n => n * n))

You can even calculate standard deviation:
double mean = numbers.Average();
double sdev = Math.Sqrt (numbers.Average (n =>
              {
                double dif = n - mean;
                return dif * dif;
              }));

Both are safe, efficient, and fully parallelizable. In Chapter 22,
we give a practical example of a custom aggregation that can’t
be reduced to Sum or Average.
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Quantifiers
IEnumerable<TSource>→bool

Method Description SQL equivalents

Contains Returns true if the input sequence contains the given element WHERE ... IN (...)

Any Returns true if any elements satisfy the given predicate WHERE ... IN (...)

All Returns true if all elements satisfy the given predicate WHERE (...)

SequenceEqual Returns true if the second sequence has identical elements to
the input sequence

 

Contains and Any
The Contains method accepts an argument of type TSource; Any accepts an
optional predicate.

Contains returns true if the given element is present:

bool hasAThree = new int[] { 2, 3, 4 }.Contains (3);       // true;

Any returns true if the given expression is true for at least one element. We can
rewrite the preceding query with Any as follows:

bool hasAThree = new int[] { 2, 3, 4 }.Any (n => n == 3);  // true;

Any can do everything that Contains can do, and more:

bool hasABigNumber = new int[] { 2, 3, 4 }.Any (n => n > 10);  // false;

Calling Any without a predicate returns true if the sequence has one or more
elements. Here’s another way to write the preceding query:

bool hasABigNumber = new int[] { 2, 3, 4 }.Where (n => n > 10).Any();

Any is particularly useful in subqueries and is used often when querying databases;
for example:

from c in dbContext.Customers
where c.Purchases.Any (p => p.Price > 1000)
select c

All and SequenceEqual
All returns true if all elements satisfy a predicate. The following returns customers
whose purchases are less than $100:

dbContext.Customers.Where (c => c.Purchases.All (p => p.Price < 100));

SequenceEqual compares two sequences. To return true, each sequence must have
identical elements, in the identical order. You can optionally provide an equality
comparer; the default is EqualityComparer<T>.Default.
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Generation Methods
void→IEnumerable<TResult>

Method Description

Empty Creates an empty sequence

Repeat Creates a sequence of repeating elements

Range Creates a sequence of integers

Empty, Repeat, and Range are static (nonextension) methods that manufacture
simple local sequences.

Empty
Empty manufactures an empty sequence and requires just a type argument:

foreach (string s in Enumerable.Empty<string>())
  Console.Write (s);                              // <nothing>

In conjunction with the ?? operator, Empty does the reverse of DefaultIfEmpty. For
example, suppose that we have a jagged array of integers and we want to get all the
integers into a single flat list. The following SelectMany query fails if any of the
inner arrays is null:

int[][] numbers =
{
  new int[] { 1, 2, 3 },
  new int[] { 4, 5, 6 },
  null                     // this null makes the query below fail.
};

IEnumerable<int> flat = numbers.SelectMany (innerArray => innerArray);

Empty in conjunction with ?? fixes the problem:

IEnumerable<int> flat = numbers
  .SelectMany (innerArray => innerArray ?? Enumerable.Empty <int>());

foreach (int i in flat)
  Console.Write (i + " ");     // 1 2 3 4 5 6

Range and Repeat
Range accepts a starting index and count (both integers):

foreach (int i in Enumerable.Range (5, 3))
  Console.Write (i + " ");                    // 5 6 7

Repeat accepts an element to repeat, and the number of repetitions:

foreach (bool x in Enumerable.Repeat (true, 3))
  Console.Write (x + " ");                    // True True True
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10
LINQ to XML

.NET provides a number of APIs for working with XML data. The primary choice
for general-purpose XML document processing is LINQ to XML. LINQ to XML
comprises a lightweight, LINQ-friendly XML document object model (DOM), plus
a set of supplementary query operators.

In this chapter, we concentrate entirely on LINQ to XML. In Chapter 11, we cover
the forward-only XML reader/writer, and in the online supplement, we cover the
types for working with schemas and stylesheets. .NET also includes the legacy
XmlDocument-based DOM, which we don’t cover.

The LINQ to XML DOM is extremely well designed and
highly performant. Even without LINQ, the LINQ to XML
DOM is valuable as a lightweight façade over the low-level
XmlReader and XmlWriter classes.

All LINQ to XML types are defined in the System.Xml.Linq namespace.

Architectural Overview
This section starts with a very brief introduction to the concept of a DOM, and then
explains the rationale behind LINQ to XML’s DOM.

What Is a DOM?
Consider the following XML file:

<?xml version="1.0" encoding="utf-8"?>
<customer id="123" status="archived">
  <firstname>Joe</firstname>
  <lastname>Bloggs</lastname>
</customer>

521

http://www.albahari.com/nutshell


As with all XML files, we start with a declaration and then a root element, whose
name is customer. The customer element has two attributes, each with a name (id
and status) and value ("123" and "archived"). Within customer, there are two
child elements, firstname and lastname, each having simple text content ("Joe"
and "Bloggs").

Each of these constructs—declaration, element, attribute, value, and text content—
can be represented with a class. And if such classes have collection properties for
storing child content, we can assemble a tree of objects to fully describe a document.
This is called a Document Object Model, or DOM.

The LINQ to XML DOM
LINQ to XML comprises two things:

• An XML DOM, which we call the X-DOM•
• A set of about 10 supplementary query operators•

As you might expect, the X-DOM consists of types such as XDocument, XElement,
and XAttribute. Interestingly, the X-DOM types are not tied to LINQ—you can
load, instantiate, update, and save an X-DOM without ever writing a LINQ query.

Conversely, you could use LINQ to query a DOM created of the older W3C-
compliant types. However, this would be frustrating and limiting. The distinguish‐
ing feature of the X-DOM is that it’s LINQ-friendly, meaning:

• It has methods that emit useful IEnumerable sequences upon which you can•
query.

• Its constructors are designed such that you can build an X-DOM tree through a•
LINQ projection.

X-DOM Overview
Figure 10-1 shows the core X-DOM types. The most frequently used of these
types is XElement. XObject is the root of the inheritance hierarchy; XElement and
XDocument are roots of the containership hierarchy.
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Figure 10-1. Core X-DOM types

Figure 10-2 shows the X-DOM tree created from the following code:

string xml = @"<customer id='123' status='archived'>
                 <firstname>Joe</firstname>
                 <lastname>Bloggs<!--nice name--></lastname>
               </customer>";

XElement customer = XElement.Parse (xml);

Figure 10-2. A simple X-DOM tree
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XObject is the abstract base class for all XML content. It defines a link to the Parent
element in the containership tree as well as an optional XDocument.

XNode is the base class for most XML content excluding attributes. The distinguish‐
ing feature of XNode is that it can sit in an ordered collection of mixed-type XNodes.
For instance, consider the following XML:

<data>
  Hello world
  <subelement1/>
  <!--comment-->
  <subelement2/>
</data>

Within the parent element <data>, there’s first an XText node (Hello world), then
an XElement node, then an XComment node, and then a second XElement node. In
contrast, an XAttribute will tolerate only other XAttributes as peers.

Although an XNode can access its parent XElement, it has no concept of child nodes:
this is the job of its subclass XContainer. XContainer defines members for dealing
with children and is the abstract base class for XElement and XDocument.

XElement introduces members for managing attributes—as well as a Name and
Value. In the (fairly common) case of an element having a single XText child node,
the Value property on XElement encapsulates this child’s content for both get and
set operations, cutting unnecessary navigation. Thanks to Value, you can mostly
avoid working directly with XText nodes.

XDocument represents the root of an XML tree. More precisely, it wraps the root
XElement, adding an XDeclaration, processing instructions, and other root-level
“fluff.” Unlike with the W3C DOM, its use is optional: you can load, manipulate,
and save an X-DOM without ever creating an XDocument! The nonreliance on
XDocument also means that you can efficiently and easily move a node subtree to
another X-DOM hierarchy.

Loading and Parsing
Both XElement and XDocument provide static Load and Parse methods to build an
X-DOM tree from an existing source:

• Load builds an X-DOM from a file, URI, Stream, TextReader, or XmlReader.•

• Parse builds an X-DOM from a string.•

For example:

XDocument fromWeb = XDocument.Load ("http://albahari.com/sample.xml");

XElement fromFile = XElement.Load (@"e:\media\somefile.xml");

XElement config = XElement.Parse (
@"<configuration>
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    <client enabled='true'>
      <timeout>30</timeout>
    </client>
  </configuration>");

In later sections, we describe how to traverse and update an X-DOM. As a quick
preview, here’s how to manipulate the config element we just populated:

foreach (XElement child in config.Elements())
  Console.WriteLine (child.Name);                     // client

XElement client = config.Element ("client");

bool enabled = (bool) client.Attribute ("enabled");   // Read attribute
Console.WriteLine (enabled);                          // True
client.Attribute ("enabled").SetValue (!enabled);     // Update attribute

int timeout = (int) client.Element ("timeout");       // Read element
Console.WriteLine (timeout);                          // 30
client.Element ("timeout").SetValue (timeout * 2);    // Update element

client.Add (new XElement ("retries", 3));             // Add new element

Console.WriteLine (config);         // Implicitly call config.ToString()

Here’s the result of that last Console.WriteLine:

<configuration>
  <client enabled="false">
    <timeout>60</timeout>
    <retries>3</retries>
  </client>
</configuration>

XNode also provides a static ReadFrom method that instantiates
and populates any type of node from an XmlReader. Unlike
Load, it stops after reading one (complete) node, so you can
continue to read manually from the XmlReader afterward.

You can also do the reverse and use an XmlReader or
XmlWriter to read or write an XNode, via its CreateReader
and CreateWriter methods.
We describe XML readers and writers and how to use them
with the X-DOM in Chapter 11.

Saving and Serializing
Calling ToString on any node converts its content to an XML string—format‐
ted with line breaks and indentation as we just saw. (You can disable the line
breaks and indentation by specifying SaveOptions.DisableFormatting when call‐
ing ToString.)

XElement and XDocument also provide a Save method that writes an X-DOM to a
file, Stream, TextWriter, or XmlWriter. If you specify a file, an XML declaration is
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automatically written. There is also a WriteTo method defined in the XNode class,
which accepts just an XmlWriter.

We describe in more detail the handling of XML declarations when saving in
“Documents and Declarations” on page 539.

Instantiating an X-DOM
Rather than using the Load or Parse methods, you can build an X-DOM tree by
manually instantiating objects and adding them to a parent via XContainer’s Add
method.

To construct an XElement and XAttribute, simply provide a name and value:

XElement lastName = new XElement ("lastname", "Bloggs");
lastName.Add (new XComment ("nice name"));

XElement customer = new XElement ("customer");
customer.Add (new XAttribute ("id", 123));
customer.Add (new XElement ("firstname", "Joe"));
customer.Add (lastName);

Console.WriteLine (customer.ToString());

Here’s the result:

<customer id="123">
  <firstname>Joe</firstname>
  <lastname>Bloggs<!--nice name--></lastname>
</customer>

A value is optional when constructing an XElement—you can provide just the ele‐
ment name and add content later. Notice that when we did provide a value, a simple
string sufficed—we didn’t need to explicitly create and add an XText child node. The
X-DOM does this work automatically, so you can deal simply with “values.”

Functional Construction
In our preceding example, it’s difficult to glean the XML structure from the code.
X-DOM supports another mode of instantiation, called functional construction
(from functional programming). With functional construction, you build an entire
tree in a single expression:

XElement customer =
  new XElement ("customer", new XAttribute ("id", 123),
    new XElement ("firstname", "joe"),
    new XElement ("lastname", "bloggs",
      new XComment ("nice name")
    )
  );
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1 The X-DOM actually optimizes this step internally by storing simple text content in a string. The
XTEXT node is not actually created until you call Nodes( ) on the XContainer.

This has two benefits. First, the code resembles the shape of the XML. Second, it can
be incorporated into the select clause of a LINQ query. For example, the following
query projects from an EF Core entity class into an X-DOM:

XElement query =
  new XElement ("customers",
    from c in dbContext.Customers.AsEnumerable()
    select
      new XElement ("customer", new XAttribute ("id", c.ID),
        new XElement ("firstname", c.FirstName),
        new XElement ("lastname", c.LastName,
          new XComment ("nice name")
        )
      )
  );

We examine this further later in this chapter in “Projecting into an X-DOM” on
page 549.

Specifying Content
Functional construction is possible because the constructors for XElement (and
XDocument) are overloaded to accept a params object array:

public XElement (XName name, params object[] content)

The same holds true for the Add method in XContainer:

public void Add (params object[] content)

Hence, you can specify any number of child objects of any type when building or
appending an X-DOM. This works because anything counts as legal content. To see
how, we need to examine how each content object is processed internally. Here are
the decisions made by XContainer, in order:

1. If the object is null, it’s ignored.1.

2. If the object is based on XNode or XStreamingElement, it’s added as is to the2.
Nodes collection.

3. If the object is an XAttribute, it’s added to the Attributes collection.3.

4. If the object is a string, it’s wrapped in an XText node and added to Nodes.14.

5. If the object implements IEnumerable, it’s enumerated, and the same rules are5.
applied to each element.

6. Otherwise, the object is converted to a string, wrapped in an XText node, and6.
then added to Nodes.2
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2 See footnote 1.

Everything ends up in one of two buckets: Nodes or Attributes. Furthermore, any
object is valid content because it can always ultimately call ToString on it and treat
it as an XText node.

Before calling ToString on an arbitrary type, XContainer first
tests whether it is one of the following types:

float, double, decimal, bool,
DateTime, DateTimeOffset, TimeSpan

If so, it calls an appropriate typed ToString method on the
XmlConvert helper class instead of calling ToString on the
object itself. This ensures that the data is round-trippable and
compliant with standard XML formatting rules.

Automatic Deep Cloning
When a node or attribute is added to an element (whether via functional construc‐
tion or an Add method), the node or attribute’s Parent property is set to that
element. A node can have only one parent element: if you add an already parented
node to a second parent, the node is automatically deep-cloned. In the following
example, each customer has a separate copy of address:

var address = new XElement ("address",
                  new XElement ("street", "Lawley St"),
                  new XElement ("town", "North Beach")
              );
var customer1 = new XElement ("customer1", address);
var customer2 = new XElement ("customer2", address);

customer1.Element ("address").Element ("street").Value = "Another St";
Console.WriteLine (
  customer2.Element ("address").Element ("street").Value);   // Lawley St

This automatic duplication keeps X-DOM object instantiation free of side effects—
another hallmark of functional programming.

Navigating and Querying
As you might expect, the XNode and XContainer classes define methods and proper‐
ties for traversing the X-DOM tree. Unlike a conventional DOM, however, these
functions don’t return a collection that implements IList<T>. Instead, they return
either a single value or a sequence that implements IEnumerable<T>—upon which
you are then expected to execute a LINQ query (or enumerate with a foreach). This
allows for advanced queries as well as simple navigation tasks—using familiar LINQ
query syntax.
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Element and attribute names are case sensitive in the X-DOM,
just as they are in XML.

Child Node Navigation

Return type Members Works on

XNode FirstNode { get; } XContainer

 LastNode { get; } XContainer

IEnumerable<XNode> Nodes() XContainer*

 DescendantNodes() XContainer*

 DescendantNodesAndSelf() XElement*

XElement Element (XName) XContainer

IEnumerable<XElement> Elements() XContainer*

 Elements (XName) XContainer*

 Descendants() XContainer*

 Descendants (XName) XContainer*

 DescendantsAndSelf() XElement*

 DescendantsAndSelf (XName) XElement*

bool HasElements { get; } XElement

Functions marked with an asterisk in the third column of this
and other tables also operate on sequences of the same type.
For instance, you can call Nodes on either an XContainer or
a sequence of XContainer objects. This is possible because of
extension methods defined in System.Xml.Linq—the supple‐
mentary query operators we talked about in the overview.

FirstNode, LastNode, and Nodes
FirstNode and LastNode give you direct access to the first or last child node;
Nodes returns all children as a sequence. All three functions consider only direct
descendants:

var bench = new XElement ("bench",
              new XElement ("toolbox",
                new XElement ("handtool", "Hammer"),
                new XElement ("handtool", "Rasp")
              ),
              new XElement ("toolbox",
                new XElement ("handtool", "Saw"),
                new XElement ("powertool", "Nailgun")
              ),
              new XComment ("Be careful with the nailgun")
            );
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foreach (XNode node in bench.Nodes())
  Console.WriteLine (node.ToString (SaveOptions.DisableFormatting) + ".");

This is the output:

<toolbox><handtool>Hammer</handtool><handtool>Rasp</handtool></toolbox>.
<toolbox><handtool>Saw</handtool><powertool>Nailgun</powertool></toolbox>.
<!--Be careful with the nailgun-->.

Retrieving elements
The Elements method returns just the child nodes of type XElement:

foreach (XElement e in bench.Elements())
  Console.WriteLine (e.Name + "=" + e.Value);    // toolbox=HammerRasp
                                                 // toolbox=SawNailgun

The following LINQ query finds the toolbox with the nail gun:

IEnumerable<string> query =
  from toolbox in bench.Elements()
  where toolbox.Elements().Any (tool => tool.Value == "Nailgun")
  select toolbox.Value;

RESULT: { "SawNailgun" }

The next example uses a SelectMany query to retrieve the hand tools in all
toolboxes:

IEnumerable<string> query =
  from toolbox in bench.Elements()
  from tool in toolbox.Elements()
  where tool.Name == "handtool"
  select tool.Value;

RESULT: { "Hammer", "Rasp", "Saw" }

Elements itself is equivalent to a LINQ query on Nodes. Our
preceding query could be started as follows:

from toolbox in bench.Nodes().OfType<XElement>()
where ...

Elements can also return just the elements of a given name:

int x = bench.Elements ("toolbox").Count();    // 2

This is equivalent to the following:

int x = bench.Elements().Where (e => e.Name == "toolbox").Count();  // 2

Elements is also defined as an extension method accepting IEnumerable

<XContainer> or, more precisely, it accepts an argument of this type:

IEnumerable<T> where T : XContainer

This allows it to work with sequences of elements, too. Using this method, we can
rewrite the query that finds the hand tools in all toolboxes as follows:
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from tool in bench.Elements ("toolbox").Elements ("handtool")
select tool.Value;

The first call to Elements binds to XContainer’s instance method; the second call to
Elements binds to the extension method.

Retrieving a single element
The method Element (singular) returns the first matching element of the given
name. Element is useful for simple navigation, as follows:

XElement settings = XElement.Load ("databaseSettings.xml");
string cx = settings.Element ("database").Element ("connectString").Value;

Element is equivalent to calling Elements() and then applying LINQ’s FirstOr
Default query operator with a name-matching predicate. Element returns null if
the requested element doesn’t exist.

Element("xyz").Value will throw a NullReferenceExcep

tion if element xyz does not exist. If you’d prefer a null
to an exception, either use the null-conditional operator—
Element("xyz")?.Value—or cast the XElement to a string
instead of querying its Value property. In other words:

string xyz = (string) settings.Element ("xyz");

This works because XElement defines an explicit string con‐
version—just for this purpose!

Retrieving descendants
XContainer also provides Descendants and DescendantNodes methods that return
child elements or nodes plus all of their children, and so on (the entire tree).
Descendants accepts an optional element name. Returning to our earlier example,
we can use Descendants to find all of the hand tools:

Console.WriteLine (bench.Descendants ("handtool").Count());  // 3

Both parent and leaf nodes are included, as the following example demonstrates:

foreach (XNode node in bench.DescendantNodes())
  Console.WriteLine (node.ToString (SaveOptions.DisableFormatting));

Here’s the output:

<toolbox><handtool>Hammer</handtool><handtool>Rasp</handtool></toolbox>
<handtool>Hammer</handtool>
Hammer
<handtool>Rasp</handtool>
Rasp
<toolbox><handtool>Saw</handtool><powertool>Nailgun</powertool></toolbox>
<handtool>Saw</handtool>
Saw
<powertool>Nailgun</powertool>
Nailgun
<!--Be careful with the nailgun-->
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The next query extracts all comments anywhere within the X-DOM that contain the
word “careful”:

IEnumerable<string> query =
  from c in bench.DescendantNodes().OfType<XComment>()
  where c.Value.Contains ("careful")
  orderby c.Value
  select c.Value;

Parent Navigation
All XNodes have a Parent property and AncestorXXX methods for parent navigation.
A parent is always an XElement:

Return type Members Works on

XElement Parent { get; } XNode

Enumerable<XElement> Ancestors() XNode

 Ancestors (XName) XNode

 AncestorsAndSelf() XElement

 AncestorsAndSelf (XName) XElement

If x is an XElement, the following always prints true:

foreach (XNode child in x.Nodes())
  Console.WriteLine (child.Parent == x);

However, the same is not the case if x is an XDocument. XDocument is peculiar: it
can have children but can never be anyone’s parent! To access the XDocument, you
instead use the Document property; this works on any object in the X-DOM tree.

Ancestors returns a sequence whose first element is Parent and whose next ele‐
ment is Parent.Parent, and so on, until the root element.

You can navigate to the root element with the LINQ query
AncestorsAndSelf().Last().

Another way to achieve the same thing is to call Document
.Root, although this works only if an XDocument is present.
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Peer Node Navigation

Return type Members Defined in

bool IsBefore (XNode node) XNode

 IsAfter (XNode node) XNode

XNode PreviousNode { get; } XNode

 NextNode { get; } XNode

IEnumerable<XNode> NodesBeforeSelf() XNode

 NodesAfterSelf() XNode

IEnumerable<XElement> ElementsBeforeSelf() XNode

 ElementsBeforeSelf (XName name) XNode

 ElementsAfterSelf() XNode

 ElementsAfterSelf (XName name) XNode

With PreviousNode and NextNode (and FirstNode/LastNode), you can traverse
nodes with the feel of a linked list. This is noncoincidental: internally, nodes are
stored in a linked list.

XNode internally uses a singly linked list, so PreviousNode is
not performant.

Attribute Navigation

Return type Members Defined in

bool HasAttributes { get; } XElement

XAttribute Attribute (XName name) XElement

 FirstAttribute { get; } XElement

 LastAttribute { get; } XElement

IEnumerable<XAttribute> Attributes() XElement

 Attributes (XName name) XElement

In addition, XAttribute defines PreviousAttribute and NextAttribute properties
as well as Parent.

The Attributes method that accepts a name returns a sequence with either zero or
one element; an element cannot have duplicate attribute names in XML.
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Updating an X-DOM
You can update elements and attributes in the following ways:

• Call SetValue or reassign the Value property.•

• Call SetElementValue or SetAttributeValue.•

• Call one of the RemoveXXX methods.•

• Call one of the AddXXX or ReplaceXXX methods, specifying fresh content.•

You can also reassign the Name property on XElement objects.

Simple Value Updates

Members Works on

SetValue (object value) XElement, XAttribute

Value { get; set } XElement, XAttribute

The SetValue method replaces an element or attribute’s content with a simple value.
Setting the Value property does the same but accepts string data only. We describe
both of these functions in detail later in “Working with Values” on page 537. An
effect of calling SetValue (or reassigning Value) is that it replaces all child nodes:

XElement settings = new XElement ("settings",
                      new XElement ("timeout", 30)
                    );
settings.SetValue ("blah");
Console.WriteLine (settings.ToString());  // <settings>blah</settings>

Updating Child Nodes and Attributes

Category Members Works on

Add Add (params object[] content) XContainer

 AddFirst (params object[] content) XContainer

Remove RemoveNodes() XContainer

 RemoveAttributes() XElement

 RemoveAll() XElement

Update ReplaceNodes (params object[] content) XContainer

 ReplaceAttributes (params object[] content) XElement

 ReplaceAll (params object[] content XElement

 SetElementValue (XName name, object value) XElement

 SetAttributeValue (XName name, object value) XElement
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The most convenient methods in this group are the last two: SetElementValue
and SetAttributeValue. They serve as shortcuts for instantiating an XElement
or XAttribute and then Adding it to a parent, replacing any existing element or
attribute of that name:

XElement settings = new XElement ("settings");
settings.SetElementValue ("timeout", 30);     // Adds child node
settings.SetElementValue ("timeout", 60);     // Update it to 60

Add appends a child node to an element or document. AddFirst does the same thing
but inserts at the beginning of the collection rather than the end.

You can remove all child nodes or attributes in one hit with RemoveNodes or
RemoveAttributes. RemoveAll is equivalent to calling both methods.

The ReplaceXXX methods are equivalent to Removing and then Adding. They take a
snapshot of the input, so e.ReplaceNodes(e.Nodes()) works as expected.

Updating Through the Parent

Members Works on

AddBeforeSelf (params object[] content) XNode

AddAfterSelf (params object[] content) XNode

Remove() XNode, XAttribute

ReplaceWith (params object[] content) XNode

The methods AddBeforeSelf, AddAfterSelf, Remove, and ReplaceWith don’t oper‐
ate on the node’s children. Instead, they operate on the collection in which the
node itself is in. This requires that the node have a parent element—otherwise, an
exception is thrown. AddBeforeSelf and AddAfterSelf are useful for inserting a
node into an arbitrary position:

XElement items = new XElement ("items",
                   new XElement ("one"),
                   new XElement ("three")
                 );
items.FirstNode.AddAfterSelf (new XElement ("two"));

Here’s the result:

<items><one /><two /><three /></items>

Inserting into an arbitrary position within a long sequence of elements is efficient
because nodes are stored internally in a linked list.

The Remove method removes the current node from its parent. ReplaceWith does
the same and then inserts some other content at the same position:

XElement items = XElement.Parse ("<items><one/><two/><three/></items>");
items.FirstNode.ReplaceWith (new XComment ("One was here"));
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Here’s the result:

<items><!--one was here--><two /><three /></items>

Removing a sequence of nodes or attributes
Thanks to extension methods in System.Xml.Linq, you can also call Remove on a
sequence of nodes or attributes. Consider this X-DOM:

XElement contacts = XElement.Parse (
@"<contacts>
    <customer name='Mary'/>
    <customer name='Chris' archived='true'/>
    <supplier name='Susan'>
      <phone archived='true'>012345678<!--confidential--></phone>
    </supplier>
  </contacts>");

The following removes all customers:

contacts.Elements ("customer").Remove();

The following removes all archived contacts (so Chris disappears):

contacts.Elements().Where (e => (bool?) e.Attribute ("archived") == true)
                   .Remove();

If we replaced Elements() with Descendants(), all archived elements throughout
the DOM would disappear, yielding this result:

<contacts>
  <customer name="Mary" />
  <supplier name="Susan" />
</contacts>

The next example removes all contacts that feature the comment “confidential”
anywhere in their tree:

contacts.Elements().Where (e => e.DescendantNodes()
                                 .OfType<XComment>()
                                 .Any (c => c.Value == "confidential")
                          ).Remove();

This is the result:

<contacts>
  <customer name="Mary" />
  <customer name="Chris" archived="true" />
</contacts>

Contrast this with the following simpler query, which strips all comment nodes
from the tree:

contacts.DescendantNodes().OfType<XComment>().Remove();
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Internally, the Remove method first reads all matching ele‐
ments into a temporary list and then enumerates over the
temporary list to perform the deletions. This prevents errors
that could otherwise result from deleting and querying at the
same time.

Working with Values
XElement and XAttribute both have a Value property of type string. If an element
has a single XText child node, XElement’s Value property acts as a convenient
shortcut to the content of that node. With XAttribute, the Value property is simply
the attribute’s value.

Despite the storage differences, the X-DOM provides a consistent set of operations
for working with element and attribute values.

Setting Values
There are two ways to assign a value: call SetValue or assign the Value property.
SetValue is more flexible because it accepts not just strings but other simple data
types, too:

var e = new XElement ("date", DateTime.Now);
e.SetValue (DateTime.Now.AddDays(1));
Console.Write (e.Value);              // 2019-10-02T16:39:10.734375+09:00

We could have instead just set the element’s Value property, but this would mean
manually converting the DateTime to a string. This is more complicated than calling
ToString—it requires the use of XmlConvert for an XML-compliant result.

When you pass a value into XElement or XAttribute’s constructor, the same auto‐
matic conversion takes place for nonstring types. This ensures that DateTimes are
correctly formatted; true is written in lowercase, and double.NegativeInfinity is
written as “-INF”.

Getting Values
To go the other way around and parse a Value back to a base type, you simply
cast the XElement or XAttribute to the desired type. It sounds like it shouldn’t
work—but it does! For instance:

XElement e = new XElement ("now", DateTime.Now);
DateTime dt = (DateTime) e;

XAttribute a = new XAttribute ("resolution", 1.234);
double res = (double) a;

An element or attribute doesn’t store DateTimes or numbers natively—they’re
always stored as text and then parsed as needed. It also doesn’t “remember” the
original type, so you must cast it correctly to prevent a runtime error. To make
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your code robust, you can put the cast in a try/catch block, catching a Format
Exception.

Explicit casts on XElement and XAttribute can parse to the following types:

• All standard numeric types•

• string, bool, DateTime, DateTimeOffset, TimeSpan, and Guid•

• Nullable<> versions of the aforementioned value types•

Casting to a nullable type is useful in conjunction with the Element and Attribute
methods, because if the requested name doesn’t exist, the cast still works. For
instance, if x has no timeout element, the first line generates a runtime error and
the second line does not:

int timeout = (int) x.Element ("timeout");      // Error
int? timeout = (int?) x.Element ("timeout");    // OK; timeout is null.

You can factor away the nullable type in the final result with the ?? operator. The
following evaluates to 1.0 if the resolution attribute doesn’t exist:

double resolution = (double?) x.Attribute ("resolution") ?? 1.0;

Casting to a nullable type won’t get you out of trouble, though, if the element or
attribute exists and has an empty (or improperly formatted) value. For this, you
must catch a FormatException.

You can also use casts in LINQ queries. The following returns “John”:

var data = XElement.Parse (
  @"<data>
      <customer id='1' name='Mary' credit='100' />
      <customer id='2' name='John' credit='150' />
      <customer id='3' name='Anne' />
    </data>");

IEnumerable<string> query = from cust in data.Elements()
                            where (int?) cust.Attribute ("credit") > 100
                            select cust.Attribute ("name").Value;

Casting to a nullable int prevents a NullReferenceException in the case of Anne,
who has no credit attribute. Another solution would be to add a predicate to the
where clause:

where cust.Attributes ("credit").Any() && (int) cust.Attribute...

The same principles apply in querying element values.

Values and Mixed Content Nodes
Given the value of Value, you might wonder when you’d ever need to deal directly
with XText nodes. The answer is when you have mixed content. For example:

<summary>An XAttribute is <bold>not</bold> an XNode</summary>
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A simple Value property is not enough to capture summary’s content. The summary
element contains three children: an XText node, followed by an XElement, followed
by another XText node. Here’s how to construct it:

XElement summary = new XElement ("summary",
                      new XText ("An XAttribute is "),
                      new XElement ("bold", "not"),
                      new XText (" an XNode")
                    );

Interestingly, we can still query summary’s Value—without getting an exception.
Instead, we get a concatenation of each child’s value:

An XAttribute is not an XNode

It’s also legal to reassign summary’s Value, at the cost of replacing all previous
children with a single new XText node.

Automatic XText Concatenation
When you add simple content to an XElement, the X-DOM appends to the existing
XText child rather than creating a new one. In the following examples, e1 and e2
end up with just one child XText element whose value is HelloWorld:

var e1 = new XElement ("test", "Hello"); e1.Add ("World");
var e2 = new XElement ("test", "Hello", "World");

If you specifically create XText nodes, however, you end up with multiple children:

var e = new XElement ("test", new XText ("Hello"), new XText ("World"));
Console.WriteLine (e.Value);             // HelloWorld
Console.WriteLine (e.Nodes().Count());   // 2

XElement doesn’t concatenate the two XText nodes, so the nodes’ object identities
are preserved.

Documents and Declarations
XDocument
As we said previously, an XDocument wraps a root XElement and allows you to
add an XDeclaration, processing instructions, a document type, and root-level
comments. An XDocument is optional and can be ignored or omitted: unlike with
the W3C DOM, it does not serve as glue to keep everything together.

An XDocument provides the same functional constructors as XElement. And because
it’s based on XContainer, it also supports the AddXXX, RemoveXXX, and ReplaceXXX
methods. Unlike XElement, however, an XDocument can accept only limited content:

• A single XElement object (the “root”)•

• A single XDeclaration object•
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• A single XDocumentType object (to reference a document type definition•
[DTD])

• Any number of XProcessingInstruction objects•

• Any number of XComment objects•

Of these, only the root XElement is mandatory in order to
have a valid XDocument. The XDeclaration is optional—if
omitted, default settings are applied during serialization.

The simplest valid XDocument has just a root element:

var doc = new XDocument (
            new XElement ("test", "data")
          );

Notice that we didn’t include an XDeclaration object. The file generated by calling
doc.Save would still contain an XML declaration, however, because one is gener‐
ated by default.

The next example produces a simple but correct XHTML file, illustrating all the
constructs that an XDocument can accept:

var styleInstruction = new XProcessingInstruction (
  "xml-stylesheet", "href='styles.css' type='text/css'");

var docType = new XDocumentType ("html",
  "-//W3C//DTD XHTML 1.0 Strict//EN",
  "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd", null);

XNamespace ns = "http://www.w3.org/1999/xhtml";
var root =
  new XElement (ns + "html",
    new XElement (ns + "head",
      new XElement (ns + "title", "An XHTML page")),
    new XElement (ns + "body",
      new XElement (ns + "p", "This is the content"))
  );

var doc =
  new XDocument (
    new XDeclaration ("1.0", "utf-8", "no"),
    new XComment ("Reference a stylesheet"),
    styleInstruction,
    docType,
    root);

doc.Save ("test.html");

The resultant test.html reads as follows:

<?xml version="1.0" encoding="utf-8" standalone="no"?>
<!--Reference a stylesheet-->
<?xml-stylesheet href='styles.css' type='text/css'?>
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<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
                      "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
  <head>
    <title>An XHTML page</title>
  </head>
  <body>
    <p>This is the content</p>
  </body>
</html>

XDocument has a Root property that serves as a shortcut for accessing a document’s
single XElement. The reverse link is provided by XObject’s Document property,
which works for all objects in the tree:

Console.WriteLine (doc.Root.Name.LocalName);          // html
XElement bodyNode = doc.Root.Element (ns + "body");
Console.WriteLine (bodyNode.Document == doc);         // True

Recall that a document’s children have no Parent:

Console.WriteLine (doc.Root.Parent == null);          // True
foreach (XNode node in doc.Nodes())
  Console.Write (node.Parent == null);                // TrueTrueTrueTrue

An XDeclaration is not an XNode and does not appear in the
document’s Nodes collection—unlike comments, processing
instructions, and the root element. Instead, it’s assigned to a
dedicated property called Declaration. This is why “True” is
repeated four and not five times in the last example.

XML Declarations
A standard XML file starts with a declaration such as the following:

<?xml version="1.0" encoding="utf-8" standalone="yes"?>

An XML declaration ensures that the file will be correctly parsed and understood by
a reader. XElement and XDocument follow these rules in emitting XML declarations:

• Calling Save with a filename always writes a declaration.•

• Calling Save with an XmlWriter writes a declaration unless the XmlWriter is•
instructed otherwise.

• The ToString method never emits an XML declaration.•

You can instruct an XmlWriter not to produce a declaration
by setting the OmitXmlDeclaration and ConformanceLevel
properties of an XmlWriterSettings object when constructing
the XmlWriter. We describe this in Chapter 11.
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The presence or absence of an XDeclaration object has no effect on whether an
XML declaration is written. The purpose of an XDeclaration is instead to hint the
XML serialization, in two ways:

• What text encoding to use•

• What to put in the XML declaration’s encoding and standalone attributes•
(should a declaration be written)

XDeclaration’s constructor accepts three arguments, which correspond to the
attributes version, encoding, and standalone. In the following example, test.xml is
encoded in UTF-16:

var doc = new XDocument (
            new XDeclaration ("1.0", "utf-16", "yes"),
            new XElement ("test", "data")
          );
doc.Save ("test.xml");

Whatever you specify for the XML version is ignored by the
XML writer: it always writes "1.0".

The encoding must use an IETF code such as "utf-16", just as it would appear in
the XML declaration.

Writing a declaration to a string
Suppose that we want to serialize an XDocument to a string, including the XML
declaration. Because ToString doesn’t write a declaration, we’d need to use an
XmlWriter instead:

var doc = new XDocument (
            new XDeclaration ("1.0", "utf-8", "yes"),
            new XElement ("test", "data")
          );
var output = new StringBuilder();
var settings = new XmlWriterSettings { Indent = true };
using (XmlWriter xw = XmlWriter.Create (output, settings))
  doc.Save (xw);
Console.WriteLine (output.ToString());

This is the result:

<?xml version="1.0" encoding="utf-16" standalone="yes"?>
<test>data</test>

Notice that we have UTF-16 in the output, even though we explicitly requested
UTF-8 in an XDeclaration! This might look like a bug, but in fact, XmlWriter is
being remarkably smart. Because we’re writing to a string and not a file or stream,
it’s impossible to apply any encoding other than UTF-16—the format in which
strings are internally stored. Hence, XmlWriter writes "utf-16" so as not to lie.
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This also explains why the ToString method doesn’t emit an XML declaration.
Imagine that instead of calling Save, you did the following to write an XDocument to
a file:

File.WriteAllText ("data.xml", doc.ToString());

As it stands, data.xml would lack an XML declaration, making it incomplete but
still parsable (you can infer the text encoding). But if ToString() emitted an
XML declaration, data.xml would actually contain an incorrect declaration (encod
ing="utf-16"), which might prevent it from being read at all because WriteAllText
encodes using UTF-8.

Names and Namespaces
Just as .NET types can have namespaces, so too can XML elements and attributes.

XML namespaces achieve two things. First, rather like namespaces in C#, they help
prevent naming collisions. This can become an issue when you merge data from
one XML file into another. Second, namespaces assign absolute meaning to a name.
The name “nil,” for instance, could mean anything. Within the http://www.w3.org/
2001/xmlschema-instance namespace, however, “nil” means something equivalent to
null in C# and comes with specific rules on how it can be applied.

Because XML namespaces are a significant source of confusion, we first cover
namespaces in general, and then move on to how they’re used in LINQ to XML.

Namespaces in XML
Suppose that we want to define a customer element in the namespace OReilly.Nut
shell.CSharp. There are two ways to proceed. The first is to use the xmlns attribute:

<customer xmlns="OReilly.Nutshell.CSharp"/>

xmlns is a special reserved attribute. When used in this manner, it performs two
functions:

• It specifies a namespace for the element in question.•
• It specifies a default namespace for all descendant elements.•

This means that in the following example, address and postcode implicitly reside
in the OReilly.Nutshell.CSharp namespace:

<customer xmlns="OReilly.Nutshell.CSharp">
  <address>
    <postcode>02138</postcode>
  </address>
</customer>
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If we want address and postcode to have no namespace, we’d need to do this:

<customer xmlns="OReilly.Nutshell.CSharp">
  <address xmlns="">
    <postcode>02138</postcode>     <!-- postcode now inherits empty ns -->
  </address>
</customer>

Prefixes
The other way to specify a namespace is with a prefix. A prefix is an alias that you
assign to a namespace to save typing. There are two steps in using a prefix—defining
the prefix and using it. You can do both together:

<nut:customer xmlns:nut="OReilly.Nutshell.CSharp"/>

Two distinct things are happening here. On the right, xmlns:nut="..." defines a
prefix called nut and makes it available to this element and all its descendants. On
the left, nut:customer assigns the newly allocated prefix to the customer element.

A prefixed element does not define a default namespace for descendants. In the
following XML, firstname has an empty namespace:

<nut:customer xmlns:nut="OReilly.Nutshell.CSharp">
  <firstname>Joe</firstname>
</customer>

To give firstname the OReilly.Nutshell.CSharp prefix, you must do this:

<nut:customer xmlns:nut="OReilly.Nutshell.CSharp">
  <nut:firstname>Joe</firstname>
</customer>

You can also define a prefix—or prefixes—for the convenience of your descendants,
without assigning any of them to the parent element itself. The following defines
two prefixes, i and z, while leaving the customer element itself with an empty
namespace:

<customer xmlns:i="http://www.w3.org/2001/XMLSchema-instance"
          xmlns:z="http://schemas.microsoft.com/2003/10/Serialization/">
  ...
</customer>

If this were the root node, the whole document would have i and z at its fingertips.
Prefixes are convenient when elements need to draw from multiple namespaces.

Notice that both namespaces in this example are URIs. Using URIs (that you own)
is standard practice: it ensures namespace uniqueness. So, in real life, our customer
element would more likely be:

<customer xmlns="http://oreilly.com/schemas/nutshell/csharp"/>

or:

<nut:customer xmlns:nut="http://oreilly.com/schemas/nutshell/csharp"/>
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Attributes
You can assign namespaces to attributes, too. The main difference is that an
attribute always requires a prefix. For instance:

<customer xmlns:nut="OReilly.Nutshell.CSharp" nut:id="123" />

Another difference is that an unqualified attribute always has an empty namespace:
it never inherits a default namespace from a parent element.

Attributes tend not to need namespaces because their meaning is usually local to the
element. An exception is with general-purpose or metadata attributes such as the
nil attribute defined by W3C:

<customer xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
  <firstname>Joe</firstname>
  <lastname xsi:nil="true"/>
</customer>

This indicates unambiguously that lastname is nil (null in C#) and not an empty
string. Because we’ve used the standard namespace, a general-purpose parsing util‐
ity could know with certainty our intention.

Specifying Namespaces in the X-DOM
So far in this chapter, we’ve used just simple strings for XElement and XAttribute
names. A simple string corresponds to an XML name with an empty namespace—
rather like a .NET type defined in the global namespace.

There are a couple of ways to specify an XML namespace. The first is to enclose it in
braces, before the local name:

var e = new XElement ("{http://domain.com/xmlspace}customer", "Bloggs");
Console.WriteLine (e.ToString());

This yields the resulting XML:

<customer xmlns="http://domain.com/xmlspace">Bloggs</customer>

The second (and more performant) approach is to use the XNamespace and XName
types. Here are their definitions:

public sealed class XNamespace
{
  public string NamespaceName { get; }
}

public sealed class XName     // A local name with optional namespace
{
  public string LocalName { get; }
  public XNamespace Namespace { get; }   // Optional
}

Both types define implicit casts from string, so the following is legal:
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XNamespace ns   = "http://domain.com/xmlspace";
XName localName = "customer";
XName fullName  = "{http://domain.com/xmlspace}customer";

XNamespace also overloads the + operator, allowing you to combine a namespace
and name into an XName without using braces:

XNamespace ns = "http://domain.com/xmlspace";
XName fullName = ns + "customer";
Console.WriteLine (fullName);     // {http://domain.com/xmlspace}customer

All constructors and methods in the X-DOM that accept an element or attribute
name actually accept an XName object rather than a string. The reason you can
substitute a string—as in all our examples to date—is because of the implicit cast.

Specifying a namespace is the same whether for an element or an attribute:

XNamespace ns = "http://domain.com/xmlspace";
var data = new XElement (ns + "data",
              new XAttribute (ns + "id", 123)
           );

The X-DOM and Default Namespaces
The X-DOM ignores the concept of default namespaces until it comes time to
actually output XML. This means that when you construct a child XElement, you
must give it a namespace explicitly if needed; it will not inherit from the parent:

XNamespace ns = "http://domain.com/xmlspace";
var data = new XElement (ns + "data",
             new XElement (ns + "customer", "Bloggs"),
             new XElement (ns + "purchase", "Bicycle")
           );

The X-DOM does, however, apply default namespaces when reading and outputting
XML:

Console.WriteLine (data.ToString());

OUTPUT:
  <data xmlns="http://domain.com/xmlspace">
    <customer>Bloggs</customer>
    <purchase>Bicycle</purchase>
  </data>

Console.WriteLine (data.Element (ns + "customer").ToString());

OUTPUT:
  <customer xmlns="http://domain.com/xmlspace">Bloggs</customer>

If you construct XElement children without specifying namespaces, in other words

XNamespace ns = "http://domain.com/xmlspace";
var data = new XElement (ns + "data",
             new XElement ("customer", "Bloggs"),
             new XElement ("purchase", "Bicycle")
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           );
Console.WriteLine (data.ToString());

you get this result instead:

<data xmlns="http://domain.com/xmlspace">
  <customer xmlns="">Bloggs</customer>
  <purchase xmlns="">Bicycle</purchase>
</data>

Another trap is failing to include a namespace when navigating an X-DOM:

XNamespace ns = "http://domain.com/xmlspace";
var data = new XElement (ns + "data",
             new XElement (ns + "customer", "Bloggs"),
             new XElement (ns + "purchase", "Bicycle")
           );
XElement x = data.Element (ns + "customer");    // ok
XElement y = data.Element ("customer");         // null

If you build an X-DOM tree without specifying namespaces, you can subsequently
assign every element to a single namespace, as follows:

foreach (XElement e in data.DescendantsAndSelf())
  if (e.Name.Namespace == "")
    e.Name = ns + e.Name.LocalName;

Prefixes
The X-DOM treats prefixes just as it treats namespaces: purely as a serialization
function. This means that you can choose to completely ignore the issue of pre‐
fixes—and get by! The only reason you might want to do otherwise is for efficiency
when outputting to an XML file. For example, consider this:

XNamespace ns1 = "http://domain.com/space1";
XNamespace ns2 = "http://domain.com/space2";

var mix = new XElement (ns1 + "data",
            new XElement (ns2 + "element", "value"),
            new XElement (ns2 + "element", "value"),
            new XElement (ns2 + "element", "value")
          );

By default, XElement will serialize this as follows:

<data xmlns="http://domain.com/space1">
  <element xmlns="http://domain.com/space2">value</element>
  <element xmlns="http://domain.com/space2">value</element>
  <element xmlns="http://domain.com/space2">value</element>
</data>

As you can see, there’s a bit of unnecessary duplication. The solution is not to
change the way you construct the X-DOM, but instead to hint the serializer prior to
writing the XML. Do this by adding attributes defining prefixes that you want to see
applied. This is typically done on the root element:
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mix.SetAttributeValue (XNamespace.Xmlns + "ns1", ns1);
mix.SetAttributeValue (XNamespace.Xmlns + "ns2", ns2);

This assigns the prefix “ns1” to our XNamespace variable ns1, and “ns2” to ns2. The
X-DOM automatically picks up these attributes when serializing and uses them to
condense the resulting XML. Here’s the result now of calling ToString on mix:

<ns1:data xmlns:ns1="http://domain.com/space1"
          xmlns:ns2="http://domain.com/space2">
  <ns2:element>value</ns2:element>
  <ns2:element>value</ns2:element>
  <ns2:element>value</ns2:element>
</ns1:data>

Prefixes don’t change the way you construct, query, or update the X-DOM—for
these activities, you ignore the presence of prefixes and continue to use full names.
Prefixes come into play only when converting to and from XML files or streams.

Prefixes are also honored in serializing attributes. In the following example, we
record a customer’s date of birth and credit as "nil" using the W3C-standard
attribute. The highlighted line ensures that the prefix is serialized without unneces‐
sary namespace repetition:

XNamespace xsi = "http://www.w3.org/2001/XMLSchema-instance";
var nil = new XAttribute (xsi + "nil", true);

var cust = new XElement ("customers",
             new XAttribute (XNamespace.Xmlns + "xsi", xsi),
             new XElement ("customer",
               new XElement ("lastname", "Bloggs"),
               new XElement ("dob", nil),
               new XElement ("credit", nil)
             )
           );

This is its XML:

<customers xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
  <customer>
    <lastname>Bloggs</lastname>
    <dob xsi:nil="true" />
    <credit xsi:nil="true" />
  </customer>
</customers>

For brevity, we predeclared the nil XAttribute so that we could use it twice in
building the DOM. You’re allowed to reference the same attribute twice because it’s
automatically duplicated as required.

Annotations
You can attach custom data to any XObject with an annotation. Annotations are
intended for your own private use and are treated as black boxes by X-DOM. If
you’ve ever used the Tag property on a Windows Forms or Windows Presentation
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Foundation (WPF) control, you’ll be familiar with the concept—the difference is
that you have multiple annotations, and your annotations can be privately scoped.
You can create an annotation that other types cannot even see—let alone overwrite.

The following methods on XObject add and remove annotations:

public void AddAnnotation (object annotation)
public void RemoveAnnotations<T>()     where T : class

The following methods retrieve annotations:

public T Annotation<T>()               where T : class
public IEnumerable<T> Annotations<T>() where T : class

Each annotation is keyed by its type, which must be a reference type. The following
adds and then retrieves a string annotation:

XElement e = new XElement ("test");
e.AddAnnotation ("Hello");
Console.WriteLine (e.Annotation<string>());   // Hello

You can add multiple annotations of the same type and then use the Annotations
method to retrieve a sequence of matches.

A public type such as string doesn’t make a great key, however, because code in
other types can interfere with your annotations. A better approach is to use an
internal or (nested) private class:

class X
{
  class CustomData { internal string Message; }   // Private nested type

  static void Test()
  {
    XElement e = new XElement ("test");
    e.AddAnnotation (new CustomData { Message = "Hello" } );
    Console.Write (e.Annotations<CustomData>().First().Message);  // Hello
  }
}

To remove annotations, you must also have access to the key’s type:

e.RemoveAnnotations<CustomData>();

Projecting into an X-DOM
So far, we’ve shown how to use LINQ to get data out of an X-DOM. You can also use
LINQ queries to project into an X-DOM. The source can be anything over which
LINQ can query, such as the following:

• EF Core entity classes•
• A local collection•
• Another X-DOM•
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Regardless of the source, the strategy is the same in using LINQ to emit an X-DOM:
first write a functional construction expression that produces the desired X-DOM
shape and then build a LINQ query around the expression.

For instance, suppose that we want to retrieve customers from a database into the
following XML:

<customers>
  <customer id="1">
    <name>Sue</name>
    <buys>3</buys>
  </customer>
  ...
</customers>

We start by writing a functional construction expression for the X-DOM using
simple literals:

var customers =
  new XElement ("customers",
    new XElement ("customer", new XAttribute ("id", 1),
      new XElement ("name", "Sue"),
      new XElement ("buys", 3)
    )
  );

We then turn this into a projection and build a LINQ query around it:

var customers =
  new XElement ("customers",
    // We must call AsEnumerable() due to a bug in EF Core.
    from c in dbContext.Customers.AsEnumerable()
    select
      new XElement ("customer", new XAttribute ("id", c.ID),
        new XElement ("name", c.Name),
        new XElement ("buys", c.Purchases.Count)
      )
    );

The call to AsEnumerable is required due to a bug in EF Core
(a fix is scheduled for a later release). After the bug is fixed,
removing the call to AsEnumerable will improve efficiency by
preventing a round-trip with each call to c.Purchases.Count.

Here’s the result:

<customers>
  <customer id="1">
    <name>Tom</name>
    <buys>3</buys>
  </customer>
  <customer id="2">
    <name>Harry</name>
    <buys>2</buys>
  </customer>
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    ...
</customers>

We can see how this works more clearly by constructing the same query in two
steps. First:

IEnumerable<XElement> sqlQuery =
  from c in dbContext.Customers.AsEnumerable()
  select
    new XElement ("customer", new XAttribute ("id", c.ID),
      new XElement ("name", c.Name),
      new XElement ("buys", c.Purchases.Count)
    );

This inner portion is a normal LINQ query that projects into XElements. Here’s the
second step:

var customers = new XElement ("customers", sqlQuery);

This constructs the root XElement. The only thing unusual is that the content,
sqlQuery, is not a single XElement but an IQueryable<XElement>, which imple‐
ments IEnumerable<XElement>. Remember that in the processing of XML content,
collections are automatically enumerated. So, each XElement is added as a child
node.

Eliminating Empty Elements
Suppose in the preceding example that we also wanted to include details of the
customer’s most recent high-value purchase. We could do this as follows:

var customers =
  new XElement ("customers",
    // The AsEnumerable call can be removed when the EF Core bug is fixed.
    from c in dbContext.Customers.AsEnumerable()
    let lastBigBuy = (from p in c.Purchases
                      where p.Price > 1000
                      orderby p.Date descending
                      select p).FirstOrDefault()
    select
      new XElement ("customer", new XAttribute ("id", c.ID),
        new XElement ("name", c.Name),
        new XElement ("buys", c.Purchases.Count),
        new XElement ("lastBigBuy",
          new XElement ("description", lastBigBuy?.Description),
          new XElement ("price", lastBigBuy?.Price ?? 0m)
        )
      )
  );

This emits empty elements, though, for customers with no high-value purchases.
(If it were a local query rather than a database query, it would throw a NullRefer
enceException.) In such cases, it would be better to omit the lastBigBuy node
entirely. We can achieve this by wrapping the constructor for the lastBigBuy
element in a conditional operator:
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    select
      new XElement ("customer", new XAttribute ("id", c.ID),
        new XElement ("name", c.Name),
        new XElement ("buys", c.Purchases.Count),
        lastBigBuy == null ? null :
          new XElement ("lastBigBuy",
            new XElement ("description", lastBigBuy.Description),
            new XElement ("price", lastBigBuy.Price)

For customers with no lastBigBuy, a null is emitted instead of an empty XElement.
This is what we want, because null content is simply ignored.

Streaming a Projection
If you’re projecting into an X-DOM only to Save it (or call ToString on it), you
can improve memory efficiency through an XStreamingElement. An XStreaming
Element is a cut-down version of XElement that applies deferred loading semantics
to its child content. To use it, you simply replace the outer XElements with XStrea
mingElements:

var customers =
  new XStreamingElement ("customers",
    from c in dbContext.Customers
    select
      new XStreamingElement ("customer", new XAttribute ("id", c.ID),
        new XElement ("name", c.Name),
        new XElement ("buys", c.Purchases.Count)
      )
    );
customers.Save ("data.xml");

The queries passed into an XStreamingElement’s constructor are not enumerated
until you call Save, ToString, or WriteTo on the element; this prevents loading
the whole X-DOM into memory at once. The flipside is that the queries are reevalu‐
ated, should you re-Save. Also, you cannot traverse an XStreamingElement’s child
content—it does not expose methods such as Elements or Attributes.

XStreamingElement is not based on XObject—or any other class—because it has
such a limited set of members. The only members it has, besides Save, ToString,
and WriteTo, are the following:

• An Add method, which accepts content like the constructor•

• A Name property•

XStreamingElement does not allow you to read content in a streamed fashion—for
this, you must use an XmlReader in conjunction with the X-DOM. We describe how
to do this in “Patterns for Using XmlReader/XmlWriter” on page 563.
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11
Other XML and JSON

Technologies

In Chapter 10, we covered the LINQ-to-XML API—and XML in general. In this
chapter, we explore the low-level XmlReader/XmlWriter classes and the types for
working with JavaScript Object Notation (JSON), which has become a popular
alternative to XML.

In the online supplement, we describe the tools for working with XML schema and
stylesheets.

XmlReader
XmlReader is a high-performance class for reading an XML stream in a low-level,
forward-only manner.

Consider the following XML file, customer.xml:

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<customer id="123" status="archived">
  <firstname>Jim</firstname>
  <lastname>Bo</lastname>
</customer>

To instantiate an XmlReader, you call the static XmlReader.Create method, passing
in a Stream, a TextReader, or a URI string:

using XmlReader reader = XmlReader.Create ("customer.xml");
  ...

Because XmlReader lets you read from potentially slow sources
(Streams and URIs), it offers asynchronous versions of most
of its methods so that you can easily write nonblocking code.
We cover asynchrony in detail in Chapter 14.
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To construct an XmlReader that reads from a string:

using XmlReader reader = XmlReader.Create (
  new System.IO.StringReader (myString));

You can also pass in an XmlReaderSettings object to control parsing and validation
options. The following three properties on XmlReaderSettings are particularly
useful for skipping over superfluous content:

bool IgnoreComments                  // Skip over comment nodes?
bool IgnoreProcessingInstructions    // Skip over processing instructions?
bool IgnoreWhitespace                // Skip over whitespace?

In the following example, we instruct the reader not to emit whitespace nodes,
which are a distraction in typical scenarios:

XmlReaderSettings settings = new XmlReaderSettings();
settings.IgnoreWhitespace = true;

using XmlReader reader = XmlReader.Create ("customer.xml", settings);
  ...

Another useful property on XmlReaderSettings is ConformanceLevel. Its default
value of Document instructs the reader to assume a valid XML document with a
single root node. This is a problem if you want to read just an inner portion of
XML, containing multiple nodes:

<firstname>Jim</firstname>
<lastname>Bo</lastname>

To read this without throwing an exception, you must set ConformanceLevel to
Fragment.

XmlReaderSettings also has a property called CloseInput, which indicates whether
to close the underlying stream when the reader is closed (there’s an analogous prop‐
erty on XmlWriterSettings called CloseOutput). The default value for CloseInput
and CloseOutput is false.

Reading Nodes
The units of an XML stream are XML nodes. The reader traverses the stream in
textual (depth-first) order. The Depth property of the reader returns the current
depth of the cursor.

The most primitive way to read from an XmlReader is to call Read. It advances to the
next node in the XML stream, rather like MoveNext in IEnumerator. The first call
to Read positions the cursor at the first node. When Read returns false, it means
the cursor has advanced past the last node, at which point the XmlReader should be
closed and abandoned.

Two string properties on XmlReader provide access to a node’s content: Name and
Value. Depending on the node type, either Name or Value (or both) are populated.
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In this example, we read every node in the XML stream, outputting each node type
as we go:

XmlReaderSettings settings = new XmlReaderSettings();
settings.IgnoreWhitespace = true;

using XmlReader reader = XmlReader.Create ("customer.xml", settings);
while (reader.Read())
{
  Console.Write (new string (' ', reader.Depth * 2));  // Write indentation
  Console.Write (reader.NodeType.ToString());

  if (reader.NodeType == XmlNodeType.Element ||
      reader.NodeType == XmlNodeType.EndElement)
  {
    Console.Write (" Name=" + reader.Name);
  }
  else if (reader.NodeType == XmlNodeType.Text)
  {
    Console.Write (" Value=" + reader.Value);
  }  
  Console.WriteLine ();
}

The output is as follows:

XmlDeclaration
Element Name=customer
  Element Name=firstname
    Text Value=Jim
  EndElement Name=firstname
  Element Name=lastname
    Text Value=Bo
  EndElement Name=lastname
EndElement Name=customer

Attributes are not included in Read-based traversal (see
“Reading Attributes” on page 559).

NodeType is of type XmlNodeType, which is an enum with these members:

None

XmlDeclaration

Element

EndElement

Text

Attribute

Comment

Entity

EndEntity

EntityReference

ProcessingInstruction

CDATA

Document

DocumentType

DocumentFragment

Notation

Whitespace

SignificantWhitespace

Reading Elements
Often, you already know the structure of the XML document that you’re reading. To
help with this, XmlReader provides a range of methods that read while presuming a
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particular structure. This simplifies your code as well as performing some validation
at the same time.

XmlReader throws an XmlException if any validation fails.
XmlException has LineNumber and LinePosition properties
indicating where the error occurred—logging this information
is essential if the XML file is large!

ReadStartElement verifies that the current NodeType is Element and then calls
Read. If you specify a name, it verifies that it matches that of the current element.

ReadEndElement verifies that the current NodeType is EndElement and then calls
Read.

For instance, we could read

<firstname>Jim</firstname>

as follows:

reader.ReadStartElement ("firstname");
Console.WriteLine (reader.Value);
reader.Read();
reader.ReadEndElement();

The ReadElementContentAsString method does all of this in one hit. It reads a start
element, a text node, and an end element, returning the content as a string:

string firstName = reader.ReadElementContentAsString ("firstname", "");

The second argument refers to the namespace, which is blank in this example.
There are also typed versions of this method, such as ReadElementContentAsInt,
which parse the result. Returning to our original XML document:

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<customer id="123" status="archived">
  <firstname>Jim</firstname>
  <lastname>Bo</lastname>
  <creditlimit>500.00</creditlimit>    <!-- OK, we sneaked this in! -->
</customer>

We could read it in as follows:

XmlReaderSettings settings = new XmlReaderSettings();
settings.IgnoreWhitespace = true;

using XmlReader r = XmlReader.Create ("customer.xml", settings);

r.MoveToContent();                // Skip over the XML declaration
r.ReadStartElement ("customer");
string firstName    = r.ReadElementContentAsString ("firstname", "");
string lastName     = r.ReadElementContentAsString ("lastname", "");
decimal creditLimit = r.ReadElementContentAsDecimal ("creditlimit", "");

r.MoveToContent();      // Skip over that pesky comment
r.ReadEndElement();     // Read the closing customer tag
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The MoveToContent method is really useful. It skips over
all the fluff: XML declarations, whitespace, comments, and
processing instructions. You can also instruct the reader to
do most of this automatically through the properties on
XmlReaderSettings.

Optional elements
In the previous example, suppose that <lastname> was optional. The solution to
this is straightforward:

r.ReadStartElement ("customer");
string firstName    = r. ReadElementContentAsString ("firstname", "");
string lastName     = r.Name == "lastname"
                      ? r.ReadElementContentAsString() : null;
decimal creditLimit = r.ReadElementContentAsDecimal ("creditlimit", "");

Random element order
The examples in this section rely on elements appearing in the XML file in a set
order. If you need to cope with elements appearing in any order, the easiest solution
is to read that section of the XML into an X-DOM. We describe how to do this later
in “Patterns for Using XmlReader/XmlWriter” on page 563.

Empty elements
The way that XmlReader handles empty elements presents a horrible trap. Consider
the following element:

<customerList></customerList>

In XML, this is equivalent to the following:

<customerList/>

And yet, XmlReader treats the two differently. In the first case, the following code
works as expected:

reader.ReadStartElement ("customerList");
reader.ReadEndElement();

In the second case, ReadEndElement throws an exception because there is no sepa‐
rate “end element” as far as XmlReader is concerned. The workaround is to check for
an empty element:

bool isEmpty = reader.IsEmptyElement;
reader.ReadStartElement ("customerList");
if (!isEmpty) reader.ReadEndElement();

In reality, this is a nuisance only when the element in question might contain
child elements (such as a customer list). With elements that wrap simple text
(such as firstname), you can avoid the entire issue by calling a method such as
ReadElementContentAsString. The ReadElementXXX methods handle both kinds of
empty elements correctly.

XmlReader | 557

O
ther X

M
L

and
 JSO

N
Techno

lo
g

ies



Other ReadXXX methods
Table 11-1 summarizes all ReadXXX methods in XmlReader. Most of these are
designed to work with elements. The sample XML fragment shown in bold is the
section read by the method described.

Table 11-1. Read methods

Members Works on NodeType Sample XML fragment Input
parameters

Data
returned

ReadContentAsXXX Text <a>x</a> x

ReadElement

ContentAsXXX

Element <a>x</a> x

ReadInnerXml Element <a>x</a> x

ReadOuterXml Element <a>x</a> <a>x</a>

ReadStartElement Element <a>x</a>

ReadEndElement Element <a>x</a>

ReadSubtree Element <a>x</a> <a>x</a>

ReadToDescendant Element <a>x<b></b></a> "b"

ReadToFollowing Element <a>x<b></b></a> "b"

ReadToNextSibling Element <a>x</a><b></b> "b"

ReadAttribute

Value

Attribute See “Reading Attributes”
on page 559

The ReadContentAsXXX methods parse a text node into type XXX. Internally, the
XmlConvert class performs the string-to-type conversion. The text node can be
within an element or an attribute.

The ReadElementContentAsXXX methods are wrappers around corresponding Read
ContentAsXXX methods. They apply to the element node rather than the text node
enclosed by the element.

ReadInnerXml is typically applied to an element, and it reads and returns an element
and all its descendants. When applied to an attribute, it returns the value of the
attribute. ReadOuterXml is the same except that it includes rather than excludes the
element at the cursor position.

ReadSubtree returns a proxy reader that provides a view over just the current
element (and its descendants). The proxy reader must be closed before the original
reader can be safely read again. When the proxy reader is closed, the cursor position
of the original reader moves to the end of the subtree.

ReadToDescendant moves the cursor to the start of the first descendant node with
the specified name/namespace. ReadToFollowing moves the cursor to the start
of the first node—regardless of depth—with the specified name/namespace. ReadTo
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NextSibling moves the cursor to the start of the first sibling node with the specified
name/namespace.

There are also two legacy methods: ReadString and ReadElementString behave
like ReadContentAsString and ReadElementContentAsString, except that they
throw an exception if there’s more than a single text node within the element. You
should avoid these methods because they throw an exception if an element contains
a comment.

Reading Attributes
XmlReader provides an indexer giving you direct (random) access to an ele‐
ment’s attributes—by name or position. Using the indexer is equivalent to calling
GetAttribute.

Given the XML fragment

<customer id="123" status="archived"/>

we could read its attributes, as follows:

Console.WriteLine (reader ["id"]);              // 123
Console.WriteLine (reader ["status"]);          // archived
Console.WriteLine (reader ["bogus"] == null);   // True

The XmlReader must be positioned on a start element in
order to read attributes. After calling ReadStartElement, the
attributes are gone forever!

Although attribute order is semantically irrelevant, you can access attributes by
their ordinal position. We could rewrite the preceding example as follows:

Console.WriteLine (reader [0]);            // 123
Console.WriteLine (reader [1]);            // archived

The indexer also lets you specify the attribute’s namespace—if it has one.

AttributeCount returns the number of attributes for the current node.

Attribute nodes
To explicitly traverse attribute nodes, you must make a special diversion from the
normal path of just calling Read. A good reason to do so is if you want to parse
attribute values into other types, via the ReadContentAsXXX methods.

The diversion must begin from a start element. To make the job easier, the forward-
only rule is relaxed during attribute traversal: you can jump to any attribute (for‐
ward or backward) by calling MoveToAttribute.

MoveToElement returns you to the start element from any‐
place within the attribute node diversion.
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Returning to our previous example:

<customer id="123" status="archived"/>

we can do this:

reader.MoveToAttribute ("status");
string status = reader.ReadContentAsString();

reader.MoveToAttribute ("id");
int id = reader.ReadContentAsInt();

MoveToAttribute returns false if the specified attribute doesn’t exist.

You can also traverse each attribute in sequence by calling the MoveToFirstAttri
bute and then the MoveToNextAttribute methods:

if (reader.MoveToFirstAttribute())
  do { Console.WriteLine (reader.Name + "=" + reader.Value);  }
  while (reader.MoveToNextAttribute());

// OUTPUT:
id=123
status=archived

Namespaces and Prefixes
XmlReader provides two parallel systems for referring to element and attribute
names:

• Name•

• NamespaceURI and LocalName•

Whenever you read an element’s Name property or call a method that accepts a single
name argument, you’re using the first system. This works well if no namespaces or
prefixes are present; otherwise, it acts in a crude and literal manner. Namespaces are
ignored, and prefixes are included exactly as they were written; for example:

Sample fragment Name

<customer ...> customer

<customer xmlns='blah' ...> customer

<x:customer ...> x:customer

The following code works with the first two cases:

reader.ReadStartElement ("customer");

The following is required to handle the third case:

reader.ReadStartElement ("x:customer");
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The second system works through two namespace-aware properties: NamespaceURI
and LocalName. These properties take into account prefixes and default namespaces
defined by parent elements. Prefixes are automatically expanded. This means that
NamespaceURI always reflects the semantically correct namespace for the current
element, and LocalName is always free of prefixes.

When you pass two name arguments into a method such as ReadStartElement,
you’re using this same system. For example, consider the following XML:

<customer xmlns="DefaultNamespace" xmlns:other="OtherNamespace">
  <address>
    <other:city>
    ...

We could read this as follows:

reader.ReadStartElement ("customer", "DefaultNamespace");
reader.ReadStartElement ("address",  "DefaultNamespace");
reader.ReadStartElement ("city",     "OtherNamespace");

Abstracting away prefixes is usually exactly what you want. If necessary, you can see
what prefix was used through the Prefix property and convert it into a namespace
by calling LookupNamespace.

XmlWriter
XmlWriter is a forward-only writer of an XML stream. The design of XmlWriter is
symmetrical to XmlReader.

As with XmlTextReader, you construct an XmlWriter by calling Create with an
optional settings object. In the following example, we enable indenting to make
the output more human-readable and then write a simple XML file:

XmlWriterSettings settings = new XmlWriterSettings();
settings.Indent = true;

using XmlWriter writer = XmlWriter.Create ("foo.xml", settings);

writer.WriteStartElement ("customer");
writer.WriteElementString ("firstname", "Jim");
writer.WriteElementString ("lastname", "Bo");
writer.WriteEndElement();

This produces the following document (the same as the file we read in the first
example of XmlReader):

<?xml version="1.0" encoding="utf-8"?>
<customer>
  <firstname>Jim</firstname>
  <lastname>Bo</lastname>
</customer>
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XmlWriter automatically writes the declaration at the top unless you indicate
otherwise in XmlWriterSettings by setting OmitXmlDeclaration to true or Con
formanceLevel to Fragment. The latter also permits writing multiple root nodes—
something that otherwise throws an exception.

The WriteValue method writes a single text node. It accepts both string and non‐
string types such as bool and DateTime, internally calling XmlConvert to perform
XML-compliant string conversions:

writer.WriteStartElement ("birthdate");
writer.WriteValue (DateTime.Now);
writer.WriteEndElement();

In contrast, if we call

WriteElementString ("birthdate", DateTime.Now.ToString());

the result would be both non-XML-compliant and vulnerable to incorrect parsing.

WriteString is equivalent to calling WriteValue with a string. XmlWriter automat‐
ically escapes characters that would otherwise be illegal within an attribute or
element, such as &, < >, and extended Unicode characters.

Writing Attributes
You can write attributes immediately after writing a start element:

writer.WriteStartElement ("customer");
writer.WriteAttributeString ("id", "1");
writer.WriteAttributeString ("status", "archived");

To write nonstring values, call WriteStartAttribute, WriteValue, and then Write
EndAttribute.

Writing Other Node Types
XmlWriter also defines the following methods for writing other kinds of nodes:

WriteBase64       // for binary data
WriteBinHex       // for binary data
WriteCData
WriteComment
WriteDocType
WriteEntityRef
WriteProcessingInstruction
WriteRaw
WriteWhitespace

WriteRaw directly injects a string into the output stream. There is also a WriteNode
method that accepts an XmlReader, echoing everything from the given XmlReader.
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Namespaces and Prefixes
The overloads for the Write* methods allow you to associate an element or attribute
with a namespace. Let’s rewrite the contents of the XML file in our previous
example. This time we will associate all of the elements with the http://oreilly.com
namespace, declaring the prefix o at the customer element:

writer.WriteStartElement ("o", "customer", "http://oreilly.com");
writer.WriteElementString ("o", "firstname", "http://oreilly.com", "Jim");
writer.WriteElementString ("o", "lastname", "http://oreilly.com", "Bo");
writer.WriteEndElement();

The output is now as follows:

<?xml version="1.0" encoding="utf-8"?>
<o:customer xmlns:o='http://oreilly.com'>
  <o:firstname>Jim</o:firstname>
  <o:lastname>Bo</o:lastname>
</o:customer>

Notice how for brevity XmlWriter omits the child element’s namespace declarations
when they are already declared by the parent element.

Patterns for Using XmlReader/XmlWriter
Working with Hierarchical Data
Consider the following classes:

public class Contacts
{
  public IList<Customer> Customers = new List<Customer>();
  public IList<Supplier> Suppliers = new List<Supplier>();
}

public class Customer { public string FirstName, LastName; }
public class Supplier { public string Name;                }

Suppose that you want to use XmlReader and XmlWriter to serialize a Contacts
object to XML, as in the following:

<?xml version="1.0" encoding="utf-8"?>
<contacts>
   <customer id="1">
      <firstname>Jay</firstname>
      <lastname>Dee</lastname>
   </customer>
   <customer>                     <!-- we'll assume id is optional -->
      <firstname>Kay</firstname>
      <lastname>Gee</lastname>
   </customer>
   <supplier>
      <name>X Technologies Ltd</name>
   </supplier>
</contacts>
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The best approach is not to write one big method, but to encapsulate XML func‐
tionality in the Customer and Supplier types themselves by writing ReadXml and
WriteXml methods on these types. The pattern for doing so is straightforward:

• ReadXml and WriteXml leave the reader/writer at the same depth when they•
exit.

• ReadXml reads the outer element, whereas WriteXml writes only its inner•
content.

Here’s how we would write the Customer type:

public class Customer
{
  public const string XmlName = "customer";
  public int? ID;
  public string FirstName, LastName;

  public Customer () { }
  public Customer (XmlReader r) { ReadXml (r); }

  public void ReadXml (XmlReader r)
  {
    if (r.MoveToAttribute ("id")) ID = r.ReadContentAsInt();
    r.ReadStartElement();
    FirstName = r.ReadElementContentAsString ("firstname", "");
    LastName = r.ReadElementContentAsString ("lastname", "");
    r.ReadEndElement();
  }

  public void WriteXml (XmlWriter w)
  {
    if (ID.HasValue) w.WriteAttributeString ("id", "", ID.ToString());
    w.WriteElementString ("firstname", FirstName);
    w.WriteElementString ("lastname", LastName);
  }
}

Notice that ReadXml reads the outer start and end element nodes. If its caller did this
job instead, Customer couldn’t read its own attributes. The reason for not making
WriteXml symmetrical in this regard is twofold:

• The caller might need to choose how the outer element is named.•
• The caller might need to write extra XML attributes, such as the element’s•

subtype (which could then be used to decide which class to instantiate when
reading back the element).

Another benefit of following this pattern is that it makes your implementation
compatible with IXmlSerializable (we cover this in “Serialization” in the online
supplement at http://www.albahari.com/nutshell).
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The Supplier class is analogous:

public class Supplier
{
  public const string XmlName = "supplier";
  public string Name;

  public Supplier () { }
  public Supplier (XmlReader r) { ReadXml (r); }

  public void ReadXml (XmlReader r)
  {
    r.ReadStartElement();
    Name = r.ReadElementContentAsString ("name", "");
    r.ReadEndElement();
  }

  public void WriteXml (XmlWriter w) =>
    w.WriteElementString ("name", Name);
}

With the Contacts class, we must enumerate the customers element in ReadXml,
checking whether each subelement is a customer or a supplier. We also need to code
around the empty element trap:

public void ReadXml (XmlReader r)
{
  bool isEmpty = r.IsEmptyElement;           // This ensures we don't get
  r.ReadStartElement();                      // snookered by an empty
  if (isEmpty) return;                       // <contacts/> element!
  while (r.NodeType == XmlNodeType.Element)
  {
    if (r.Name == Customer.XmlName)      Customers.Add (new Customer (r));
    else if (r.Name == Supplier.XmlName) Suppliers.Add (new Supplier (r));
    else
      throw new XmlException ("Unexpected node: " + r.Name);
  }
  r.ReadEndElement();
}

public void WriteXml (XmlWriter w)
{
  foreach (Customer c in Customers)
  {
    w.WriteStartElement (Customer.XmlName);
    c.WriteXml (w);
    w.WriteEndElement();
  }
  foreach (Supplier s in Suppliers)
  {
    w.WriteStartElement (Supplier.XmlName);
    s.WriteXml (w);
    w.WriteEndElement();
  }
}
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Here’s how to serialize a Contacts object populated with Customers and Suppliers
to an XML file:

var settings = new XmlWriterSettings();
settings.Indent = true;  // To make visual inspection easier

using XmlWriter writer = XmlWriter.Create ("contacts.xml", settings);

var cts = new Contacts()
// Add Customers and Suppliers...

writer.WriteStartElement ("contacts");
cts.WriteXml (writer);
writer.WriteEndElement();

Here’s how to deserialize from the same file:

var settings = new XmlReaderSettings();
settings.IgnoreWhitespace = true;
settings.IgnoreComments = true;
settings.IgnoreProcessingInstructions = true;

using XmlReader reader = XmlReader.Create("contacts.xml", settings);
reader.MoveToContent();
var cts = new Contacts();
cts.ReadXml(reader);

Mixing XmlReader/XmlWriter with an X-DOM
You can fly in an X-DOM at any point in the XML tree where XmlReader or
XmlWriter becomes too cumbersome. Using the X-DOM to handle inner elements
is an excellent way to combine X-DOM’s ease of use with the low-memory footprint
of XmlReader and XmlWriter.

Using XmlReader with XElement
To read the current element into an X-DOM, you call XNode.ReadFrom, passing in
the XmlReader. Unlike XElement.Load, this method is not “greedy” in that it doesn’t
expect to see a whole document. Instead, it reads just the end of the current subtree.

For instance, suppose that we have an XML logfile structured as follows:

<log>
  <logentry id="1">
    <date>...</date>
    <source>...</source>
    ...
  </logentry>
  ...
</log>

If there were a million logentry elements, reading the entire thing into an X-DOM
would waste memory. A better solution is to traverse each logentry with an
XmlReader and then use XElement to process the elements individually:

566 | Chapter 11: Other XML and JSON Technologies



XmlReaderSettings settings = new XmlReaderSettings();
settings.IgnoreWhitespace = true;

using XmlReader r = XmlReader.Create ("logfile.xml", settings);

r.ReadStartElement ("log");
while (r.Name == "logentry")
{
  XElement logEntry = (XElement) XNode.ReadFrom (r);
  int id = (int) logEntry.Attribute ("id");
  DateTime date = (DateTime) logEntry.Element ("date");
  string source = (string) logEntry.Element ("source");
  ...
}
r.ReadEndElement();

If you follow the pattern described in the previous section, you can slot an XElement
into a custom type’s ReadXml or WriteXml method without the caller ever knowing
you’ve cheated! For instance, we could rewrite Customer’s ReadXml method, as
follows:

public void ReadXml (XmlReader r)
{
  XElement x = (XElement) XNode.ReadFrom (r);
  ID = (int) x.Attribute ("id");
  FirstName = (string) x.Element ("firstname");
  LastName = (string) x.Element ("lastname");
}

XElement collaborates with XmlReader to ensure that namespaces are kept intact,
and prefixes are properly expanded—even if defined at an outer level. So, if our
XML file reads like this:

<log xmlns="http://loggingspace">
  <logentry id="1">
  ...

the XElements we constructed at the logentry level would correctly inherit the
outer namespace.

Using XmlWriter with XElement
You can use an XElement just to write inner elements to an XmlWriter. The fol‐
lowing code writes a million logentry elements to an XML file using XElement—
without storing the entire thing in memory:

using XmlWriter w = XmlWriter.Create ("logfile.xml");

w.WriteStartElement ("log");
for (int i = 0; i < 1000000; i++)
{
  XElement e = new XElement ("logentry",
                 new XAttribute ("id", i),
                 new XElement ("date", DateTime.Today.AddDays (-1)),
                 new XElement ("source", "test"));
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  e.WriteTo (w);
}
w.WriteEndElement ();

Using an XElement incurs minimal execution overhead. If we amend this example
to use XmlWriter throughout, there’s no measurable difference in execution time.

Working with JSON
JSON has become a popular alternative to XML. Although it lacks the advanced
features of XML (such as namespaces, prefixes, and schemas), it benefits from
being simple and uncluttered, with a format similar to what you would get from
converting a JavaScript object to a string.

Historically, .NET had no built-in support for JSON, and you had to rely on
third-party libraries—primarily Json.NET. Although this is no longer the case, the
Json.NET library is still popular for a number of reasons:

• It’s been around since 2011.•
• The same API also runs on older .NET platforms.•
• It’s considered to be more functional (as least in the past) than the Microsoft•

JSON APIs.

The Microsoft JSON APIs have the advantage of having been designed from the
ground up to be simple and extremely efficient. Also, from .NET 6, their functional‐
ity has become quite close to that of Json.NET.

In this section, we cover the following:

• The forward-only reader and writer (Utf8JsonReader and Utf8JsonWriter)•

• The JsonDocument read-only DOM reader•

• The JsonNode read/write DOM reader/writer•

In “Serialization,” in the online supplement at http://www.albahari.com/nutshell,
we cover JsonSerializer, which automatically serializes and deserializes JSON to
classes.

Utf8JsonReader
System.Text.Json.Utf8JsonReader is an optimized forward-only reader for
UTF-8 encoded JSON text. Conceptually, it’s like the XmlReader introduced earlier
in this chapter, and is used in much the same way.
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Consider the following JSON file named people.json:

{
  "FirstName":"Sara",
  "LastName":"Wells",
  "Age":35,
  "Friends":["Dylan","Ian"]
}

The curly braces indicate a JSON object (which contains properties such as "First
Name" and "LastName"), whereas the square brackets indicate a JSON array (which
contains repeating elements). In this case, the repeating elements are strings, but
they could be objects (or other arrays).

The following code parses the file by enumerating its JSON tokens. A token is the
beginning or end of an object, the beginning or end of an array, the name of a
property, or an array or property value (string, number, true, false, or null):

byte[] data = File.ReadAllBytes ("people.json");
Utf8JsonReader reader = new Utf8JsonReader (data);
while (reader.Read())
{
  switch (reader.TokenType)
  {
    case JsonTokenType.StartObject:
      Console.WriteLine ($"Start of object");
      break;
    case JsonTokenType.EndObject:
      Console.WriteLine ($"End of object");
      break;
    case JsonTokenType.StartArray:
      Console.WriteLine();
      Console.WriteLine ($"Start of array");
      break;
    case JsonTokenType.EndArray:
      Console.WriteLine ($"End of array");
      break;
    case JsonTokenType.PropertyName:
      Console.Write ($"Property: {reader.GetString()}");
      break;
    case JsonTokenType.String:
      Console.WriteLine ($" Value: {reader.GetString()}");
      break;
    case JsonTokenType.Number:
      Console.WriteLine ($" Value: {reader.GetInt32()}");
      break;
    default:
      Console.WriteLine ($"No support for {reader.TokenType}");
      break;
  }
}
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Here’s the output:

Start of object
Property: FirstName Value: Sara
Property: LastName Value: Wells
Property: Age Value: 35
Property: Friends
Start of array
 Value: Dylan
 Value: Ian
End of array
End of object

Because Utf8JsonReader works directly with UTF-8, it steps through the tokens
without first having to convert the input into UTF-16 (the format of .NET strings).
Conversion to UTF-16 takes place only when you call a method such as Get
String().

Interestingly, Utf8JsonReader’s constructor does not accept a byte array, but rather
a ReadOnlySpan<byte> (for this reason, Utf8JsonReader is defined as a ref struct).
You can pass in a byte array because there’s an implicit conversion from T[] to
ReadOnlySpan<T>. In Chapter 23, we describe how spans work and how you can use
them to improve performance by minimizing memory allocations.

JsonReaderOptions
By default, Utf8JsonReader requires that the JSON conform strictly to the JSON
RFC 8259 standard. You can instruct the reader to be more tolerant by passing an
instance of JsonReaderOptions to the Utf8JsonReader constructor. The options
allow the following:

C-Style comments
By default, comments in JSON cause a JsonException to be thrown. Setting
the CommentHandling property to JsonCommentHandling.Skip causes com‐
ments to be ignored, whereas JsonCommentHandling.Allow causes the reader
to recognize them and emit JsonTokenType.Comment tokens when they are
encountered. Comments cannot appear in the middle of other tokens.

Trailing commas
Per the standard, the last property of an object and the last element of an array
must not have a trailing comma. Setting the AllowTrailingCommas property to
e relaxes this restriction.

Control over the maximum nesting depth
By default, objects and arrays can nest to 64 levels. Setting the MaxDepth to a
different number overrides this setting.
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Utf8JsonWriter
System.Text.Json.Utf8JsonWriter is a forward-only JSON writer. It supports the
following types:

• String and DateTime (which is formatted as a JSON string)•

• The numeric types Int32, UInt32, Int64, UInt64, Single, Double, and Decimal•
(which are formatted as JSON numbers)

• bool (formatted as JSON true/false literals)•
• JSON null•
• Arrays•

You can organize these data types into objects in accordance with the JSON stan‐
dard. It also lets you write comments, which are not part of the JSON standard but
are often supported by JSON parsers in practice.

The following code demonstrates its use:

var options = new JsonWriterOptions { Indented = true };

using (var stream = File.Create ("MyFile.json"))
using (var writer = new Utf8JsonWriter (stream, options))
{
  writer.WriteStartObject();
  // Property name and value specified in one call
  writer.WriteString ("FirstName", "Dylan");
  writer.WriteString ("LastName", "Lockwood");
  // Property name and value specified in separate calls
  writer.WritePropertyName ("Age");
  writer.WriteNumberValue (46);
  writer.WriteCommentValue ("This is a (non-standard) comment");
  writer.WriteEndObject();
}

This generates the following output file:

{
  "FirstName": "Dylan",
  "LastName": "Lockwood",
  "Age": 46
  /*This is a (non-standard) comment*/
}

From .NET 6, Utf8JsonWriter has a WriteRawValue method to emit a string
or byte array directly into the JSON stream. This is useful in special cases—for
instance, if you want a number to be written such that it always includes a decimal
point (1.0 rather than 1).

In this example, we set the Indented property on JsonWriterOptions to true to
improve readability. Had we not done so, the output would be as follows:

{"FirstName":"Dylan","LastName":"Lockwood","Age":46...}
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The JsonWriterOptions also has an Encoder property to control the escaping of
strings, and a SkipValidation property to allow structural validation checks to be
bypassed (allowing the emission of invalid output JSON).

JsonDocument
System.Text.Json.JsonDocument parses JSON data into a read-only DOM com‐
posed of JsonElement instances that are generated on demand. Unlike Utf8Json
Reader, JsonDocument lets you access elements randomly.

JsonDocument is one of two DOM-based APIs for working with JSON, the other
being JsonNode (which we will cover in the following section). JsonNode was intro‐
duced in .NET 6, primarily to satisfy the demand for a writable DOM. However,
it’s also suitable in read-only scenarios and exposes a somewhat more fluent inter‐
face, backed by a traditional DOM that uses classes for JSON values, arrays, and
objects. In contrast, JsonDocument is extremely lightweight, comprising just one
class of note (JsonDocument) and two lightweight structs (JsonElement and Json
Property) that parse the underlying data on demand. The difference is illustrated in
Figure 11-1.

In most real-world scenarios, the performance benefits of
JsonDocument over JsonNode are negligible, so you can skip
to JsonNode if you prefer to learn just one API.

Figure 11-1. JSON DOM APIs

JsonDocument further improves its efficiency by employing
pooled memory to minimize garbage collection. This means
that you must dispose the JsonDocument after use; otherwise,
its memory will not be returned to the pool. Consequently,
when a class stores a JsonDocument in a field, it must also
implement IDisposable. Should this be burdensome, con‐
sider using JsonNode instead.
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The static Parse method instantiates a JsonDocument from a stream, string, or
memory buffer:

using JsonDocument document = JsonDocument.Parse (jsonString);
...

When calling Parse, you can optionally provide a JsonDocumentOptions object to
control the handling of trailing commas, comments, and the maximum nesting
depth (for a discussion on how these options work, see “JsonReaderOptions” on
page 570).

From there, you can access the DOM via the RootElement property:

using JsonDocument document = JsonDocument.Parse ("123");
JsonElement root = document.RootElement;
Console.WriteLine (root.ValueKind);       // Number

JsonElement can represent a JSON value (string, number, true/false, null), array, or
object; the ValueKind property indicates which.

The methods that we describe in the following sections throw
an exception if the element isn’t of the kind expected. If you’re
not sure of a JSON file’s schema, you can avoid such excep‐
tions by checking ValueKind first (or by using the TryGet*
methods).

JsonElement also provides two methods that work for any
kind of element: GetRawText() returns the inner JSON, and
WriteTo writes that element to a Utf8JsonWriter.

Reading simple values
If the element represents a JSON value, you can obtain its value by calling Get
String, GetInt32, GetBoolean, etc.):

using JsonDocument document = JsonDocument.Parse ("123");
int number = document.RootElement.GetInt32();

JsonElement also provides methods to parse JSON strings into other commonly
used CLR types such as DateTime (and even base-64 binary). There are also TryGet*
versions that avoid throwing an exception if the parse fails.

Reading JSON arrays
If the JsonElement represents an array, you can call the following methods:

EnumerateArray()

Enumerates all the subitems for a JSON array (as JsonElements).

GetArrayLength()

Returns the number of elements in the array.

You can also use the indexer to return an element at a specific position:
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using JsonDocument document = JsonDocument.Parse (@"[1, 2, 3, 4, 5]");
int length = document.RootElement.GetArrayLength();   // 5
int value  = document.RootElement[3].GetInt32();      // 4

Reading JSON objects
If the element represents a JSON object, you can call the following methods:

EnumerateObject()

Enumerates all of the object’s property names and values.

GetProperty (string propertyName)

Gets a property by name (returning another JsonElement). Throws an excep‐
tion if the name isn’t present.

TryGetProperty (string propertyName, out JsonElement value)

Returns an object’s property if present.

For example:

using JsonDocument document = JsonDocument.Parse (@"{ ""Age"": 32}");
JsonElement root = document.RootElement;
int age = root.GetProperty ("Age").GetInt32();

Here’s how we could “discover” the Age property:

JsonProperty ageProp = root.EnumerateObject().First();
string name = ageProp.Name;             // Age
JsonElement value = ageProp.Value;
Console.WriteLine (value.ValueKind);    // Number
Console.WriteLine (value.GetInt32());   // 32

JsonDocument and LINQ
JsonDocument lends itself well to LINQ. Given the following JSON file:

[
  {
    "FirstName":"Sara",
    "LastName":"Wells",
    "Age":35,
    "Friends":["Ian"]
  },
  {
    "FirstName":"Ian",
    "LastName":"Weems",
    "Age":42,
    "Friends":["Joe","Eric","Li"]
  },
  {
    "FirstName":"Dylan",
    "LastName":"Lockwood",
    "Age":46,
    "Friends":["Sara","Ian"]
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  }
]

we can use JsonDocument to query this with LINQ, as follows:

using var stream = File.OpenRead (jsonPath);
using JsonDocument document = JsonDocument.Parse (json);

var query =
  from person in document.RootElement.EnumerateArray()
  select new
  {
    FirstName = person.GetProperty ("FirstName").GetString(),
    Age = person.GetProperty ("Age").GetInt32(),
    Friends = 
      from friend in person.GetProperty ("Friends").EnumerateArray()
      select friend.GetString()
  };

Because LINQ queries are lazily evaluated, it’s important to enumerate the query
before the document goes out of scope and JsonDocument is implicitly disposed of
by virtue of the using statement.

Making updates with a JSON writer
Although JsonDocument is read-only, you can send the content of a JsonElement
to a Utf8JsonWriter with the WriteTo method. This provides a mechanism for
emitting a modified version of the JSON. Here’s how we can take the JSON from the
preceding example and write it to a new JSON file that includes only people with
two or more friends:

using var json = File.OpenRead (jsonPath);
using JsonDocument document = JsonDocument.Parse (json);

var options = new JsonWriterOptions { Indented = true };

using (var outputStream = File.Create ("NewFile.json"))
using (var writer = new Utf8JsonWriter (outputStream, options))
{
  writer.WriteStartArray();
  foreach (var person in document.RootElement.EnumerateArray())
  {
    int friendCount = person.GetProperty ("Friends").GetArrayLength();
    if (friendCount >= 2)
      person.WriteTo (writer);
  }
}

If you need the ability to update the DOM, however, JsonNode is a better solution.

JsonNode
JsonNode (in System.Text.Json.Nodes) was introduced in .NET 6, primarily to
satisfy the demand for a writable DOM. However, it’s also suitable in read-only
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scenarios and exposes a somewhat more fluent interface, backed by a traditional
DOM that uses classes for JSON values, arrays, and objects (see Figure 11-1). Being
classes, they incur a garbage-collection cost, but this is likely to be negligible in most
real-world scenarios. JsonNode is still highly optimized and can actually be faster
than JsonDocument when the same nodes are read repeatedly (because JsonNode,
while lazy, caches the results of parsing).

The static Parse method creates a JsonNode from a stream, string, memory buffer,
or Utf8JsonReader:

JsonNode node = JsonNode.Parse (jsonString);

When calling Parse, you can optionally provide a JsonDocumentOptions object to
control the handling of trailing commas, comments, and the maximum nesting
depth (for a discussion on how these options work, see “JsonReaderOptions” on
page 570). Unlike JsonDocument, JsonNode does not require disposal.

Calling ToString() on a JsonNode returns a human-readable
(indented) JSON string. There is also a ToJsonString()
method, which returns a compact JSON string.

From .NET 8, JsonNode includes a static DeepEquals method,
so you can compare two JsonNode objects without first
expanding them into JSON strings. There is also a DeepClone
method from .NET 8.

Parse returns a subtype of JsonNode, which will be JsonValue, JsonObject, or
JsonArray. To avoid the clutter of a downcast, JsonNode provides helper methods
called AsValue(), AsObject(), and AsArray():

var node = JsonNode.Parse ("123");  // Parses to a JsonValue
int number = node.AsValue().GetValue<int>();
// Shortcut for ((JsonValue)node).GetValue<int>();

However, you don’t usually need to call these methods, because the most commonly
used members are exposed on the JsonNode class itself:

var node = JsonNode.Parse ("123");
int number = node.GetValue<int>();
// Shortcut for node.AsValue().GetValue<int>();

Reading simple values
We just saw that you can extract or parse a simple value by calling GetValue with
a type parameter. To make this even easier, JsonNode overloads C#’s explicit cast
operators, enabling the following shortcut:

var node = JsonNode.Parse ("123");
int number = (int) node;

The types for which this works comprise the standard numeric types: char, bool,
DateTime, DateTimeOffset, and Guid (and their nullable versions), as well as
string.
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If you’re not sure whether parsing will succeed, the following code is required:

if (node.AsValue().TryGetValue<int> (out var number))
  Console.WriteLine (number);

From .NET 8, calling node.GetValueKind() will tell you whether the node is a
string, number, array, object, or true/false.

Nodes that have been parsed from JSON text are internally
backed by a JsonElement (part of the JsonDocument read-only
JSON API). You can extract the underlying JsonElement as
follows:

JsonElement je = node.GetValue<JsonElement>();

However, this doesn’t work when the node is instantiated
explicitly (as will be the case when we update the DOM).
Such nodes are backed not by a JsonElement but by the actual
parsed value (see “Making updates with JsonNode” on page
579).

Reading JSON arrays
A JsonNode that represents a JSON array will be of type JsonArray.

JsonArray implements IList<JsonNode>, so you can enumerate over it and access
the elements like you would an array or list:

var node = JsonNode.Parse (@"[1, 2, 3, 4, 5]");
Console.WriteLine (node.AsArray().Count);       // 5

foreach (JsonNode child in node.AsArray())
{ ... }

As a shortcut, you can access the indexer directly from the JsonNode class:

Console.WriteLine ((int)node[0]);   // 1

From .NET 8, you can also call the GetValues<T> method to return the data as an
IEnumerable<T>:

int[] values = node.AsArray().GetValues<int>().ToArray();

Reading JSON objects
A JsonNode that represents a JSON object will be of type JsonObject.

JsonObject implements IDictionary<string,JsonNode>, so you can access a
member via the indexer, as well as enumerating over the dictionary’s key/value
pairs.

And as with JsonArray, you can access the indexer directly from the JsonNode class:

var node = JsonNode.Parse (@"{ ""Name"":""Alice"", ""Age"": 32}");
string name = (string) node ["Name"];   // Alice
int age = (int) node ["Age"];           // 32
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Here’s how we could “discover” the Name and Age properties:

// Enumerate over the dictionary’s key/value pairs:
foreach (KeyValuePair<string,JsonNode> keyValuePair in node.AsObject())
{
  string propertyName = keyValuePair.Key;   // "Name" (then "Age")
  JsonNode value = keyValuePair.Value; 
}

If you’re not sure whether a property has been defined, the following pattern also
works:

if (node.AsObject().TryGetPropertyValue ("Name", out JsonNode nameNode))
{ ... }

Fluent traversal and LINQ
You can reach deep into a hierarchy just with indexers. For example, given the
following JSON file:

[
  {
    "FirstName":"Sara",
    "LastName":"Wells",
    "Age":35,
    "Friends":["Ian"]
  },
  {
    "FirstName":"Ian",
    "LastName":"Weems",
    "Age":42,
    "Friends":["Joe","Eric","Li"]
  },
  {
    "FirstName":"Dylan",
    "LastName":"Lockwood",
    "Age":46,
    "Friends":["Sara","Ian"]
  }
]

we can extract the second person’s third friend as follows:

string li = (string) node[1]["Friends"][2];

Such a file is also easy to query via LINQ:

JsonNode node = JsonNode.Parse (File.ReadAllText (jsonPath));

var query =
  from person in node.AsArray()
  select new
  {
    FirstName = (string) person ["FirstName"],
    Age = (int) person ["Age"],
    Friends =
      from friend in person ["Friends"].AsArray()
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      select (string) friend
  };

Unlike JsonDocument, JsonNode is not disposable, so we don’t have to worry about
the potential for disposal during lazy enumeration.

Making updates with JsonNode
JsonObject and JsonArray are mutable, so you can update their content.

The easiest way to replace or add properties to a JsonObject is via the indexer. In
the following example, we change the Color property’s value from “Red” to “White”
and add a new property called “Valid”:

var node = JsonNode.Parse ("{ \"Color\": \"Red\" }");
node ["Color"] = "White";
node ["Valid"] = true;
Console.WriteLine (node.ToJsonString());  // {"Color":"White","Valid":true}

The second line in that example is a shortcut for the following:

node ["Color"] = JsonValue.Create ("White");

Rather than assigning the property a simple value, you can assign it a JsonArray
or JsonObject. (We will demonstrate how to construct JsonArray and JsonObject
instances in the following section.)

To remove a property, first cast to JsonObject (or call AsObject) and then call the
Remove method:

node.AsObject().Remove ("Valid");

(JsonObject also exposes an Add method, which throws an exception if the property
already exists.)

JsonArray also lets you use the indexer to replace items:

var node = JsonNode.Parse ("[1, 2, 3]");
node[0] = 10;

Calling AsArray exposes the Add/Insert/Remove/RemoveAt methods. In the follow‐
ing example, we remove the first element in the array and add one to the end:

var arrayNode = JsonNode.Parse ("[1, 2, 3]");
arrayNode.AsArray().RemoveAt(0);
arrayNode.AsArray().Add (4);
Console.WriteLine (arrayNode.ToJsonString());  // [2,3,4]

From .NET 8, you can also update a JsonNode by calling ReplaceWith:

var node = JsonNode.Parse ("{ \"Color\": \"Red\" }");
var color = node["Color"];
color.ReplaceWith ("Blue");

Working with JSON | 579

O
ther X

M
L

and
 JSO

N
Techno

lo
g

ies



Constructing a JsonNode DOM programmatically
JsonArray and JsonObject have constructors that support object initialization
syntax, which allows you to build an entire JsonNode DOM in one expression:

var node = new JsonArray 
{
  new JsonObject {
    ["Name"] = "Tracy",
    ["Age"] = 30,
    ["Friends"] = new JsonArray ("Lisa", "Joe")
  },
  new JsonObject {
    ["Name"] = "Jordyn",
    ["Age"] = 25,
    ["Friends"] = new JsonArray ("Tracy", "Li")
  }
};

This evaluates to the following JSON:

[
  {
    "Name": "Tracy",
    "Age": 30,
    "Friends": ["Lisa", "Joe"]
  },
  {
    "Name": "Jordyn",
    "Age": 25,
    "Friends": ["Tracy","Li"]
  }
]
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12
Disposal and Garbage Collection

Some objects require explicit tear-down code to release resources such as open files,
locks, operating system handles, and unmanaged objects. In .NET parlance, this is
called disposal, and it is supported through the IDisposable interface. The managed
memory occupied by unused objects must also be reclaimed at some point; this
function is known as garbage collection and is performed by the CLR.

Disposal differs from garbage collection in that disposal is usually explicitly instiga‐
ted; garbage collection is totally automatic. In other words, the programmer takes
care of such things as releasing file handles, locks, and operating system resources,
while the CLR takes care of releasing memory.

This chapter discusses both disposal and garbage collection, and also describes C#
finalizers and the pattern by which they can provide a backup for disposal. Lastly,
we discuss the intricacies of the garbage collector and other memory management
options.

IDisposable, Dispose, and Close
.NET defines a special interface for types requiring a tear-down method:

public interface IDisposable
{
  void Dispose();
}

C#’s using statement provides a syntactic shortcut for calling Dispose on objects
that implement IDisposable, using a try/finally block:

using (FileStream fs = new FileStream ("myFile.txt", FileMode.Open))
{
  // ... Write to the file ...
}

The compiler converts this to the following:
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FileStream fs = new FileStream ("myFile.txt", FileMode.Open);
try
{
  // ... Write to the file ...
}
finally
{
  if (fs != null) ((IDisposable)fs).Dispose();
}

The finally block ensures that the Dispose method is called even when an excep‐
tion is thrown or the code exits the block early.

Similarly, the following syntax ensures disposal as soon as fs goes out of scope:

using FileStream fs = new FileStream ("myFile.txt", FileMode.Open);

// ... Write to the file ...

In simple scenarios, writing your own disposable type is just a matter of implement‐
ing IDisposable and writing the Dispose method:

sealed class Demo : IDisposable
{
  public void Dispose()
  {
    // Perform cleanup / tear-down.
    ...
  }
}

This pattern works well in simple cases and is appropriate for
sealed classes. In “Calling Dispose from a Finalizer” on page
590, we describe a more elaborate pattern that can provide
a backup for consumers that forget to call Dispose. With
unsealed types, there’s a strong case for following this latter
pattern from the outset—otherwise, it becomes very messy if
the subtype wants to add such functionality itself.

Standard Disposal Semantics
.NET follows a de facto set of rules in its disposal logic. These rules are not
hardwired to .NET or the C# language in any way; their purpose is to define a
consistent protocol to consumers. Here they are:

1. After an object has been disposed, it’s beyond redemption. It cannot be reacti‐1.
vated, and calling its methods or properties (other than Dispose) throws an
ObjectDisposedException.

2. Calling an object’s Dispose method repeatedly causes no error.2.

3. If disposable object x “owns” disposable object y, x’s Dispose method automati‐3.
cally calls y’s Dispose method—unless instructed otherwise.
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These rules are also helpful when writing your own types, though they’re not
mandatory. Nothing prevents you from writing an “Undispose” method other than,
perhaps, the flak you might cop from colleagues!

According to rule 3, a container object automatically disposes its child objects. A
good example is a Windows Forms container control such as a Form or Panel.
The container can host many child controls, yet you don’t dispose every one of
them explicitly; closing or disposing the parent control or form takes care of the
whole lot. Another example is when you wrap a FileStream in a DeflateStream.
Disposing the DeflateStream also disposes the FileStream—unless you instructed
otherwise in the constructor.

Close and Stop
Some types define a method called Close in addition to Dispose. The .NET BCL is
not completely consistent on the semantics of a Close method, although in nearly
all cases it’s either of the following:

• Functionally identical to Dispose•

• A functional subset of Dispose•

An example of the latter is IDbConnection: a Closed connection can be re-Opened;
a Disposed connection cannot. Another example is a Windows Form activated with
ShowDialog: Close hides it; Dispose releases its resources.

Some classes define a Stop method (e.g., Timer or HttpListener). A Stop method
may release unmanaged resources, like Dispose, but unlike Dispose, it allows for
re-Starting.

When to Dispose
A safe rule to follow (in nearly all cases) is “if in doubt, dispose.” Objects wrapping
an unmanaged resource handle will nearly always require disposal in order to free
the handle. Examples include file or network streams, network sockets, Windows
Forms controls, GDI+ pens, brushes, and bitmaps. Conversely, if a type is dispos‐
able, it will often (but not always) reference an unmanaged handle, directly or
indirectly. This is because unmanaged handles provide the gateway to the “outside
world” of OS resources, network connections, and database locks—the primary
means by which objects can create trouble outside of themselves if improperly
abandoned.

There are, however, three scenarios for not disposing:

• When you don’t “own” the object—for example, when obtaining a shared object•
via a static field or property

• When an object’s Dispose method does something that you don’t want•
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• When an object’s Dispose method is unnecessary by design, and disposing that•
object would add complexity to your program

The first category is rare. The main cases are in the System.Drawing namespace:
the GDI+ objects obtained through static fields or properties (such as Brushes.Blue)
must never be disposed because the same instance is used throughout the life of
the application. Instances that you obtain through constructors, however (such as
new SolidBrush), should be disposed, as should instances obtained through static
methods (such as Font.FromHdc).

The second category is more common. There are some good examples in the
System.IO and System.Data namespaces:

Type Disposal function When not to dispose

MemoryStream Prevents further I/O When you later need to read/write the stream

StreamReader,
StreamWriter

Flushes the reader/writer
and closes the underlying
stream

When you want to keep the underlying stream
open (you must then call Flush on a Stream
Writer when you’re done)

IDbConnection Releases a database
connection and clears the
connection string

If you need to re-Open it, you should call Close
instead of Dispose

DbContext (EF Core) Prevents further use When you might have lazily evaluated queries
connected to that context

MemoryStream’s Dispose method disables only the object; it doesn’t perform any
critical cleanup because a MemoryStream holds no unmanaged handles or other such
resources.

The third category includes the classes such as StringReader and StringWriter.
These types are disposable under the duress of their base class rather than through
a genuine need to perform essential cleanup. If you happen to instantiate and work
with such an object entirely in one method, wrapping it in a using block adds
little inconvenience. But if the object is longer lasting, keeping track of when it’s
no longer used so that you can dispose of it adds unnecessary complexity. In such
cases, you can simply ignore object disposal.

Ignoring disposal can sometimes incur a performance cost
(see “Calling Dispose from a Finalizer” on page 590).

Clearing Fields in Disposal
In general, you don’t need to clear an object’s fields in its Dispose method. However,
it is good practice to unsubscribe from events that the object has subscribed to
internally over its lifetime (for an example, see “Managed Memory Leaks” on
page 600). Unsubscribing from such events prevents receiving unwanted event
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notifications—and prevents unintentionally keeping the object alive in the eyes of
the garbage collector (GC).

A Dispose method itself does not cause (managed) memory
to be released—this can happen only in garbage collection.

It’s also worth setting a field to indicate that the object is disposed so that you can
throw an ObjectDisposedException if a consumer later tries to call members on
the object. A good pattern is to use a publicly readable automatic property for this:

public bool IsDisposed { get; private set; }

Although technically unnecessary, it can also be good to clear an object’s own event
handlers (by setting them to null) in the Dispose method. This eliminates the
possibility of those events firing during or after disposal.

Occasionally, an object holds high-value secrets, such as encryption keys. In these
cases, it can make sense to clear such data from fields during disposal (to avoid
potential discovery by other processes on the machine when the memory is
later released to the operating system). The SymmetricAlgorithm class in System
.Security.Cryptography does exactly this by calling Array.Clear on the byte
array holding the encryption key.

Anonymous Disposal
Sometimes, it’s useful to implement IDisposable without having to write a class.
For instance, suppose that you want to expose methods on a class that suspend and
resume event processing:

class Foo
{
  int _suspendCount;
    
  public void SuspendEvents() => _suspendCount++;           
  public void ResumeEvents() => _suspendCount--;            
    
  void FireSomeEvent()
  {
    if (_suspendCount == 0)
      ... fire some event ...
  }
  ...
}

Such an API is clumsy to use. Consumers must remember to call ResumeEvents.
And to be robust, they must do so in a finally block (in case an exception is
thrown):

var foo = new Foo();
foo.SuspendEvents();
try
{
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  ... do stuff ...      // Because an exception could be thrown here
}
finally
{
  foo.ResumeEvents();   // ...we must call this in a finally block
}

A better pattern is to do away with ResumeEvents and have SuspendEvents return
an IDisposable. Consumers can then do this:

using (foo.SuspendEvents())
{
  ... do stuff ...
}

The problem is that this pushes work onto whoever has to implement the Suspend
Events method. Even with a good effort to reduce whitespace, we end up with this
extra clutter:

public IDisposable SuspendEvents()
{
  _suspendCount++;
  return new SuspendToken (this);
}

class SuspendToken : IDisposable 
{
  Foo _foo;          
  public SuspendToken (Foo foo) => _foo = foo;
  public void Dispose()
  {
    if (_foo != null) _foo._suspendCount--;
    _foo = null;  // Prevent against consumer disposing twice
  }
}

The anonymous disposal pattern solves this problem. With the following reusable
class:

public class Disposable : IDisposable
{
  public static Disposable Create (Action onDispose)
    => new Disposable (onDispose);

  Action _onDispose;
  Disposable (Action onDispose) => _onDispose = onDispose;

  public void Dispose()
  {
    _onDispose?.Invoke();   // Execute disposal action if non-null.
    _onDispose = null;      // Ensure it can’t execute a second time.
  }
}
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we can reduce our SuspendEvents method to the following:

public IDisposable SuspendEvents()
{
  _suspendCount++;
  return Disposable.Create (() => _suspendCount--);
}  

Automatic Garbage Collection
Regardless of whether an object requires a Dispose method for custom tear-down
logic, at some point the memory it occupies on the heap must be freed. The
CLR handles this side of it entirely automatically via an automatic GC. You never
deallocate managed memory yourself. For example, consider the following method:

public void Test()
{
  byte[] myArray = new byte[1000];
  ...
}

When Test executes, an array to hold 1,000 bytes is allocated on the memory heap.
The array is referenced by the variable myArray, stored on the local variable stack.
When the method exits, this local variable myArray pops out of scope, meaning that
nothing is left to reference the array on the memory heap. The orphaned array then
becomes eligible to be reclaimed in garbage collection.

In debug mode with optimizations disabled, the lifetime of an
object referenced by a local variable extends to the end of the
code block to ease debugging. Otherwise, it becomes eligible
for collection at the earliest point at which it’s no longer used.

Garbage collection does not happen immediately after an object is orphaned. Rather
like garbage collection on the street, it happens periodically, although (unlike
garbage collection on the street) not to a fixed schedule. The CLR bases its deci‐
sion on when to collect upon a number of factors, such as the available memory,
the amount of memory allocation, and the time since the last collection (the GC
self-tunes to optimize for an application’s specific memory access patterns). This
means that there’s an indeterminate delay between an object being orphaned and
being released from memory. This delay can range from nanoseconds to days.

The GC doesn’t collect all garbage with every collection.
Instead, the memory manager divides objects into genera‐
tions, and the GC collects new generations (recently alloca‐
ted objects) more frequently than old generations (long-lived
objects). We discuss this in more detail in “How the GC
Works” on page 593.
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Garbage Collection and Memory Consumption
The GC tries to strike a balance between the time it spends doing garbage collection
and the application’s memory consumption (working set). Consequently, applica‐
tions can consume more memory than they need, particularly if large temporary
arrays are constructed.

You can monitor a process’s memory consumption via the Windows Task Manager
or Resource Monitor—or programmatically by querying a performance counter:

// These types are in System.Diagnostics:
string procName = Process.GetCurrentProcess().ProcessName;
using PerformanceCounter pc = new PerformanceCounter
      ("Process", "Private Bytes", procName);
Console.WriteLine (pc.NextValue());

This queries the private working set, which gives the best overall indication of your
program’s memory consumption. Specifically, it excludes memory that the CLR has
internally deallocated and is willing to rescind to the OS should another process
need it.

Roots
A root is something that keeps an object alive. If an object is not directly or
indirectly referenced by a root, it will be eligible for garbage collection.

A root is one of the following:

• A local variable or parameter in an executing method (or in any method in its•
call stack)

• A static variable•
• An object on the queue that stores objects ready for finalization (see the next•

section)

It’s impossible for code to execute in a deleted object, so if there’s any possibility of
an (instance) method executing, its object must somehow be referenced in one of
these ways.

Note that a group of objects that reference one another cyclically are considered
dead without a root referee (see Figure 12-1). To put it in another way, objects
that cannot be accessed by following the arrows (references) from a root object are
unreachable—and therefore subject to collection.
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Figure 12-1. Roots

Finalizers
Prior to an object being released from memory, its finalizer runs, if it has one. A
finalizer is declared like a constructor, but it is prefixed by the ˜ symbol:

class Test
{
  ˜Test()
  {
    // Finalizer logic...
  }
}

(Although similar in declaration to a constructor, finalizers cannot be declared as
public or static, cannot have parameters, and cannot call the base class.)

Finalizers are possible because garbage collection works in distinct phases. First,
the GC identifies the unused objects ripe for deletion. Those without finalizers are
deleted immediately. Those with pending (unrun) finalizers are kept alive (for now)
and are put onto a special queue.

At that point, garbage collection is complete, and your program continues execut‐
ing. The finalizer thread then kicks in and starts running in parallel to your pro‐
gram, picking objects off that special queue and running their finalization methods.
Prior to each object’s finalizer running, it’s still very much alive—that queue acts as
a root object. After it’s been dequeued and the finalizer executed, the object becomes
orphaned and will be deleted in the next collection (for that object’s generation).
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Finalizers can be useful, but they come with some provisos:

• Finalizers slow the allocation and collection of memory (the GC needs to keep•
track of which finalizers have run).

• Finalizers prolong the life of the object and any referred objects (they must all•
await the next garbage truck for actual deletion).

• It’s impossible to predict in what order the finalizers for a set of objects will be•
called.

• You have limited control over when the finalizer for an object will be called.•
• If code in a finalizer blocks, other objects cannot be finalized.•
• Finalizers can be circumvented altogether if an application fails to unload•

cleanly.

In summary, finalizers are somewhat like lawyers—although there are cases in
which you really need them, in general you don’t want to use them unless absolutely
necessary. If you do use them, you need to be 100% sure you understand what they
are doing for you.

Here are some guidelines for implementing finalizers:

• Ensure that your finalizer executes quickly.•
• Never block in your finalizer (see “Blocking” on page 634).•
• Don’t reference other finalizable objects.•
• Don’t throw exceptions.•

The CLR can call an object’s finalizer even if an exception
is thrown during construction. For this reason, it pays not
to assume that fields are correctly initialized when writing a
finalizer.

Calling Dispose from a Finalizer
A popular pattern is to have the finalizer call Dispose. This makes sense when
cleanup is not urgent and hastening it by calling Dispose is more of an optimization
than a necessity.

Keep in mind that with this pattern you couple memory deal‐
location to resource deallocation—two things with potentially
divergent interests (unless the resource is itself memory). You
also increase the burden on the finalization thread.
This pattern also serves as a backup for cases when a con‐
sumer simply forgets to call Dispose. However, it’s then a good
idea to log the failure so that you can fix the bug.

There’s a standard pattern for implementing this, as follows:

590 | Chapter 12: Disposal and Garbage Collection



class Test : IDisposable
{
  public void Dispose()             // NOT virtual
  {
    Dispose (true);
    GC.SuppressFinalize (this);     // Prevent finalizer from running.
  }

  protected virtual void Dispose (bool disposing)
  {
    if (disposing)
    {
      // Call Dispose() on other objects owned by this instance.
      // You can reference other finalizable objects here.
      // ...
    }

    // Release unmanaged resources owned by (just) this object.
    // ...
  }

  ~Test() => Dispose (false);
}

Dispose is overloaded to accept a bool disposing flag. The parameterless version
is not declared as virtual and simply calls the enhanced version with true.

The enhanced version contains the actual disposal logic and is protected and
virtual; this provides a safe point for subclasses to add their own disposal logic.
The disposing flag means it’s being called “properly” from the Dispose method
rather than in “last-resort mode” from the finalizer. The idea is that when called
with disposing set to false, this method should not, in general, reference other
objects with finalizers (because such objects might themselves have been finalized
and so be in an unpredictable state). This rules out quite a lot! Here are a couple
of tasks that the Dispose method can still perform in last-resort mode, when
disposing is false:

• Releasing any direct references to OS resources (obtained, perhaps, via a•
P/Invoke call to the Win32 API)

• Deleting a temporary file created on construction•

To make this robust, any code capable of throwing an exception should be wrapped
in a try/catch block, and the exception, ideally, logged. Any logging should be as
simple and robust as possible.

Notice that we call GC.SuppressFinalize in the parameterless Dispose method—
this prevents the finalizer from running when the GC later catches up with it.
Technically, this is unnecessary given that Dispose methods must tolerate repeated
calls. However, doing so improves performance because it allows the object (and its
referenced objects) to be garbage-collected in a single cycle.
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Resurrection
Suppose a finalizer modifies a living object such that it refers back to the dying
object. When the next garbage collection happens (for the object’s generation), the
CLR will see the previously dying object as no longer orphaned—and so it will
evade garbage collection. This is an advanced scenario and is called resurrection.

To illustrate, suppose that we want to write a class that manages a temporary file.
When an instance of that class is garbage-collected, we’d like the finalizer to delete
the temporary file. It sounds easy:

public class TempFileRef
{
  public readonly string FilePath;
  public TempFileRef (string filePath) { FilePath = filePath; }

  ~TempFileRef() { File.Delete (FilePath); }
}

Unfortunately, this has a bug: File.Delete might throw an exception (due to a lack
of permissions, perhaps, or the file being in use, or having already been deleted).
Such an exception would take down the entire application (as well as preventing
other finalizers from running). We could simply “swallow” the exception with an
empty catch block, but then we’d never know that anything went wrong. Calling
some elaborate error reporting API would also be undesirable because it would
burden the finalizer thread, hindering garbage collection for other objects. We want
to restrict finalization actions to those that are simple, reliable, and quick.

A better option is to record the failure to a static collection, as follows:

public class TempFileRef
{
  static internal readonly ConcurrentQueue<TempFileRef> FailedDeletions
    = new ConcurrentQueue<TempFileRef>();

  public readonly string FilePath;
  public Exception DeletionError { get; private set; }

  public TempFileRef (string filePath) { FilePath = filePath; }

  ~TempFileRef()
  {
    try { File.Delete (FilePath); }
    catch (Exception ex)
    {
      DeletionError = ex;
      FailedDeletions.Enqueue (this);   // Resurrection
    }
  }
}

Enqueuing the object to the static FailedDeletions collection gives the object
another referee, ensuring that it remains alive until the object is eventually
dequeued.
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ConcurrentQueue<T> is a thread-safe version of Queue<T> and
is defined in System.Collections.Concurrent (see Chap‐
ter 22). There are a couple of reasons for using a thread-safe
collection. First, the CLR reserves the right to execute finaliz‐
ers on more than one thread in parallel. This means that when
accessing shared state such as a static collection, we must
consider the possibility of two objects being finalized at once.
Second, at some point we’re going to want to dequeue items
from FailedDeletions so that we can do something about
them. This also must be done in a thread-safe fashion because
it could happen while the finalizer is concurrently enqueuing
another object.

GC.ReRegisterForFinalize
A resurrected object’s finalizer will not run a second time—unless you call GC
.ReRegisterForFinalize.

In the following example, we try to delete a temporary file in a finalizer (as in the
last example). But if the deletion fails, we reregister the object so as to try again in
the next garbage collection:

public class TempFileRef
{
  public readonly string FilePath;
  int _deleteAttempt;

  public TempFileRef (string filePath) { FilePath = filePath; }

  ~TempFileRef()
  {
    try { File.Delete (FilePath); }
    catch
    {
      if (_deleteAttempt++ < 3) GC.ReRegisterForFinalize (this);
    }
  }
}

After the third failed attempt, our finalizer will silently give up trying to delete the
file. We could enhance this by combining it with the previous example—in other
words, adding it to the FailedDeletions queue after the third failure.

Be careful to call ReRegisterForFinalize just once in the
finalizer method. If you call it twice, the object will be reregis‐
tered twice and will have to undergo two more finalizations!

How the GC Works
The standard CLR uses a generational mark-and-compact GC that performs auto‐
matic memory management for objects stored on the managed heap. The GC is
considered to be a tracing GC in that it doesn’t interfere with every access to an
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object, but rather wakes up intermittently and traces the graph of objects stored
on the managed heap to determine which objects can be considered garbage and
therefore collected.

The GC initiates a garbage collection upon performing a memory allocation (via the
new keyword), either after a certain threshold of memory has been allocated or at
other times to reduce the application’s memory footprint. This process can also be
initiated manually by calling System.GC.Collect. During a garbage collection, all
threads can by frozen (more on this in the next section).

The GC begins with its root object references and walks the object graph, marking
all the objects it touches as reachable. When this process is complete, all objects that
have not been marked are considered unused and are subject to garbage collection.

Unused objects without finalizers are immediately discarded; unused objects with
finalizers are enqueued for processing on the finalizer thread after the GC is com‐
plete. These objects then become eligible for collection in the next GC for the
object’s generation (unless resurrected).

The remaining “live” objects are then shifted to the start of the heap (compacted),
freeing space for more objects. This compaction serves two purposes: it prevents
memory fragmentation, and it allows the GC to employ a very simple strategy
when allocating new objects, which is to always allocate memory at the end of the
heap. This prevents the potentially time-consuming task of maintaining a list of free
memory segments.

If there is insufficient space to allocate memory for a new object after garbage
collection and the OS is unable to grant further memory, an OutOfMemoryException
is thrown.

You can obtain information about the current state of the
managed heap by calling GC.GetGCMemoryInfo(). From .NET
5, this method has been enhanced to return performance-
related data.

Optimization Techniques
The GC incorporates various optimization techniques to reduce the garbage collec‐
tion time.

Generational collection
The most important optimization is that the GC is generational. This takes advan‐
tage of the fact that although many objects are allocated and discarded rapidly, cer‐
tain objects are long-lived and thus don’t need to be traced during every collection.

Basically, the GC divides the managed heap into three generations. Objects that have
just been allocated are in Gen0, and objects that have survived one collection cycle
are in Gen1; all other objects are in Gen2. Gen0 and Gen1 are known as ephemeral
(short-lived) generations.
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The CLR keeps the Gen0 section relatively small (with a typical size of a few
hundred KB to a few MB). When the Gen0 section fills up, the GC instigates a
Gen0 collection—which happens relatively often. The GC applies a similar memory
threshold to Gen1 (which acts as a buffer to Gen2), and so Gen1 collections are
relatively quick and frequent, too. Full collections that include Gen2, however, take
much longer and so happen infrequently. Figure 12-2 shows the effect of a full
collection.

Figure 12-2. Heap generations

To give some very rough ballpark figures, a Gen0 collection might take less than
one millisecond, which is not enough to be noticed in a typical application. A full
collection, however, might take as long as 100 ms on a program with large object
graphs. These figures depend on numerous factors and so can vary considerably—
particularly in the case of Gen2, whose size is unbounded (unlike Gen0 and Gen1).

The upshot is that short-lived objects are very efficient in their use of the GC.
The StringBuilders created in the following method would almost certainly be
collected in a fast Gen0:

string Foo()
{
  var sb1 = new StringBuilder ("test");
  sb1.Append ("...");
  var sb2 = new StringBuilder ("test");
  sb2.Append (sb1.ToString());
  return sb2.ToString();
}
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1 The same thing can occur occasionally in the generational heap due to pinning (see “The fixed
Statement” on page 264).

The Large Object Heap
The GC uses a separate heap called the Large Object Heap (LOH) for objects
larger than a certain threshold (currently 85,000 bytes). This prevents the cost
of compacting large objects and prevents excessive Gen0 collections—without the
LOH, allocating a series of 16 MB objects might trigger a Gen0 collection after every
allocation.

By default, the LOH is not subject to compaction, because moving large blocks of
memory during garbage collection would be prohibitively expensive. This has two
consequences:

• Allocations can be slower, because the GC can’t always simply allocate objects•
at the end of the heap—it must also look in the middle for gaps, and this
requires maintaining a linked list of free memory blocks.1

• The LOH is subject to fragmentation. This means that the freeing of an object•
can create a hole in the LOH that can be difficult to fill later. For instance, a
hole left by an 86,000-byte object can be filled only by an object of between
85,000 bytes and 86,000 bytes (unless adjoined by another hole).

Should you anticipate a problem with fragmentation, you can instruct the GC to
compact the LOH in the next collection, as follows:

GCSettings.LargeObjectHeapCompactionMode =
  GCLargeObjectHeapCompactionMode.CompactOnce;

Another workaround, if your program frequently allocates large arrays, is to
use .NET’s array pooling API (see “Array Pooling” on page 599).

The LOH is also nongenerational: all objects are treated as Gen2.

Workstation versus server collection
.NET provides two garbage collection modes: workstation and server. Workstation
is the default; you can switch to server by adding the following to your applica‐
tion’s .csproj file:

<PropertyGroup>
  <ServerGarbageCollection>true</ServerGarbageCollection>
</PropertyGroup>

Upon building your project, this setting is written to the application’s .runtime
config.json file, where’s it’s read by the CLR:

  "runtimeOptions": {
    "configProperties": {
      "System.GC.Server": true
    ...
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When server collection is enabled, the CLR allocates a separate heap and GC to
each core. This speeds up collection but consumes additional memory and CPU
resources (because each core requires its own thread). Should the machine be
running many other processes with server collection enabled, this can lead to CPU
oversubscription, which is particularly harmful on workstations because it makes
the OS as a whole feel unresponsive.

Server collection is available only on multicore systems: on single-core devices (or
single-core virtual machines), the setting is ignored.

Background collection
In both workstation and server modes, the CLR enables background collection by
default. You can disable it by adding the following to your application’s .csproj file:

<PropertyGroup>
  <ConcurrentGarbageCollection>false</ConcurrentGarbageCollection>
</PropertyGroup>

Upon building, this setting is written to the application’s .runtimeconfig.json file:

  "runtimeOptions": {
    "configProperties": {
      "System.GC.Concurrent": false,
   ...

The GC must freeze (block) your execution threads for periods during a collection.
Background collection minimizes these periods of latency, making your application
more responsive. This comes at the expense of consuming slightly more CPU and
memory. Hence, by disabling background collection, you accomplish the following:

• Slightly reduce CPU and memory usage•
• Increase the pauses (or latency) when a garbage collection occurs•

Background collection works by allowing your application code to run in parallel
with a Gen2 collection. (Gen0 and Gen1 collections are considered sufficiently fast
that they don’t benefit from this parallelism.)

Background collection is an improved version of what was formerly called concur‐
rent collection: it removes a limitation whereby a concurrent collection would cease
to be concurrent if the Gen0 section filled up while a Gen2 collection was running.
This allows applications that continually allocate memory to be more responsive.

GC notifications
If you disable background collection, you can ask the GC to notify you just before a
full (blocking) collection will occur. This is intended for server-farm configurations:
the idea is that you divert requests to another server just before a collection.
You then instigate the collection immediately and wait for it to complete before
rerouting requests back to that server.
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To start notification, call GC.RegisterForFullGCNotification. Then, start up
another thread (see Chapter 14) that first calls GC.WaitForFullGCApproach. When
this method returns a GCNotificationStatus indicating that a collection is near,
you can reroute requests to other servers and force a manual collection (see the
following section). You then call GC.WaitForFullGCComplete: when this method
returns, collection is complete, and you can again accept requests. You then repeat
the whole cycle.

Forcing Garbage Collection
You can manually force a garbage collection at any time by calling GC.Collect.
Calling GC.Collect without an argument instigates a full collection. If you pass
in an integer value, only generations to that value are collected, so GC.Collect(0)
performs only a fast Gen0 collection.

In general, you get the best performance by allowing the GC to decide when to
collect: forcing collection can hurt performance by unnecessarily promoting Gen0
objects to Gen1 (and Gen1 objects to Gen2). It can also upset the GC’s self-tuning
ability, whereby the GC dynamically tweaks the thresholds for each generation to
maximize performance as the application executes.

There are exceptions, however. The most common case for intervention is when
an application goes to sleep for a while: a good example is a Windows Service that
performs a daily activity (checking for updates, perhaps). Such an application might
use a System.Timers.Timer to initiate the activity every 24 hours. After completing
the activity, no further code executes for 24 hours, which means that for this period,
no memory allocations are made and so the GC has no opportunity to activate.
Whatever memory the service consumed in performing its activity, it will continue
to consume for the following 24 hours—even with an empty object graph! The
solution is to call GC.Collect right after the daily activity completes.

To ensure the collection of objects for which collection is delayed by finalizers, take
the additional step of calling WaitForPendingFinalizers and re-collecting:

GC.Collect();
GC.WaitForPendingFinalizers();
GC.Collect();

Often this is done in a loop: the act of running finalizers can free up more objects
that themselves have finalizers.

Another case for calling GC.Collect is when you’re testing a class that has a
finalizer.

Tuning Garbage Collection at Runtime
The static GCSettings.LatencyMode property determines how the GC balances
latency with overall efficiency. Changing this from its default value of Interactive
to either LowLatency or SustainedLowLatency instructs the CLR to favor quicker
(but more frequent) collections. This is useful if your application needs to respond
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very quickly to real-time events. Changing the mode to Batch maximizes through‐
put at the expense of potentially poor responsiveness, which is useful for batch
processing.

SustainedLowLatency is not supported if you disable background collection in
the .runtimeconfig.json file.

You can also tell the CLR to temporarily suspend garbage collection by calling
GC.TryStartNoGCRegion, and resume it with GC.EndNoGCRegion.

Memory Pressure
The runtime decides when to initiate collections based on a number of factors,
including the total memory load on the machine. If your program allocates unman‐
aged memory (Chapter 24), the runtime will get an unrealistically optimistic per‐
ception of its memory usage because the CLR knows only about managed memory.
You can mitigate this by instructing the CLR to assume that a specified quantity
of unmanaged memory has been allocated; you do this by calling GC.AddMemory
Pressure. To undo this (when the unmanaged memory is released), call GC.Remove
MemoryPressure.

Array Pooling
If your application frequently instantiates arrays, you can avoid most of the garbage
collection overhead with array pooling. Array pooling was introduced in .NET Core
3 and works by “renting” an array, which you later return to a pool for reuse.

To allocate an array, call the Rent method on the ArrayPool class in the System
.Buffers namespace, indicating the size of the array that you’d like:

int[] pooledArray = ArrayPool<int>.Shared.Rent (100);  // 100 bytes

This allocates an array of (at least) 100 bytes from the global shared array pool.
The pool manager might give you an array that’s larger than what you asked for
(typically, it allocates in powers of 2).

When you’ve finished with the array, call Return: this releases the array to the pool,
allowing the same array to be rented again:

ArrayPool<int>.Shared.Return (pooledArray);

You can optionally pass in a Boolean value instructing the pool manager to clear the
array before returning it to the pool.

A limitation of array pooling is that nothing prevents you
from continuing to (illegally) use an array after it’s been
returned, so you need to code carefully to avoid this scenario.
Keep in mind that you have the power to break not just your
own code but other APIs that use array pooling, too, such as
ASP.NET Core.
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Rather than using the shared array pool, you can create a custom pool and rent
from that. This prevents the risk of breaking other APIs, but increases overall
memory usage (as it reduces the opportunities for reuse):

var myPool = ArrayPool<int>.Create();
int[] array = myPool.Rent (100);
...

Managed Memory Leaks
In unmanaged languages such as C++, you must remember to manually deallocate
memory when an object is no longer required; otherwise, a memory leak will result.
In the managed world, this kind of error is impossible due to the CLR’s automatic
garbage collection system.

Nonetheless, large and complex .NET applications can exhibit a milder form of the
same syndrome with the same end result: the application consumes more and more
memory over its lifetime, until it eventually must be restarted. The good news is that
managed memory leaks are usually easier to diagnose and prevent.

Managed memory leaks are caused by unused objects remaining alive by virtue of
unused or forgotten references. A common candidate is event handlers—these hold
a reference to the target object (unless the target is a static method). For instance,
consider the following classes:

class Host
{
  public event EventHandler Click;
}

class Client
{
  Host _host;
  public Client (Host host)
  {
    _host = host;
    _host.Click += HostClicked;
  }

  void HostClicked (object sender, EventArgs e) { ... }
}

The following test class contains a method that instantiates 1,000 clients:

class Test
{
  static Host _host = new Host();

  public static void CreateClients()
  {
    Client[] clients = Enumerable.Range (0, 1000)
     .Select (i => new Client (_host))
     .ToArray();
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    // Do something with clients ... 
  }
}

You might expect that after CreateClients finishes executing, the 1,000 Client
objects will become eligible for collection. Unfortunately, each client has another
referee: the _host object whose Click event now references each Client instance.
This can go unnoticed if the Click event doesn’t fire—or if the HostClicked
method doesn’t do anything to attract attention.

One way to solve this is to make Client implement IDisposable and, in the
Dispose method, unhook the event handler:

public void Dispose() { _host.Click -= HostClicked; }

Consumers of Client then dispose of the instances when they’re done with them:

Array.ForEach (clients, c => c.Dispose());

In “Weak References” on page 603, we describe another solu‐
tion to this problem, which can be useful in environments that
tend not to use disposable objects (an example is Windows
Presentation Foundation [WPF]). In fact, WPF offers a class
called WeakEventManager that uses a pattern that employs
weak references.

Timers
Forgotten timers can also cause memory leaks (we discuss timers in Chapter 21).
There are two distinct scenarios, depending on the kind of timer. Let’s first look at
the timer in the System.Timers namespace. In the following example, the Foo class
(when instantiated) calls the tmr_Elapsed method once every second:

using System.Timers;

class Foo
{
  Timer _timer;
  
  Foo() 
  {
    _timer = new System.Timers.Timer { Interval = 1000 };
    _timer.Elapsed += tmr_Elapsed;
    _timer.Start();
  }

  void tmr_Elapsed (object sender, ElapsedEventArgs e) { ... }
}

Unfortunately, instances of Foo can never be garbage-collected! The problem is that
the runtime itself holds references to active timers so that it can fire their Elapsed
events; hence:
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• The runtime will keep _timer alive.•

• _timer will keep the Foo instance alive, via the tmr_Elapsed event handler.•

The solution is obvious when you realize that Timer implements IDisposable.
Disposing of the timer stops it and ensures that the runtime no longer references
the object:

class Foo : IDisposable
{
  ...
  public void Dispose() { _timer.Dispose(); }
}

A good guideline is to implement IDisposable yourself if
any field in your class is assigned an object that implements
IDisposable.

The WPF and Windows Forms timers behave in the same way with respect to what’s
just been discussed.

The timer in the System.Threading namespace, however, is special. .NET doesn’t
hold references to active threading timers; it instead references the callback dele‐
gates directly. This means that if you forget to dispose of a threading timer, a
finalizer can fire that will automatically stop and dispose of the timer:

static void Main()
{
  var tmr = new System.Threading.Timer (TimerTick, null, 1000, 1000);
  GC.Collect();
  System.Threading.Thread.Sleep (10000);    // Wait 10 seconds 
}

static void TimerTick (object notUsed) { Console.WriteLine ("tick"); }

If this example is compiled in “release” mode (debugging disabled and optimiza‐
tions enabled), the timer will be collected and finalized before it has a chance to fire
even once! Again, we can fix this by disposing of the timer when we’re done with it:

using (var tmr = new System.Threading.Timer (TimerTick, null, 1000, 1000))
{
  GC.Collect();
  System.Threading.Thread.Sleep (10000);    // Wait 10 seconds 
}

The implicit call to tmr.Dispose at the end of the using block ensures that the tmr
variable is “used” and so not considered dead by the GC until the end of the block.
Ironically, this call to Dispose actually keeps the object alive longer!

Diagnosing Memory Leaks
The easiest way to avoid managed memory leaks is to proactively monitor memory
consumption as an application is written. You can obtain the current memory
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consumption of a program’s objects as follows (the true argument tells the GC to
perform a collection first):

long memoryUsed = GC.GetTotalMemory (true);

If you’re practicing test-driven development, one possibility is to use unit tests to
assert that memory is reclaimed as expected. If such an assertion fails, you then
need examine only the changes that you’ve made recently.

If you already have a large application with a managed memory leak, the windbg.exe
tool can assist in finding it. There are also friendlier graphical tools such as
Microsoft’s CLR Profiler, SciTech’s Memory Profiler, and Red Gate’s ANTS Memory
Profiler.

The CLR also exposes numerous event counters to assist with resource monitoring.

Weak References
Occasionally, it’s useful to hold a reference to an object that’s “invisible” to the GC in
terms of keeping the object alive. This is called a weak reference and is implemented
by the System.WeakReference class.

To use WeakReference, construct it with a target object:

var sb = new StringBuilder ("this is a test");
var weak = new WeakReference (sb);
Console.WriteLine (weak.Target);     // This is a test

If a target is referenced only by one or more weak references, the GC will consider
the target eligible for collection. When the target is collected, the Target property of
the WeakReference will be null:

var weak = GetWeakRef();
GC.Collect();
Console.WriteLine (weak.Target);   // (nothing)

WeakReference GetWeakRef () => 
  new WeakReference (new StringBuilder ("weak"));

To prevent the target being collected in between testing for it being null and
consuming it, assign the target to a local variable:

var sb = (StringBuilder) weak.Target;
if (sb != null) { /* Do something with sb */ }

After a target’s been assigned to a local variable, it has a strong root and so cannot
be collected while that variable’s in use.

The following class uses weak references to keep track of all Widget objects that
have been instantiated, without preventing those objects from being collected:

class Widget
{
  static List<WeakReference> _allWidgets = new List<WeakReference>();
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  public readonly string Name;

  public Widget (string name)
  {
    Name = name;
    _allWidgets.Add (new WeakReference (this));
  }

  public static void ListAllWidgets()
  {
    foreach (WeakReference weak in _allWidgets)
    {
      Widget w = (Widget)weak.Target;
      if (w != null) Console.WriteLine (w.Name);
    }
  }
}

The only proviso with such a system is that the static list will grow over time,
accumulating weak references with null targets. So, you need to implement some
cleanup strategy.

Weak References and Caching
One use for WeakReference is to cache large object graphs. This allows memory-
intensive data to be cached briefly without causing excessive memory consumption:

_weakCache = new WeakReference (...);   // _weakCache is a field
...
var cache = _weakCache.Target;
if (cache == null) { /* Re-create cache & assign it to _weakCache */ }

This strategy can be only mildly effective in practice because you have little control
over when the GC fires and what generation it chooses to collect. In particular, if
your cache remains in Gen0, it can be collected within microseconds (and remem‐
ber that the GC doesn’t collect only when memory is low—it collects regularly
under normal memory conditions). So, at a minimum, you should employ a two-
level cache whereby you start out by holding strong references that you convert to
weak references over time.

Weak References and Events
We saw earlier how events can cause managed memory leaks. The simplest solution
is to either avoid subscribing in such conditions or implement a Dispose method to
unsubscribe. Weak references offer another solution.

Imagine a delegate that holds only weak references to its targets. Such a delegate
would not keep its targets alive—unless those targets had independent referees. Of
course, this wouldn’t prevent a firing delegate from hitting an unreferenced target—
in the time between the target being eligible for collection and the GC catching
up with it. For such a solution to be effective, your code must be robust in that
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scenario. Assuming that is the case, you can implement a weak delegate class as
follows:

public class WeakDelegate<TDelegate> where TDelegate : Delegate
{
  class MethodTarget
  {
    public readonly WeakReference Reference;
    public readonly MethodInfo Method;

    public MethodTarget (Delegate d)
    {
      // d.Target will be null for static method targets:
      if (d.Target != null) Reference = new WeakReference (d.Target);
      Method = d.Method;
    }
  }

  List<MethodTarget> _targets = new List<MethodTarget>();

  public void Combine (TDelegate target)
  {
    if (target == null) return;

    foreach (Delegate d in (target as Delegate).GetInvocationList())
      _targets.Add (new MethodTarget (d));
  }

  public void Remove (TDelegate target)
  {
    if (target == null) return;
    foreach (Delegate d in (target as Delegate).GetInvocationList())
    {
      MethodTarget mt = _targets.Find (w => 
        Equals (d.Target, w.Reference?.Target) &&
        Equals (d.Method.MethodHandle, w.Method.MethodHandle));

      if (mt != null) _targets.Remove (mt);
    }
  }

  public TDelegate Target
  {
    get
    {
      Delegate combinedTarget = null;

      foreach (MethodTarget mt in _targets.ToArray())
      {
        WeakReference wr = mt.Reference;

        // Static target || alive instance target
        if (wr == null || wr.Target != null)
        {
          var newDelegate = Delegate.CreateDelegate (
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            typeof(TDelegate), wr?.Target, mt.Method);
            combinedTarget = Delegate.Combine (combinedTarget, newDelegate);
        }
        else
          _targets.Remove (mt);
      }

      return combinedTarget as TDelegate;
    }
    set
    {
      _targets.Clear();
      Combine (value);
    }
  }
}

In the Combine and Remove methods, we perform the reference conversion from
target to Delegate via the as operator rather than the more usual cast operator.
This is because C# disallows the cast operator with this type of parameter—because
of a potential ambiguity between a custom conversion and a reference conversion.

We then call GetInvocationList because these methods might be called with multi‐
cast delegates—delegates with more than one method recipient.

In the Target property, we build up a multicast delegate that combines all the dele‐
gates referenced by weak references whose targets are alive, removing the remaining
(dead) references from the list to prevent the _targets list from endlessly growing.
(We could improve our class by doing the same in the Combine method; yet another
improvement would be to add locks for thread safety [see “Locking and Thread
Safety” on page 638].) We also allow delegates without a weak reference at all; these
represent delegates whose target is a static method.

The following illustrates how to consume this delegate in implementing an event:

public class Foo
{
  WeakDelegate<EventHandler> _click = new WeakDelegate<EventHandler>();

  public event EventHandler Click
  {
    add { _click.Combine (value); } remove { _click.Remove (value); }
  }

  protected virtual void OnClick (EventArgs e)
    => _click.Target?.Invoke (this, e);
}
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13
Diagnostics

When things go wrong, it’s important that information is available to aid in diagnos‐
ing the problem. An Integrated Development Environment (IDE) or debugger can
assist greatly to this effect—but it is usually available only during development.
After an application ships, the application itself must gather and record diagnostic
information. To meet this requirement, .NET provides a set of facilities to log
diagnostic information, monitor application behavior, detect runtime errors, and
integrate with debugging tools if available.

Some diagnostic tools and APIs are Windows specific because they rely on fea‐
tures of the Windows operating system. In an effort to prevent platform-specific
APIs from cluttering the .NET BCL, Microsoft has shipped them in separate
NuGet packages that you can optionally reference. There are more than a dozen
Windows-specific packages, which you can reference all at once with the Micro‐
soft.Windows.Compatibility “master” package.

The types in this chapter are defined primarily in the System.Diagnostics
namespace.

Conditional Compilation
You can conditionally compile any section of code in C# with preprocessor directives.
Preprocessor directives are special instructions to the compiler that begin with the
# symbol (and, unlike other C# constructs, must appear on a line of their own). Log‐
ically, they execute before the main compilation takes place (although in practice,
the compiler processes them during the lexical parsing phase). The preprocessor
directives for conditional compilation are #if, #else, #endif, and #elif.

The #if directive instructs the compiler to ignore a section of code unless a speci‐
fied symbol has been defined. You can define a symbol in source code by using the
#define directive (in which case the symbol applies to just that file), or in the .csproj
file by using a <DefineConstants> element (in which case the symbol applies to
whole assembly):
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#define TESTMODE            // #define directives must be at top of file
                            // Symbol names are uppercase by convention.
using System;

class Program
{
  static void Main()
  {
#if TESTMODE
    Console.WriteLine ("in test mode!");     // OUTPUT: in test mode!
#endif
  }
}

If we deleted the first line, the program would compile with the Console.WriteLine
statement completely eliminated from the executable, as though it were commented
out.

The #else statement is analogous to C#’s else statement, and #elif is equivalent
to #else followed by #if. The ||, &&, and ! operators perform or, and, and not
operations:

#if TESTMODE && !PLAYMODE      // if TESTMODE and not PLAYMODE
  ...

Keep in mind, however, that you’re not building an ordinary C# expression, and the
symbols upon which you operate have absolutely no connection to variables—static
or otherwise.

You can define symbols that apply to every file in an assembly by editing the .csproj
file (or in Visual Studio, by going to the Build tab in the Project Properties window).
The following defines two constants, TESTMODE and PLAYMODE:

<PropertyGroup>
  <DefineConstants>TESTMODE;PLAYMODE</DefineConstants>
</PropertyGroup>

If you’ve defined a symbol at the assembly level and then want to “undefine” it for a
particular file, you can do so by using the #undef directive.

Conditional Compilation Versus Static Variable Flags
You could instead implement the preceding example with a simple static field:

static internal bool TestMode = true;

static void Main()
{
  if (TestMode) Console.WriteLine ("in test mode!");
}

This has the advantage of allowing runtime configuration. So, why choose condi‐
tional compilation? The reason is that conditional compilation can take you places
variable flags cannot, such as the following:
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• Conditionally including an attribute•
• Changing the declared type of variable•

• Switching between different namespaces or type aliases in a using directive; for•
example:

using TestType =
  #if V2
     MyCompany.Widgets.GadgetV2;
  #else
     MyCompany.Widgets.Gadget;
  #endif

You can even perform major refactoring under a conditional compilation directive,
so you can instantly switch between old and new versions, and write libraries that
can compile against multiple runtime versions, leveraging the latest features where
available.

Another advantage of conditional compilation is that debugging code can refer to
types in assemblies that are not included in deployment.

The Conditional Attribute
The Conditional attribute instructs the compiler to ignore any calls to a particular
class or method, if the specified symbol has not been defined.

To see how this is useful, suppose that you write a method for logging status
information as follows:

static void LogStatus (string msg)
{
  string logFilePath = ...
  System.IO.File.AppendAllText (logFilePath, msg + "\r\n");
}

Now imagine that you want this to execute only if the LOGGINGMODE symbol is
defined. The first solution is to wrap all calls to LogStatus around an #if directive:

#if LOGGINGMODE
LogStatus ("Message Headers: " + GetMsgHeaders());
#endif

This gives an ideal result, but it is tedious. The second solution is to put the
#if directive inside the LogStatus method. This, however, is problematic should
LogStatus be called as follows:

LogStatus ("Message Headers: " + GetComplexMessageHeaders());

GetComplexMessageHeaders would always be called—which might incur a perfor‐
mance hit.
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We can combine the functionality of the first solution with the convenience of the
second by attaching the Conditional attribute (defined in System.Diagnostics) to
the LogStatus method:

[Conditional ("LOGGINGMODE")]
static void LogStatus (string msg)
{
  ...
}

This instructs the compiler to treat calls to LogStatus as though they were wrapped
in an #if LOGGINGMODE directive. If the symbol is not defined, any calls to Log
Status are eliminated entirely in compilation—including their argument evaluation
expressions. (Hence any side-effecting expressions will be bypassed.) This works
even if LogStatus and the caller are in different assemblies.

Another benefit of [Conditional] is that the conditionality
check is performed when the caller is compiled, rather than
when the called method is compiled. This is beneficial because
it allows you to write a library containing methods such as
LogStatus—and build just one version of that library.

The Conditional attribute is ignored at runtime—it’s purely an instruction to the
compiler.

Alternatives to the Conditional attribute
The Conditional attribute is useless if you need to dynamically enable or disable
functionality at runtime: instead, you must use a variable-based approach. This
leaves the question of how to elegantly circumvent the evaluation of arguments
when calling conditional logging methods. A functional approach solves this:

using System;
using System.Linq;

class Program
{
  public static bool EnableLogging;

  static void LogStatus (Func<string> message)
  {
    string logFilePath = ...
    if (EnableLogging)
      System.IO.File.AppendAllText (logFilePath, message() + "\r\n");
  }
}

A lambda expression lets you call this method without syntax bloat:

LogStatus ( () => "Message Headers: " + GetComplexMessageHeaders() );

If EnableLogging is false, GetComplexMessageHeaders is never evaluated.
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Debug and Trace Classes
Debug and Trace are static classes that provide basic logging and assertion capabili‐
ties. The two classes are very similar; the main differentiator is their intended use.
The Debug class is intended for debug builds; the Trace class is intended for both
debug and release builds. To this effect:

All methods of the Debug class are defined with [Conditional("DEBUG")].
All methods of the Trace class are defined with [Conditional("TRACE")].

This means that all calls that you make to Debug or Trace are eliminated by
the compiler unless you define DEBUG or TRACE symbols. (Visual Studio provides
checkboxes for defining these symbols in the Build tab of Project Properties, and
enables the TRACE symbol by default with new projects.)

Both the Debug and Trace classes provide Write, WriteLine, and WriteIf methods.
By default, these send messages to the debugger’s output window:

Debug.Write     ("Data");
Debug.WriteLine (23 * 34);
int x = 5, y = 3;
Debug.WriteIf   (x > y, "x is greater than y");

The Trace class also provides the methods TraceInformation, TraceWarning, and
TraceError. The difference in behavior between these and the Write methods
depends on the active TraceListeners (we cover this in “TraceListener” on page
612).

Fail and Assert
The Debug and Trace classes both provide Fail and Assert methods. Fail sends
the message to each TraceListener in the Debug or Trace class’s Listeners collec‐
tion (see the following section), which by default writes the message to the debug
output:

Debug.Fail ("File data.txt does not exist!");

Assert simply calls Fail if the bool argument is false—this is called making an
assertion and indicates a bug in the code if violated. Specifying a failure message is
optional:

Debug.Assert (File.Exists ("data.txt"), "File data.txt does not exist!");
var result = ...
Debug.Assert (result != null);

The Write, Fail, and Assert methods are also overloaded to accept a string
category in addition to the message, which can be useful in processing the output.

An alternative to assertion is to throw an exception if the opposite condition is true.
This is a common practice when validating method arguments:
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public void ShowMessage (string message)
{
  if (message == null) throw new ArgumentNullException ("message");
  ...
}

Such “assertions” are compiled unconditionally and are less flexible in that you
can’t control the outcome of a failed assertion via TraceListeners. And technically,
they’re not assertions. An assertion is something that, if violated, indicates a bug in
the current method’s code. Throwing an exception based on argument validation
indicates a bug in the caller’s code.

TraceListener
The Trace class has a static Listeners property that returns a collection of Trace
Listener instances. These are responsible for processing the content emitted by the
Write, Fail, and Trace methods.

By default, the Listeners collection of each includes a single listener (Default
TraceListener). The default listener has two key features:

• When connected to a debugger such as Visual Studio, messages are written to•
the debug output window; otherwise, message content is ignored.

• When the Fail method is called (or an assertion fails), the application is•
terminated.

You can change this behavior by (optionally) removing the default listener and then
adding one or more of your own. You can write trace listeners from scratch (by
subclassing TraceListener) or use one of the predefined types:

• TextWriterTraceListener writes to a Stream or TextWriter or appends to a•
file.

• EventLogTraceListener writes to the Windows event log (Windows only).•

• EventProviderTraceListener writes to the Event Tracing for Windows•
(ETW) subsystem (cross-platform support).

TextWriterTraceListener is further subclassed to ConsoleTraceListener,
DelimitedListTraceListener, XmlWriterTraceListener, and EventSchemaTrace
Listener.

The following example clears Trace’s default listener and then adds three listeners—
one that appends to a file, one that writes to the console, and one that writes to the
Windows event log:

// Clear the default listener:
Trace.Listeners.Clear();

// Add a writer that appends to the trace.txt file:
Trace.Listeners.Add (new TextWriterTraceListener ("trace.txt"));
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// Obtain the Console's output stream, then add that as a listener:
System.IO.TextWriter tw = Console.Out;
Trace.Listeners.Add (new TextWriterTraceListener (tw));

// Set up a Windows Event log source and then create/add listener.
// CreateEventSource requires administrative elevation, so this would
// typically be done in application setup.
if (!EventLog.SourceExists ("DemoApp"))
  EventLog.CreateEventSource ("DemoApp", "Application");

Trace.Listeners.Add (new EventLogTraceListener ("DemoApp"));

In the case of the Windows event log, messages that you write with the Write, Fail,
or Assert method always display as “Information” messages in the Windows event
viewer. Messages that you write via the TraceWarning and TraceError methods,
however, show up as warnings or errors.

TraceListener also has a Filter of type TraceFilter that you can set to control
whether a message gets written to that listener. To do this, you either instantiate
one of the predefined subclasses (EventTypeFilter or SourceFilter), or subclass
TraceFilter and override the ShouldTrace method. You could use this to filter by
category, for instance.

TraceListener also defines IndentLevel and IndentSize properties for controlling
indentation, and the TraceOutputOptions property for writing extra data:

TextWriterTraceListener tl = new TextWriterTraceListener (Console.Out);
tl.TraceOutputOptions = TraceOptions.DateTime | TraceOptions.Callstack;

TraceOutputOptions are applied when using the Trace methods:

Trace.TraceWarning ("Orange alert");

DiagTest.vshost.exe Warning: 0 : Orange alert
     DateTime=2007-03-08T05:57:13.6250000Z
     Callstack=   at System.Environment.GetStackTrace(Exception e, Boolean
needFileInfo)
     at System.Environment.get_StackTrace()     at ...

Flushing and Closing Listeners
Some listeners, such as TextWriterTraceListener, ultimately write to a stream that
is subject to caching. This has two implications:

• A message might not appear in the output stream or file immediately.•
• You must close—or at least flush—the listener before your application ends;•

otherwise, you lose what’s in the cache (up to 4 KB, by default, if you’re writing
to a file).

The Trace and Debug classes provide static Close and Flush methods that call Close
or Flush on all listeners (which in turn calls Close or Flush on any underlying
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writers and streams). Close implicitly calls Flush, closes file handles, and prevents
further data from being written.

As a general rule, call Close before an application ends, and call Flush anytime
you want to ensure that current message data is written. This applies if you’re using
stream- or file-based listeners.

Trace and Debug also provide an AutoFlush property, which, if true, forces a Flush
after every message.

It’s a good policy to set AutoFlush to true on Debug and Trace
if you’re using any file- or stream-based listeners. Otherwise, if
an unhandled exception or critical error occurs, the last 4 KB
of diagnostic information can be lost.

Debugger Integration
Sometimes, it’s useful for an application to interact with a debugger if one is avail‐
able. During development, the debugger is usually your IDE (e.g., Visual Studio);
in deployment, the debugger is more likely to be one of the lower-level debugging
tools, such as WinDbg, Cordbg, or MDbg.

Attaching and Breaking
The static Debugger class in System.Diagnostics provides basic functions for inter‐
acting with a debugger—namely Break, Launch, Log, and IsAttached.

A debugger must first attach to an application in order to debug it. If you start
an application from within an IDE, this happens automatically, unless you request
otherwise (by choosing “Start without debugging”). Sometimes, though, it’s incon‐
venient or impossible to start an application in debug mode within the IDE. An
example is a Windows Service application or (ironically) a Visual Studio designer.
One solution is to start the application normally and then, in your IDE, choose
Debug Process. This doesn’t allow you to set breakpoints early in the program’s
execution, however.

The workaround is to call Debugger.Break from within your application. This
method launches a debugger, attaches to it, and suspends execution at that point.
(Launch does the same, but without suspending execution.) After it’s attached, you
can log messages directly to the debugger’s output window with the Log method.
You can verify whether you’re attached to a debugger by checking the IsAttached
property.

Debugger Attributes
The DebuggerStepThrough and DebuggerHidden attributes provide suggestions to
the debugger on how to handle single-stepping for a particular method, constructor,
or class.
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DebuggerStepThrough requests that the debugger step through a function without
any user interaction. This attribute is useful in automatically generated methods and
in proxy methods that forward the real work to a method somewhere else. In the
latter case, the debugger will still show the proxy method in the call stack if a break‐
point is set within the “real” method—unless you also add the DebuggerHidden
attribute. You can combine these two attributes on proxies to help the user focus on
debugging the application logic rather than the plumbing:

[DebuggerStepThrough, DebuggerHidden]
void DoWorkProxy()
{
  // setup...
  DoWork();
  // teardown...
}

void DoWork() {...}   // Real method...

Processes and Process Threads
We described in the last section of Chapter 6 how to use Process.Start to launch
a new process. The Process class also allows you to query and interact with other
processes running on the same or another computer. The Process class is part
of .NET Standard 2.0, although its features are restricted for the UWP platform.

Examining Running Processes
The Process.GetProcessXXX methods retrieve a specific process by name or pro‐
cess ID, or all processes running on the current or nominated computer. This
includes both managed and unmanaged processes. Each Process instance has a
wealth of properties mapping statistics such as name, ID, priority, memory and
processor utilization, window handles, and so on. The following sample enumerates
all the running processes on the current computer:

foreach (Process p in Process.GetProcesses())
using (p)
{
  Console.WriteLine (p.ProcessName);
  Console.WriteLine ("   PID:      " + p.Id);
  Console.WriteLine ("   Memory:   " + p.WorkingSet64);
  Console.WriteLine ("   Threads:  " + p.Threads.Count);
}

Process.GetCurrentProcess returns the current process.

You can terminate a process by calling its Kill method.

Examining Threads in a Process
You can also enumerate over the threads of other processes with the Process
.Threads property. The objects that you get, however, are not System.Threading
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.Thread objects; they’re ProcessThread objects and are intended for administrative
rather than synchronization tasks. A ProcessThread object provides diagnostic
information about the underlying thread and allows you to control some aspects of
it, such as its priority and processor affinity:

public void EnumerateThreads (Process p)
{
  foreach (ProcessThread pt in p.Threads)
  {
    Console.WriteLine (pt.Id);
    Console.WriteLine ("   State:    " + pt.ThreadState);
    Console.WriteLine ("   Priority: " + pt.PriorityLevel);
    Console.WriteLine ("   Started:  " + pt.StartTime);
    Console.WriteLine ("   CPU time: " + pt.TotalProcessorTime);
  }
}

StackTrace and StackFrame
The StackTrace and StackFrame classes provide a read-only view of an execution
call stack. You can obtain stack traces for the current thread or an Exception
object. Such information is useful mostly for diagnostic purposes, though you also
can use it in programming (hacks). StackTrace represents a complete call stack;
StackFrame represents a single method call within that stack.

If you just need to know the name and line number of the
calling method, caller info attributes can provide an easier
and faster alternative. We cover this topic in “Caller Info
Attributes” on page 246.

If you instantiate a StackTrace object with no arguments—or with a bool argu‐
ment—you get a snapshot of the current thread’s call stack. The bool argument, if
true, instructs StackTrace to read the assembly .pdb (project debug) files if they are
present, giving you access to filename, line number, and column offset data. Project
debug files are generated when you compile with the /debug switch. (Visual Studio
compiles with this switch unless you request otherwise via Advanced Build Settings.)

After you’ve obtained a StackTrace, you can examine a particular frame by calling
GetFrame—or obtain the whole lot by using GetFrames:

static void Main() { A (); }
static void A()    { B (); }
static void B()    { C (); }
static void C()
{
  StackTrace s = new StackTrace (true);

  Console.WriteLine ("Total frames:   " + s.FrameCount);
  Console.WriteLine ("Current method: " + s.GetFrame(0).GetMethod().Name);
  Console.WriteLine ("Calling method: " + s.GetFrame(1).GetMethod().Name);
  Console.WriteLine ("Entry method:   " + s.GetFrame
                                       (s.FrameCount-1).GetMethod().Name);
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  Console.WriteLine ("Call Stack:");
  foreach (StackFrame f in s.GetFrames())
    Console.WriteLine (
      "  File: "   + f.GetFileName() +
      "  Line: "   + f.GetFileLineNumber() +
      "  Col: "    + f.GetFileColumnNumber() +
      "  Offset: " + f.GetILOffset() +
      "  Method: " + f.GetMethod().Name);
}

Here’s the output:

Total frames:   4
Current method: C
Calling method: B
Entry method: Main
Call stack:
  File: C:\Test\Program.cs  Line: 15  Col: 4  Offset: 7  Method: C
  File: C:\Test\Program.cs  Line: 12  Col: 22  Offset: 6  Method: B
  File: C:\Test\Program.cs  Line: 11  Col: 22  Offset: 6  Method: A
  File: C:\Test\Program.cs  Line: 10  Col: 25  Offset: 6  Method: Main

The Intermediate Language (IL) offset indicates the offset of
the instruction that will execute next—not the instruction
that’s currently executing. Peculiarly, though, the line and col‐
umn number (if a .pdb file is present) usually indicate the
actual execution point.
This happens because the CLR does its best to infer the actual
execution point when calculating the line and column from
the IL offset. The compiler emits IL in such a way as to make
this possible—including inserting nop (no-operation) instruc‐
tions into the IL stream.
Compiling with optimizations enabled, however, disables the
insertion of nop instructions, and so the stack trace might
show the line and column number of the next statement to
execute. Obtaining a useful stack trace is further hampered
by the fact that optimization can pull other tricks, including
collapsing entire methods.

A shortcut to obtaining the essential information for an entire StackTrace is to call
ToString on it. Here’s what the result looks like:

   at DebugTest.Program.C() in C:\Test\Program.cs:line 16
   at DebugTest.Program.B() in C:\Test\Program.cs:line 12
   at DebugTest.Program.A() in C:\Test\Program.cs:line 11
   at DebugTest.Program.Main() in C:\Test\Program.cs:line 10

You can also obtain the stack trace for an Exception object (showing what led
up to the exception being thrown) by passing the Exception into StackTrace’s
constructor.
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Exception already has a StackTrace property; however, this
property returns a simple string—not a StackTrace object.
A StackTrace object is far more useful in logging exceptions
that occur after deployment—where no .pdb files are available
—because you can log the IL offset in lieu of line and column
numbers. With an IL offset and ildasm, you can pinpoint
where within a method an error occurred.

Windows Event Logs
The Win32 platform provides a centralized logging mechanism, in the form of the
Windows event logs.

The Debug and Trace classes we used earlier write to a Windows event log if you
register an EventLogTraceListener. With the EventLog class, however, you can
write directly to a Windows event log without using Trace or Debug. You can also
use this class to read and monitor event data.

Writing to the Windows event log makes sense in a Windows
Service application, because if something goes wrong, you
can’t pop up a user interface directing the user to some spe‐
cial file where diagnostic information has been written. Also,
because it’s common practice for services to write to the Win‐
dows event log, this is the first place an administrator is likely
to look if your service falls over.

There are three standard Windows event logs, identified by these names:

• Application•
• System•
• Security•

The Application log is where most applications normally write.

Writing to the Event Log
To write to a Windows event log:

1. Choose one of the three event logs (usually Application).1.
2. Decide on a source name and create it if necessary (create requires administra‐2.

tive permissions).

3. Call EventLog.WriteEntry with the log name, source name, and message data.3.

The source name is an easily identifiable name for your application. You must
register a source name before you use it—the CreateEventSource method performs
this function. You can then call WriteEntry:
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const string SourceName = "MyCompany.WidgetServer";

// CreateEventSource requires administrative permissions, so this would
// typically be done in application setup.
if (!EventLog.SourceExists (SourceName))
  EventLog.CreateEventSource (SourceName, "Application");

EventLog.WriteEntry (SourceName,
  "Service started; using configuration file=...",
  EventLogEntryType.Information);

EventLogEntryType can be Information, Warning, Error, SuccessAudit, or
FailureAudit. Each displays with a different icon in the Windows event viewer.
You can also optionally specify a category and event ID (each is a number of your
own choosing) and provide optional binary data.

CreateEventSource also allows you to specify a machine name: this is to write to
another computer’s event log, if you have sufficient permissions.

Reading the Event Log
To read an event log, instantiate the EventLog class with the name of the log that
you want to access and optionally the name of another computer on which the log
resides. Each log entry can then be read via the Entries collection property:

EventLog log = new EventLog ("Application");

Console.WriteLine ("Total entries: " + log.Entries.Count);

EventLogEntry last = log.Entries [log.Entries.Count - 1];
Console.WriteLine ("Index:   " + last.Index);
Console.WriteLine ("Source:  " + last.Source);
Console.WriteLine ("Type:    " + last.EntryType);
Console.WriteLine ("Time:    " + last.TimeWritten);
Console.WriteLine ("Message: " + last.Message);

You can enumerate over all logs for the current (or another) computer via the
static method EventLog.GetEventLogs (this requires administrative privileges for
full access):

foreach (EventLog log in EventLog.GetEventLogs())
  Console.WriteLine (log.LogDisplayName);

This normally prints, at a minimum, Application, Security, and System.

Monitoring the Event Log
You can be alerted whenever an entry is written to a Windows event log, via the
EntryWritten event. This works for event logs on the local computer, and it fires
regardless of what application logged the event.
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To enable log monitoring:

1. Instantiate an EventLog and set its EnableRaisingEvents property to true.1.

2. Handle the EntryWritten event.2.

For example:

using (var log = new EventLog ("Application"))
{
  log.EnableRaisingEvents = true;
  log.EntryWritten += DisplayEntry;
  Console.ReadLine();
}

void DisplayEntry (object sender, EntryWrittenEventArgs e)
{
  EventLogEntry entry = e.Entry;
  Console.WriteLine (entry.Message);
}

Performance Counters
Performance Counters are a Windows-only feature and
require the NuGet package System.Diagnostics.Perfor

manceCounter. If you’re targeting Linux or macOS, see “Cross-
Platform Diagnostic Tools” on page 625 for alternatives.

The logging mechanisms we’ve discussed to date are useful for capturing infor‐
mation for future analysis. However, to gain insight into the current state of an
application (or the system as a whole), a more real-time approach is needed. The
Win32 solution to this need is the performance-monitoring infrastructure, which
consists of a set of performance counters that the system and applications expose,
and the Microsoft Management Console (MMC) snap-ins used to monitor these
counters in real time.

Performance counters are grouped into categories such as “System,” “Processor,”
“.NET CLR Memory,” and so on. These categories are sometimes also referred to
as “performance objects” by the graphical user interface (GUI) tools. Each category
groups a related set of performance counters that monitor one aspect of the system
or application. Examples of performance counters in the “.NET CLR Memory”
category include “% Time in GC,” “# Bytes in All Heaps,” and “Allocated bytes/sec.”

Each category can optionally have one or more instances that can be monitored
independently. For example, this is useful in the “% Processor Time” performance
counter in the “Processor” category, which allows one to monitor CPU utilization.
On a multiprocessor machine, this counter supports an instance for each CPU,
allowing you to monitor the utilization of each CPU independently.
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The following sections illustrate how to perform commonly needed tasks such as
determining which counters are exposed, monitoring a counter, and creating your
own counters to expose application status information.

Reading performance counters or categories might require
administrator privileges on the local or target computer,
depending on what is accessed.

Enumerating the Available Counters
The following example enumerates over all of the available performance counters
on the computer. For those that have instances, it enumerates the counters for each
instance:

PerformanceCounterCategory[] cats =
  PerformanceCounterCategory.GetCategories();

foreach (PerformanceCounterCategory cat in cats)
{
  Console.WriteLine ("Category: " + cat.CategoryName);

  string[] instances = cat.GetInstanceNames();
  if (instances.Length == 0)
  {
    foreach (PerformanceCounter ctr in cat.GetCounters())
      Console.WriteLine ("  Counter: " + ctr.CounterName);
  }
  else   // Dump counters with instances
  {
    foreach (string instance in instances)
    {
      Console.WriteLine ("  Instance: " + instance);
      if (cat.InstanceExists (instance))
        foreach (PerformanceCounter ctr in cat.GetCounters (instance))
          Console.WriteLine ("    Counter: " + ctr.CounterName);
    }
  }
}

The result is more than 10,000 lines long! It also takes a while
to execute because PerformanceCounterCategory.Instance
Exists has an inefficient implementation. In a real system,
you’d want to retrieve the more detailed information only on
demand.

The next example uses LINQ to retrieve just .NET performance counters, writing
the result to an XML file:

var x =
  new XElement ("counters",
    from PerformanceCounterCategory cat in
         PerformanceCounterCategory.GetCategories()
    where cat.CategoryName.StartsWith (".NET")
    let instances = cat.GetInstanceNames()
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    select new XElement ("category",
      new XAttribute ("name", cat.CategoryName),
      instances.Length == 0
      ?
        from c in cat.GetCounters()
        select new XElement ("counter",
          new XAttribute ("name", c.CounterName))
      :
        from i in instances
        select new XElement ("instance", new XAttribute ("name", i),
          !cat.InstanceExists (i)
          ?
            null
          :
            from c in cat.GetCounters (i)
            select new XElement ("counter",
              new XAttribute ("name", c.CounterName))
        )
    )
  );
x.Save ("counters.xml");

Reading Performance Counter Data
To retrieve the value of a performance counter, instantiate a PerformanceCounter
object and then call the NextValue or NextSample method. NextValue returns a
simple float value; NextSample returns a CounterSample object that exposes a
more advanced set of properties, such as CounterFrequency, TimeStamp, BaseValue,
and RawValue.

PerformanceCounter’s constructor takes a category name, counter name, and
optional instance. So, to display the current processor utilization for all CPUs, you
would do the following:

using PerformanceCounter pc = new PerformanceCounter ("Processor",
                                                      "% Processor Time",
                                                      "_Total");
Console.WriteLine (pc.NextValue());

Or to display the “real” (i.e., private) memory consumption of the current process:

string procName = Process.GetCurrentProcess().ProcessName;
using PerformanceCounter pc = new PerformanceCounter ("Process",
                                                      "Private Bytes",
                                                      procName);
Console.WriteLine (pc.NextValue());

PerformanceCounter doesn’t expose a ValueChanged event, so if you want to moni‐
tor for changes, you must poll. In the next example, we poll every 200 ms—until
signaled to quit by an EventWaitHandle:

// need to import System.Threading as well as System.Diagnostics

static void Monitor (string category, string counter, string instance,
                     EventWaitHandle stopper)
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{
  if (!PerformanceCounterCategory.Exists (category))
    throw new InvalidOperationException ("Category does not exist");

  if (!PerformanceCounterCategory.CounterExists (counter, category))
    throw new InvalidOperationException ("Counter does not exist");

  if (instance == null) instance = "";   // "" == no instance (not null!)
  if (instance != "" &&
      !PerformanceCounterCategory.InstanceExists (instance, category))
    throw new InvalidOperationException ("Instance does not exist");

  float lastValue = 0f;
  using (PerformanceCounter pc = new PerformanceCounter (category,
                                                      counter, instance))
    while (!stopper.WaitOne (200, false))
    {
      float value = pc.NextValue();
      if (value != lastValue)         // Only write out the value
      {                               // if it has changed.
        Console.WriteLine (value);
        lastValue = value;
      }
    }
}

Here’s how we can use this method to simultaneously monitor processor and hard-
drive activity:

EventWaitHandle stopper = new ManualResetEvent (false);

new Thread (() =>
  Monitor ("Processor", "% Processor Time", "_Total", stopper)
).Start();

new Thread (() =>
  Monitor ("LogicalDisk", "% Idle Time", "C:", stopper)
).Start();

Console.WriteLine ("Monitoring - press any key to quit");
Console.ReadKey();
stopper.Set();

Creating Counters and Writing Performance Data
Before writing performance counter data, you need to create a performance cate‐
gory and counter. You must create the performance category along with all the
counters that belong to it in one step, as follows:

string category = "Nutshell Monitoring";

// We'll create two counters in this category:
string eatenPerMin = "Macadamias eaten so far";
string tooHard = "Macadamias deemed too hard";
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if (!PerformanceCounterCategory.Exists (category))
{
  CounterCreationDataCollection cd = new CounterCreationDataCollection();

  cd.Add (new CounterCreationData (eatenPerMin,
          "Number of macadamias consumed, including shelling time",
          PerformanceCounterType.NumberOfItems32));

  cd.Add (new CounterCreationData (tooHard,
          "Number of macadamias that will not crack, despite much effort",
          PerformanceCounterType.NumberOfItems32));

  PerformanceCounterCategory.Create (category, "Test Category",
    PerformanceCounterCategoryType.SingleInstance, cd);
}

The new counters then show up in the Windows performance-monitoring tool
when you choose Add Counters. If you later want to define more counters in
the same category, you must first delete the old category by calling Performance
CounterCategory.Delete.

Creating and deleting performance counters requires admin‐
istrative privileges. For this reason, it’s usually done as part of
the application setup.

After you create a counter, you can update its value by instantiating a Performance
Counter, setting ReadOnly to false, and setting RawValue. You can also use the
Increment and IncrementBy methods to update the existing value:

string category = "Nutshell Monitoring";
string eatenPerMin = "Macadamias eaten so far";

using (PerformanceCounter pc = new PerformanceCounter (category,
                                                       eatenPerMin, ""))
{
  pc.ReadOnly = false;
  pc.RawValue = 1000;
  pc.Increment();
  pc.IncrementBy (10);
  Console.WriteLine (pc.NextValue());    // 1011
}

The Stopwatch Class
The Stopwatch class provides a convenient mechanism for measuring execution
times. Stopwatch uses the highest-resolution mechanism that the OS and hardware
provide, which is typically less than a microsecond. (In contrast, DateTime.Now and
Environment.TickCount have a resolution of about 15 ms.)
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To use Stopwatch, call StartNew—this instantiates a Stopwatch and starts it ticking.
(Alternatively, you can instantiate it manually and then call Start.) The Elapsed
property returns the elapsed interval as a TimeSpan:

Stopwatch s = Stopwatch.StartNew();
System.IO.File.WriteAllText ("test.txt", new string ('*', 30000000));
Console.WriteLine (s.Elapsed);       // 00:00:01.4322661

Stopwatch also exposes an ElapsedTicks property, which returns the number of
elapsed “ticks” as a long. To convert from ticks to seconds, divide by StopWatch
.Frequency. There’s also an ElapsedMilliseconds property, which is often the
most convenient.

Calling Stop freezes Elapsed and ElapsedTicks. There’s no background activity
incurred by a “running” Stopwatch, so calling Stop is optional.

Cross-Platform Diagnostic Tools
In this section, we briefly describe the cross-platform diagnostic tools available
to .NET:

dotnet-counters
Provides an overview of the state of a running application

dotnet-trace
For more detailed performance and event monitoring

dotnet-dump
To obtain a memory dump on demand or after a crash

These tools do not require administrative elevation and are suitable for both devel‐
opment and production environments.

dotnet-counters
The dotnet-counters tool monitors the memory and CPU usage of a .NET process
and writes the data to the console (or a file).

To install the tool, run the following from a command prompt or terminal with
dotnet in the path:

dotnet tool install --global dotnet-counters

You can then start monitoring a process, as follows:

dotnet-counters monitor System.Runtime --process-id <<ProcessID>>

System.Runtime means that we want to monitor all counters under the System.Run‐
time category. You can specify either a category or counter name (the dotnet-
counters list command lists all available categories and counters).
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The output is continually refreshed and looks like this:

Press p to pause, r to resume, q to quit.
    Status: Running

[System.Runtime]
    # of Assemblies Loaded                            63
    % Time in GC (since last GC)                       0
    Allocation Rate (Bytes / sec)                244,864
    CPU Usage (%)                                      6
    Exceptions / sec                                   0
    GC Heap Size (MB)                                  8
    Gen 0 GC / sec                                     0
    Gen 0 Size (B)                               265,176
    Gen 1 GC / sec                                     0
    Gen 1 Size (B)                               451,552
    Gen 2 GC / sec                                     0
    Gen 2 Size (B)                                    24
    LOH Size (B)                               3,200,296
    Monitor Lock Contention Count / sec                0
    Number of Active Timers                            0
    ThreadPool Completed Work Items / sec             15
    ThreadPool Queue Length                            0
    ThreadPool Threads Count                           9
    Working Set (MB)                                  52

Here are all available commands:

Commands Purpose

list Displays a list of counter names along with a description of each

ps Displays a list of dotnet processes eligible for monitoring

monitor Displays values of selected counters (periodically refreshed)

collect Saves counter information to a file

The following parameters are supported:

Options/arguments Purpose

--version Displays the version of dotnet-counters.

-h, --help Displays help about the program.

-p, --process-id ID of dotnet process to monitor. Applies to the monitor and collect
commands.

--refresh-interval Sets the desired refresh interval in seconds. Applies to the monitor and
collect commands.

-o, --output Sets the output file name. Applies to the collect command.

--format Sets the output format. Valid are csv or json. Applies to the collect command.
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dotnet-trace
Traces are timestamped records of events in your program, such as a method
being called or a database being queried. Traces can also include performance
metrics and custom events, and can contain local context such as the value of local
variables. Traditionally, .NET Framework and frameworks such as ASP.NET used
ETW. In .NET 5, application traces are written to ETW when running on Windows
and LTTng on Linux.

To install the tool, run the following command:

dotnet tool install --global dotnet-trace

To start recording a program’s events, run the following command:

dotnet-trace collect --process-id <<ProcessId>>

This runs dotnet-trace with the default profile, which collects CPU and .NET run‐
time events and writes to a file called trace.nettrace. You can specify other profiles
with the --profile switch: gc-verbose tracks garbage collection and sampled object
allocation, and gc-collect tracks garbage collection with a low overhead. The -o
switch lets you specify a different output filename.

The default output is a .netperf file, which can be analyzed directly on a Windows
machine with the PerfView tool. Alternatively, you can instruct dotnet-trace to
create a file compatible with Speedscope, which is a free online analysis service at
https://speedscope.app. To create a Speedscope (.speedscope.json) file, use the option
--format speedscope.

You can download the latest version of PerfView from https://
github.com/microsoft/perfview. The version that ships with
Windows 10 might not support .netperf files.

The following commands are supported:

Commands Purpose

collect Starts recording counter information to a file.

ps Displays a list of dotnet processes eligible for monitoring.

list-profiles Lists prebuilt tracing profiles with a description of providers and filters in each.

convert <file> Converts from the nettrace (.netperf) format to an alternative format. Currently,
speedscope is the only target option.

Custom trace events
Your app can emit custom events by defining a custom EventSource:

[EventSource (Name = "MyTestSource")]
public sealed class MyEventSource : EventSource
{
  public static MyEventSource Instance = new MyEventSource ();
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  MyEventSource() : base (EventSourceSettings.EtwSelfDescribingEventFormat)
  {
  }

  public void Log (string message, int someNumber)
  {
    WriteEvent (1, message, someNumber);
  }
}

The WriteEvent method is overloaded to accept various combinations of simple
types (primarily strings and integers). You can then call it as follows:

MyEventSource.Instance.Log ("Something", 123);

When calling dotnet-trace, you must specify the name(s) of any custom event
sources that want to record:

dotnet-trace collect --process-id <<ProcessId>> --providers MyTestSource

dotnet-dump
A dump, sometimes called a core dump, is a snapshot of the state of a process’s
virtual memory. You can dump a running process on demand, or configure the OS
to generate a dump when an application crashes.

On Ubuntu Linux, the following command enables a core dump upon application
crash (the necessary steps can vary between different flavors of Linux):

ulimit -c unlimited

On Windows, use regedit.exe to create or edit the following key in the local machine
hive:

SOFTWARE\Microsoft\Windows\Windows Error Reporting\LocalDumps

Under that, add a key with the same name as your executable (e.g., foo.exe), and
under that key, add the following keys:

• DumpFolder (REG_EXPAND_SZ), with a value indicating the path to which•
you want dump files written

• DumpType (REG_DWORD), with a value of 2 to request a full dump•

• (Optionally) DumpCount (REG_DWORD), indicating the maximum number of•
dump files before the oldest is removed

To install the tool, run the following command:

dotnet tool install --global dotnet-dump

After you’ve installed it, you can initiate a dump on demand (without ending the
process), as follows:

dotnet-dump collect --process-id <<YourProcessId>>

628 | Chapter 13: Diagnostics



The following command starts an interactive shell for analyzing a dump file:

dotnet-dump analyze <<dumpfile>>

If an exception took down the application, you can use the printexceptions com‐
mand (pe for short) to display details of that exception. The dotnet-dump shell sup‐
ports numerous additional commands, which you can list with the help command.
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14
Concurrency and Asynchrony

Most applications need to deal with more than one thing happening at a time (con‐
currency). In this chapter, we start with the essential prerequisites, namely the basics
of threading and tasks, and then describe in detail the principles of asynchrony and
C#’s asynchronous functions.

In Chapter 21, we revisit multithreading in greater detail, and in Chapter 22, we
cover the related topic of parallel programming.

Introduction
Following are the most common concurrency scenarios:

Writing a responsive user interface
In Windows Presentation Foundation (WPF), mobile, and Windows Forms
applications, you must run time-consuming tasks concurrently with the code
that runs your user interface to maintain responsiveness.

Allowing requests to process simultaneously
On a server, client requests can arrive concurrently and so must be handled
in parallel to maintain scalability. If you use ASP.NET Core or Web API, the
runtime does this for you automatically. However, you still need to be aware of
shared state (for instance, the effect of using static variables for caching).

Parallel programming
Code that performs intensive calculations can execute faster on multicore/mul‐
tiprocessor computers if the workload is divided between cores (Chapter 22 is
dedicated to this).

Speculative execution
On multicore machines, you can sometimes improve performance by predict‐
ing something that might need to be done and then doing it ahead of time.
LINQPad uses this technique to speed up the creation of new queries. A
variation is to run a number of different algorithms in parallel that all solve the
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1 The CLR creates other threads behind the scenes for garbage collection and finalization.

same task. Whichever one finishes first “wins”—this is effective when you can’t
know ahead of time which algorithm will execute fastest.

The general mechanism by which a program can simultaneously execute code is
called multithreading. Multithreading is supported by both the CLR and operating
system, and is a fundamental concept in concurrency. Understanding the basics
of threading, and in particular the effects of threads on shared state, is therefore
essential.

Threading
A thread is an execution path that can proceed independently of others.

Each thread runs within an operating system process, which provides an isolated
environment in which a program runs. With a single-threaded program, just one
thread runs in the process’s isolated environment, and so that thread has exclusive
access to it. With a multithreaded program, multiple threads run in a single process,
sharing the same execution environment (memory, in particular). This, in part,
is why multithreading is useful: one thread can fetch data in the background, for
instance, while another thread displays the data as it arrives. This data is referred to
as shared state.

Creating a Thread
A client program (Console, WPF, UWP, or Windows Forms) starts in a single thread
that’s created automatically by the OS (the “main” thread). Here it lives out its life
as a single-threaded application, unless you do otherwise, by creating more threads
(directly or indirectly).1

You can create and start a new thread by instantiating a Thread object and calling its
Start method. The simplest constructor for Thread takes a ThreadStart delegate: a
parameterless method indicating where execution should begin. Here’s an example:

// NB: All samples in this chapter assume the following namespace imports:
using System;
using System.Threading;

Thread t = new Thread (WriteY);          // Kick off a new thread
t.Start();                               // running WriteY()

// Simultaneously, do something on the main thread.
for (int i = 0; i < 1000; i++) Console.Write ("x");

void WriteY()
{
  for (int i = 0; i < 1000; i++) Console.Write ("y");
}
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// Typical Output:
xxxxxxxxxxxxxxxxyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxyyyyyyyyyyyyy
yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy
yyyyyyyyyyyyyxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
...

The main thread creates a new thread t on which it runs a method that repeat‐
edly prints the character y. Simultaneously, the main thread repeatedly prints the
character x, as shown in Figure 14-1. On a single-core computer, the operating
system must allocate “slices” of time to each thread (typically 20 ms in Windows)
to simulate concurrency, resulting in repeated blocks of x and y. On a multicore or
multiprocessor machine, the two threads can genuinely execute in parallel (subject
to competition by other active processes on the computer), although you still get
repeated blocks of x and y in this example because of subtleties in the mechanism by
which Console handles concurrent requests.

Figure 14-1. Starting a new thread

A thread is said to be preempted at the points at which its exe‐
cution is interspersed with the execution of code on another
thread. The term often crops up in explaining why something
has gone wrong!

After it’s started, a thread’s IsAlive property returns true, until the point at which
the thread ends. A thread ends when the delegate passed to the Thread’s constructor
finishes executing. After it’s ended, a thread cannot restart.

Each thread has a Name property that you can set for the benefit of debugging. This
is particularly useful in Visual Studio because the thread’s name is displayed in the
Threads Window and Debug Location toolbar. You can set a thread’s name just
once; attempts to change it later will throw an exception.

Threading | 633

C
o

ncurrency and
A

synchro
ny



The static Thread.CurrentThread property gives you the currently executing
thread:

Console.WriteLine (Thread.CurrentThread.Name);

Join and Sleep
You can wait for another thread to end by calling its Join method:

Thread t = new Thread (Go);
t.Start();
t.Join();
Console.WriteLine ("Thread t has ended!");
 
void Go() { for (int i = 0; i < 1000; i++) Console.Write ("y"); }

This prints “y” 1,000 times, followed by “Thread t has ended!” immediately after‐
ward. You can include a timeout when calling Join, either in milliseconds or as a
TimeSpan. It then returns true if the thread ended or false if it timed out.

Thread.Sleep pauses the current thread for a specified period:

Thread.Sleep (TimeSpan.FromHours (1));  // Sleep for 1 hour
Thread.Sleep (500);                     // Sleep for 500 milliseconds

Thread.Sleep(0) relinquishes the thread’s current time slice immediately, voluntar‐
ily handing over the CPU to other threads. Thread.Yield() does the same thing
except that it relinquishes only to threads running on the same processor.

Sleep(0) or Yield is occasionally useful in production code
for advanced performance tweaks. It’s also an excellent diag‐
nostic tool for helping to uncover thread safety issues: if
inserting Thread.Yield() anywhere in your code breaks the
program, you almost certainly have a bug.

While waiting on a Sleep or Join, a thread is blocked.

Blocking
A thread is deemed blocked when its execution is paused for some reason, such
as when Sleeping or waiting for another to end via Join. A blocked thread immedi‐
ately yields its processor time slice, and from then on it consumes no processor time
until its blocking condition is satisfied. You can test for a thread being blocked via
its ThreadState property:

bool blocked = (someThread.ThreadState & ThreadState.WaitSleepJoin) != 0;
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ThreadState is a flags enum, combining three “layers” of
data in a bitwise fashion. Most values, however, are redun‐
dant, unused, or deprecated. The following extension method
strips a ThreadState to one of four useful values: Unstarted,
Running, WaitSleepJoin, and Stopped:

public static ThreadState Simplify (this ThreadState ts)
{
  return ts & (ThreadState.Unstarted |
               ThreadState.WaitSleepJoin |
               ThreadState.Stopped);
}

The ThreadState property is useful for diagnostic purposes
but unsuitable for synchronization, because a thread’s state
can change in between testing ThreadState and acting on that
information.

When a thread blocks or unblocks, the OS performs a context switch. This incurs a
small overhead, typically one or two microseconds.

I/O-bound versus compute-bound
An operation that spends most of its time waiting for something to happen is called
I/O-bound—an example is downloading a web page or calling Console.ReadLine.
(I/O-bound operations typically involve input or output, but this is not a hard
requirement: Thread.Sleep is also deemed I/O-bound.) In contrast, an operation
that spends most of its time performing CPU-intensive work is called compute-
bound.

Blocking versus spinning
An I/O-bound operation works in one of two ways: it either waits synchronously
on the current thread until the operation is complete (such as Console.ReadLine,
Thread.Sleep, or Thread.Join), or it operates asynchronously, firing a callback
when the operation finishes in the future (more on this later).

I/O-bound operations that wait synchronously spend most of their time blocking a
thread. They can also “spin” in a loop periodically:

while (DateTime.Now < nextStartTime)
  Thread.Sleep (100);

Leaving aside that there are better ways to do this (such as timers or signaling
constructs), another option is that a thread can spin continuously:

while (DateTime.Now < nextStartTime);

In general, this is very wasteful on processor time: as far as the CLR and OS are
concerned, the thread is performing an important calculation and thus is allocated
resources accordingly. In effect, we’ve turned what should be an I/O-bound opera‐
tion into a compute-bound operation.
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There are a couple of nuances with regard to spinning versus
blocking. First, spinning very briefly can be effective when you
expect a condition to be satisfied soon (perhaps within a few
microseconds) because it avoids the overhead and latency of a
context switch. .NET provides special methods and classes to
assist—see the online supplement “SpinLock and SpinWait”.
Second, blocking does not incur a zero cost. This is because
each thread ties up around 1 MB of memory for as long
as it lives and causes an ongoing administrative overhead
for the CLR and OS. For this reason, blocking can be trou‐
blesome in the context of heavily I/O-bound programs that
need to handle hundreds or thousands of concurrent opera‐
tions. Instead, such programs need to use a callback-based
approach, rescinding their thread entirely while waiting. This
is (in part) the purpose of the asynchronous patterns that we
discuss later.

Local Versus Shared State
The CLR assigns each thread its own memory stack so that local variables are kept
separate. In the next example, we define a method with a local variable and then call
the method simultaneously on the main thread and a newly created thread:

new Thread (Go).Start();      // Call Go() on a new thread
Go();                         // Call Go() on the main thread
 
void Go()
{
  // Declare and use a local variable - 'cycles'
  for (int cycles = 0; cycles < 5; cycles++) Console.Write ('?');
}

A separate copy of the cycles variable is created on each thread’s memory stack,
and so the output is, predictably, 10 question marks.

Threads share data if they have a common reference to the same object or variable:

bool _done = false;

new Thread (Go).Start();
Go();

void Go()
{
   if (!_done) { _done = true; Console.WriteLine ("Done"); }
}

Both threads share the _done variable, so “Done” is printed once instead of twice.

Local variables captured by a lambda expression can also be shared:

bool done = false;
ThreadStart action = () =>
{
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  if (!done) { done = true; Console.WriteLine ("Done"); }
};
new Thread (action).Start();
action();

More commonly, though, fields are used to share data between threads. In the
following example, both threads call Go() on the same ThreadTest instance, so they
share the same _done field:

var tt = new ThreadTest();
new Thread (tt.Go).Start();
tt.Go();

class ThreadTest 
{
  bool _done;

  public void Go()
  {
    if (!_done) { _done = true; Console.WriteLine ("Done"); }
  }
}

Static fields offer another way to share data between threads:

class ThreadTest 
{
  static bool _done;    // Static fields are shared between all threads
                        // in the same process.
  static void Main()
  {
    new Thread (Go).Start();
    Go();
  }
 
  static void Go()
  {
    if (!_done) { _done = true; Console.WriteLine ("Done"); }
  }
}

All four examples illustrate another key concept: that of thread safety (or rather,
lack of it!). The output is actually indeterminate: it’s possible (though unlikely) that
“Done” could be printed twice. If, however, we swap the order of statements in the
Go method, the odds of “Done” being printed twice go up dramatically:

static void Go()
{
  if (!_done) { Console.WriteLine ("Done"); _done = true; }
}

The problem is that one thread can be evaluating the if statement at exactly the same
time as the other thread is executing the WriteLine statement—before it’s had a
chance to set done to true.
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Our example illustrates one of many ways that shared writable
state can introduce the kind of intermittent errors for which
multithreading is notorious. Next, we look at how to fix our
program by locking; however, it’s better to avoid shared state
altogether where possible. We see later how asynchronous
programming patterns help with this.

Locking and Thread Safety
Locking and thread safety are large topics. For a full discus‐
sion, see “Exclusive Locking” on page 890 and “Locking and
Thread Safety” on page 898.

We can fix the previous example by obtaining an exclusive lock while reading and
writing to the shared field. C# provides the lock statement for just this purpose:

class ThreadSafe 
{
  static bool _done;
  static readonly object _locker = new object();
 
  static void Main()
  {
    new Thread (Go).Start();
    Go();
  }
 
  static void Go()
  {
    lock (_locker)
    {
      if (!_done) { Console.WriteLine ("Done"); _done = true; }
    }
  }
}

When two threads simultaneously contend a lock (which can be upon any
reference-type object; in this case, _locker), one thread waits, or blocks, until the
lock becomes available. In this case, it ensures that only one thread can enter its
code block at a time, and “Done” will be printed just once. Code that’s protected in
such a manner—from indeterminacy in a multithreaded context—is called thread
safe.

Even the act of autoincrementing a variable is not thread safe:
the expression x++ executes on the underlying processor as
distinct read-increment-write operations. So, if two threads
execute x++ at once outside a lock, the variable can end up
getting incremented once rather than twice (or worse, x could
be torn, ending up with a bitwise mixture of old and new
content, under certain conditions).
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Locking is not a silver bullet for thread safety—it’s easy to forget to lock around
accessing a field, and locking can create problems of its own (such as deadlocking).

A good example of when you might use locking is around accessing a shared in-
memory cache for frequently accessed database objects in an ASP.NET application.
This kind of application is simple to get right, and there’s no chance of deadlocking.
We give an example in “Thread Safety in Application Servers” on page 901.

Passing Data to a Thread
Sometimes, you’ll want to pass arguments to the thread’s startup method. The
easiest way to do this is with a lambda expression that calls the method with the
desired arguments:

Thread t = new Thread ( () => Print ("Hello from t!") );
t.Start();

void Print (string message) => Console.WriteLine (message);

With this approach, you can pass in any number of arguments to the method. You
can even wrap the entire implementation in a multistatement lambda:

new Thread (() =>
{
  Console.WriteLine ("I'm running on another thread!");
  Console.WriteLine ("This is so easy!");
}).Start();

An alternative (and less flexible) technique is to pass an argument into Thread’s
Start method:

Thread t = new Thread (Print);
t.Start ("Hello from t!");

void Print (object messageObj)
{
  string message = (string) messageObj;   // We need to cast here
  Console.WriteLine (message);
}

This works because Thread’s constructor is overloaded to accept either of two
delegates:

public delegate void ThreadStart();
public delegate void ParameterizedThreadStart (object obj);

Lambda expressions and captured variables
As we saw, a lambda expression is the most convenient and powerful way to
pass data to a thread. However, you must be careful about accidentally modifying
captured variables after starting the thread. For instance, consider the following:

for (int i = 0; i < 10; i++)
  new Thread (() => Console.Write (i)).Start();
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The output is nondeterministic! Here’s a typical result:

0223557799

The problem is that the i variable refers to the same memory location throughout
the loop’s lifetime. Therefore, each thread calls Console.Write on a variable whose
value can change as it is running! The solution is to use a temporary variable as
follows:

for (int i = 0; i < 10; i++)
{
  int temp = i;
  new Thread (() => Console.Write (temp)).Start();
}

Each of the digits 0 to 9 is then written exactly once. (The ordering is still undefined
because threads can start at indeterminate times.)

This is analogous to the problem we described in “Captured
Variables” on page 434. The problem is just as much about
C#’s rules for capturing variables in for loops as it is about
multithreading.

Variable temp is now local to each loop iteration. Therefore, each thread captures a
different memory location and there’s no problem. We can illustrate the problem in
the earlier code more simply with the following example:

string text = "t1";
Thread t1 = new Thread ( () => Console.WriteLine (text) );

text = "t2";
Thread t2 = new Thread ( () => Console.WriteLine (text) );

t1.Start(); t2.Start();

Because both lambda expressions capture the same text variable, t2 is printed twice.

Exception Handling
Any try/catch/finally blocks in effect when a thread is created are of no relevance
to the thread when it starts executing. Consider the following program:

try
{
  new Thread (Go).Start();
}
catch (Exception ex)
{
  // We'll never get here!
  Console.WriteLine ("Exception!");
}

void Go() { throw null; }   // Throws a NullReferenceException
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The try/catch statement in this example is ineffective, and the newly created thread
will be encumbered with an unhandled NullReferenceException. This behavior
makes sense when you consider that each thread has an independent execution
path.

The remedy is to move the exception handler into the Go method:

new Thread (Go).Start();

void Go()
{
  try
  {
    ...
    throw null;    // The NullReferenceException will get caught below
    ...
  }
  catch (Exception ex)
  {
    // Typically log the exception and/or signal another thread
    // that we've come unstuck
    ...
  }
}

You need an exception handler on all thread entry methods in production applica‐
tions—just as you do (usually at a higher level, in the execution stack) on your main
thread. An unhandled exception causes the whole application to shut down—with
an ugly dialog box!

In writing such exception handling blocks, rarely would you
ignore the error: typically, you’d log the details of the excep‐
tion. For a client application, you might display a dialog box
allowing the user to automatically submit those details to your
web server. You then might choose to restart the application,
because it’s possible that an unexpected exception might leave
your program in an invalid state.

Centralized exception handling
In WPF, UWP, and Windows Forms applications, you can subscribe to “global”
exception handling events, Application.DispatcherUnhandledException and
Application.ThreadException, respectively. These fire after an unhandled excep‐
tion in any part of your program that’s called via the message loop (this amounts to
all code that runs on the main thread while the Application is active). This is useful
as a backstop for logging and reporting bugs (although it won’t fire for unhandled
exceptions on worker threads that you create). Handling these events prevents the
program from shutting down, although you may choose to restart the application
to avoid the potential corruption of state that can follow from (or that led to) the
unhandled exception.
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Foreground Versus Background Threads
By default, threads you create explicitly are foreground threads. Foreground threads
keep the application alive for as long as any one of them is running, whereas
background threads do not. After all foreground threads finish, the application ends,
and any background threads still running abruptly terminate.

A thread’s foreground/background status has no relation to its
priority (allocation of execution time).

You can query or change a thread’s background status using its IsBackground
property:

static void Main (string[] args)
{
  Thread worker = new Thread ( () => Console.ReadLine() );
  if (args.Length > 0) worker.IsBackground = true;
  worker.Start();
}

If this program is called with no arguments, the worker thread assumes foreground
status and will wait on the ReadLine statement for the user to press Enter.
Meanwhile, the main thread exits, but the application keeps running because a
foreground thread is still alive. On the other hand, if an argument is passed to
Main(), the worker is assigned background status, and the program exits almost
immediately as the main thread ends (terminating the ReadLine).

When a process terminates in this manner, any finally blocks in the execution
stack of background threads are circumvented. If your program employs finally
(or using) blocks to perform cleanup work such as deleting temporary files, you can
avoid this by explicitly waiting out such background threads upon exiting an appli‐
cation, either by joining the thread or with a signaling construct (see “Signaling”
on page 643). In either case, you should specify a timeout, so you can abandon
a renegade thread should it refuse to finish; otherwise your application will fail to
close without the user having to enlist help from the Task Manager (or on Unix, the
kill command).

Foreground threads don’t require this treatment, but you must take care to avoid
bugs that could cause the thread not to end. A common cause for applications
failing to exit properly is the presence of active foreground threads.

Thread Priority
A thread’s Priority property determines how much execution time it is allotted
relative to other active threads in the OS, on the following scale:

enum ThreadPriority { Lowest, BelowNormal, Normal, AboveNormal, Highest }

This becomes relevant when multiple threads are simultaneously active. You need
to take care when elevating a thread’s priority because it can starve other threads. If
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you want a thread to have higher priority than threads in other processes, you must
also elevate the process priority using the Process class in System.Diagnostics:

using Process p = Process.GetCurrentProcess();
p.PriorityClass = ProcessPriorityClass.High;

This can work well for non-UI processes that do minimal work and need low
latency (the ability to respond very quickly) in the work they do. With compute-
hungry applications (particularly those with a user interface), elevating process
priority can starve other processes, slowing down the entire computer.

Signaling
Sometimes, you need a thread to wait until receiving notification(s) from other
thread(s). This is called signaling. The simplest signaling construct is ManualReset
Event. Calling WaitOne on a ManualResetEvent blocks the current thread until
another thread “opens” the signal by calling Set. In the following example, we start
up a thread that waits on a ManualResetEvent. It remains blocked for two seconds
until the main thread signals it:

var signal = new ManualResetEvent (false);

new Thread (() =>
{
  Console.WriteLine ("Waiting for signal...");
  signal.WaitOne();
  signal.Dispose();
  Console.WriteLine ("Got signal!");
}).Start();

Thread.Sleep(2000);
signal.Set();        // “Open” the signal

After calling Set, the signal remains open; you can close it again by calling Reset.

ManualResetEvent is one of several signaling constructs provided by the CLR; we
cover all of them in detail in Chapter 21.

Threading in Rich Client Applications
In WPF, UWP, and Windows Forms applications, executing long-running opera‐
tions on the main thread makes the application unresponsive because the main
thread also processes the message loop that performs rendering and handles key‐
board and mouse events.

A popular approach is to start up “worker” threads for time-consuming operations.
The code on a worker thread runs a time-consuming operation and then updates
the UI when complete. However, all rich client applications have a threading model
whereby UI elements and controls can be accessed only from the thread that created
them (typically the main UI thread). Violating this causes either unpredictable
behavior or an exception to be thrown.
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Hence when you want to update the UI from a worker thread, you must forward
the request to the UI thread (the technical term is marshal). The low-level way to do
this is as follows (later, we discuss other solutions that build on these):

• In WPF, call BeginInvoke or Invoke on the element’s Dispatcher object.•

• In UWP apps, call RunAsync or Invoke on the Dispatcher object.•

• In Windows Forms, call BeginInvoke or Invoke on the control.•

All of these methods accept a delegate referencing the method you want to run.
BeginInvoke/RunAsync work by enqueuing the delegate to the UI thread’s message
queue (the same queue that handles keyboard, mouse, and timer events). Invoke
does the same thing but then blocks until the message has been read and processed
by the UI thread. Because of this, Invoke lets you get a return value back from the
method. If you don’t need a return value, BeginInvoke/RunAsync are preferable in
that they don’t block the caller and don’t introduce the possibility of deadlock (see
“Deadlocks” on page 896).

You can imagine that when you call Application.Run, the
following pseudo-code executes:

while (!thisApplication.Ended)
{
  wait for something to appear in message queue
  Got something: what kind of message is it?
    Keyboard/mouse message -> fire an event handler
    User BeginInvoke message -> execute delegate
    User Invoke message -> execute delegate & post result
}

It’s this kind of loop that enables a worker thread to marshal a
delegate for execution onto the UI thread.

To demonstrate, suppose that we have a WPF window that contains a text box called
txtMessage, whose content we want a worker thread to update after performing a
time-consuming task (which we will simulate by calling Thread.Sleep). Here’s how
we’d do it:

partial class MyWindow : Window
{
  public MyWindow()
  {
    InitializeComponent();
    new Thread (Work).Start();
  }

  void Work()
  {
    Thread.Sleep (5000);           // Simulate time-consuming task
    UpdateMessage ("The answer");
  }

  void UpdateMessage (string message)
  {
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    Action action = () => txtMessage.Text = message;
    Dispatcher.BeginInvoke (action);
  }
}

Multiple UI Threads
It’s possible to have multiple UI threads if they each own different windows. The
main scenario is when you have an application with multiple top-level windows,
often called a Single Document Interface (SDI) application, such as Microsoft Word.
Each SDI window typically shows itself as a separate “application” on the taskbar
and is mostly isolated, functionally, from other SDI windows. By giving each such
window its own UI thread, each window can be made more responsive with respect
to the others.

Running this results in a responsive window appearing immediately. Five seconds
later, it updates the textbox. The code is similar for Windows Forms, except that we
call the (Form’s) BeginInvoke method instead:

  void UpdateMessage (string message)
  {
    Action action = () => txtMessage.Text = message;
    this.BeginInvoke (action);
  }

Synchronization Contexts
In the System.ComponentModel namespace, there’s a class called Synchronization
Context, which enables the generalization of thread marshaling.

The rich-client APIs for mobile and desktop (UWP, WPF, and Windows Forms)
each define and instantiate SynchronizationContext subclasses, which you can
obtain via the static property SynchronizationContext.Current (while running on
a UI thread). Capturing this property lets you later “post” to UI controls from a
worker thread:

partial class MyWindow : Window
{
  SynchronizationContext _uiSyncContext;

  public MyWindow()
  {
    InitializeComponent();
    // Capture the synchronization context for the current UI thread:
    _uiSyncContext = SynchronizationContext.Current;
    new Thread (Work).Start();
  }

  void Work()
  {
    Thread.Sleep (5000);           // Simulate time-consuming task
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    UpdateMessage ("The answer");
  }

  void UpdateMessage (string message)
  {
    // Marshal the delegate to the UI thread:
    _uiSyncContext.Post (_ => txtMessage.Text = message, null);
  }
}

This is useful because the same technique works with all rich-client user interface
APIs.

Calling Post is equivalent to calling BeginInvoke on a Dispatcher or Control;
there’s also a Send method that is equivalent to Invoke.

The Thread Pool
Whenever you start a thread, a few hundred microseconds are spent organizing
such things as a fresh local variable stack. The thread pool cuts this overhead by hav‐
ing a pool of pre-created recyclable threads. Thread pooling is essential for efficient
parallel programming and fine-grained concurrency; it allows short operations to
run without being overwhelmed with the overhead of thread startup.

There are a few things to be wary of when using pooled threads:

• You cannot set the Name of a pooled thread, making debugging more difficult•
(although you can attach a description when debugging in Visual Studio’s
Threads window).

• Pooled threads are always background threads.•
• Blocking pooled threads can degrade performance (see “Hygiene in the thread•

pool” on page 647).

You are free to change the priority of a pooled thread—it will be restored to normal
when released back to the pool.

You can determine whether you’re currently executing on a pooled thread via the
property Thread.CurrentThread.IsThreadPoolThread.

Entering the thread pool
The easiest way to explicitly run something on a pooled thread is to use Task.Run
(we cover this in more detail in the following section):

// Task is in System.Threading.Tasks
Task.Run (() => Console.WriteLine ("Hello from the thread pool"));

Because tasks didn’t exist prior to .NET Framework 4.0, a common alternative is to
call ThreadPool.QueueUserWorkItem:

ThreadPool.QueueUserWorkItem (notUsed => Console.WriteLine ("Hello"));
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The following use the thread pool implicitly:

• ASP.NET Core and Web API application servers•

• System.Timers.Timer and System.Threading.Timer•

• The parallel programming constructs that we describe in•
Chapter 22

• The (legacy) BackgroundWorker class•

Hygiene in the thread pool
The thread pool serves another function, which is to ensure that a temporary excess
of compute-bound work does not cause CPU oversubscription. Oversubscription is
the condition of there being more active threads than CPU cores, with the OS hav‐
ing to time-slice threads. Oversubscription hurts performance because time-slicing
requires expensive context switches and can invalidate the CPU caches that have
become essential in delivering performance to modern processors.

The CLR prevents oversubscription in the thread pool by queuing tasks and throt‐
tling their startup. It begins by running as many concurrent tasks as there are
hardware cores, and then tunes the level of concurrency via a hill-climbing algo‐
rithm, continually adjusting the workload in a particular direction. If throughput
improves, it continues in the same direction (otherwise it reverses). This ensures
that it always tracks the optimal performance curve—even in the face of competing
process activity on the computer.

The CLR’s strategy works best if two conditions are met:

• Work items are mostly short-running (< 250 ms, or ideally < 100 ms) so that•
the CLR has plenty of opportunities to measure and adjust.

• Jobs that spend most of their time blocked do not dominate the pool.•

Blocking is troublesome because it gives the CLR the false idea that it’s loading up
the CPU. The CLR is smart enough to detect and compensate (by injecting more
threads into the pool), although this can make the pool vulnerable to subsequent
oversubscription. It also can introduce latency because the CLR throttles the rate at
which it injects new threads, particularly early in an application’s life (more so on
client operating systems where it favors lower resource consumption).

Maintaining good hygiene in the thread pool is particularly relevant when you want
to fully utilize the CPU (e.g., via the parallel programming APIs in Chapter 22).
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Tasks
A thread is a low-level tool for creating concurrency, and as such, it has limitations,
particularly the following:

• Although it’s easy to pass data into a thread that you start, there’s no easy way•
to get a “return value” back from a thread that you Join. You need to set up
some kind of shared field. And if the operation throws an exception, catching
and propagating that exception is equally painful.

• You can’t tell a thread to start something else when it’s finished; instead you•
must Join it (blocking your own thread in the process).

These limitations discourage fine-grained concurrency; in other words, they make
it difficult to compose larger concurrent operations by combining smaller ones
(something essential for the asynchronous programming that we look at in follow‐
ing sections). This in turn leads to greater reliance on manual synchronization
(locking, signaling, and so on) and the problems that go with it.

The direct use of threads also has performance implications that we discussed
in “The Thread Pool” on page 646. And should you need to run hundreds or
thousands of concurrent I/O-bound operations, a thread-based approach consumes
hundreds or thousands of megabytes of memory purely in thread overhead.

The Task class helps with all of these problems. Compared to a thread, a Task is
higher-level abstraction—it represents a concurrent operation that might or might
not be backed by a thread. Tasks are compositional (you can chain them together
through the use of continuations). They can use the thread pool to lessen startup
latency, and with a TaskCompletionSource, they can employ a callback approach
that avoids threads altogether while waiting on I/O-bound operations.

The Task types were introduced in Framework 4.0 as part of the parallel program‐
ming library. However, they have since been enhanced (through the use of awaiters)
to play equally well in more general concurrency scenarios and are backing types for
C#’s asynchronous functions.

In this section, we ignore the features of tasks that are aimed
specifically at parallel programming; we cover them instead in
Chapter 22.

Starting a Task
The easiest way to start a Task backed by a thread is with the static method
Task.Run (the Task class is in the System.Threading.Tasks namespace). Simply
pass in an Action delegate:

Task.Run (() => Console.WriteLine ("Foo"));
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Tasks use pooled threads by default, which are background
threads. This means that when the main thread ends, so do
any tasks that you create. Hence, to run these examples from
a console application, you must block the main thread after
starting the task (for instance, by Waiting the task or by call‐
ing Console.ReadLine):

Task.Run (() => Console.WriteLine ("Foo"));
Console.ReadLine();

In the book’s LINQPad companion samples, Console.Read
Line is omitted because the LINQPad process keeps back‐
ground threads alive.

Calling Task.Run in this manner is similar to starting a thread as follows (except for
the thread pooling implications that we discuss shortly):

new Thread (() => Console.WriteLine ("Foo")).Start();

Task.Run returns a Task object that we can use to monitor its progress, rather like
a Thread object. (Notice, however, that we didn’t call Start after calling Task.Run
because this method creates “hot” tasks; you can instead use Task’s constructor to
create “cold” tasks, although this is rarely done in practice.)

You can track a task’s execution status via its Status property.

Wait
Calling Wait on a task blocks until it completes and is the equivalent of calling Join
on a thread:

Task task = Task.Run (() =>
{
  Thread.Sleep (2000);
  Console.WriteLine ("Foo");
});
Console.WriteLine (task.IsCompleted);  // False
task.Wait();  // Blocks until task is complete

Wait lets you optionally specify a timeout and a cancellation token to end the wait
early (see “Cancellation” on page 681).

Long-running tasks
By default, the CLR runs tasks on pooled threads, which is ideal for short-running
compute-bound work. For longer-running and blocking operations (such as our
preceding example), you can prevent use of a pooled thread as follows:

Task task = Task.Factory.StartNew (() => ...,
                                   TaskCreationOptions.LongRunning);

Tasks | 649

C
o

ncurrency and
A

synchro
ny



Running one long-running task on a pooled thread won’t
cause trouble; it’s when you run multiple long-running tasks
in parallel (particularly ones that block) that performance can
suffer. And in that case, there are usually better solutions than
TaskCreationOptions.LongRunning:

• If the tasks are I/O bound, TaskCompletionSource and•
asynchronous functions let you implement concurrency
with callbacks (continuations) instead of threads.

• If the tasks are compute bound, a producer/consumer•
queue lets you throttle the concurrency for those tasks,
avoiding starvation for other threads and processes (see
“Writing a Producer/Consumer Queue” on page 970).

Returning Values
Task has a generic subclass called Task<TResult>, which allows a task to emit a
return value. You can obtain a Task<TResult> by calling Task.Run with a Func
<TResult> delegate (or a compatible lambda expression) instead of an Action:

Task<int> task = Task.Run (() => { Console.WriteLine ("Foo"); return 3; });
// ...

You can obtain the result later by querying the Result property. If the task hasn’t yet
finished, accessing this property will block the current thread until the task finishes:

int result = task.Result;      // Blocks if not already finished
Console.WriteLine (result);    // 3

In the following example, we create a task that uses LINQ to count the number of
prime numbers in the first three million (+2) integers:

Task<int> primeNumberTask = Task.Run (() =>
  Enumerable.Range (2, 3000000).Count (n => 
    Enumerable.Range (2, (int)Math.Sqrt(n)-1).All (i => n % i > 0)));

Console.WriteLine ("Task running...");
Console.WriteLine ("The answer is " + primeNumberTask.Result);

This writes “Task running...” and then a few seconds later writes the answer of
216816.

Task<TResult> can be thought of as a “future,” in that it
encapsulates a Result that becomes available later in time.

Exceptions
Unlike with threads, tasks conveniently propagate exceptions. So, if the code in
your task throws an unhandled exception (in other words, if your task faults),
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that exception is automatically rethrown to whoever calls Wait()—or accesses the
Result property of a Task<TResult>:

// Start a Task that throws a NullReferenceException:
Task task = Task.Run (() => { throw null; });
try 
{
  task.Wait();
}
catch (AggregateException aex)
{
  if (aex.InnerException is NullReferenceException)
    Console.WriteLine ("Null!");
  else
    throw;
}

(The CLR wraps the exception in an AggregateException in order to play well with
parallel programming scenarios; we discuss this in Chapter 22.)

You can test for a faulted task without rethrowing the exception via the IsFaulted
and IsCanceled properties of the Task. If both properties return false, no error
occurred; if IsCanceled is true, an OperationCanceledException was thrown for
that task (see “Cancellation” on page 941); if IsFaulted is true, another type of
exception was thrown, and the Exception property will indicate the error.

Exceptions and autonomous tasks
With autonomous “set-and-forget” tasks (those for which you don’t rendezvous
via Wait() or Result, or a continuation that does the same), it’s good practice to
explicitly exception-handle the task code to avoid silent failure, just as you would
with a thread.

Ignoring exceptions is fine when an exception solely indicates
a failure to obtain a result that you’re no longer interested in.
For example, if a user cancels a request to download a web
page, we wouldn’t care if it turns out that the web page didn’t
exist.
Ignoring exceptions is problematic when an exception indi‐
cates a bug in your program, for two reasons:

• The bug may have left your program in an invalid state.•

• More exceptions may occur later as a result of the bug,•
and failure to log the initial error can make diagnosis
difficult.

You can subscribe to unobserved exceptions at a global level via the static event
TaskScheduler.UnobservedTaskException; handling this event and logging the
error can make good sense.
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There are a couple of interesting nuances on what counts as unobserved:

• Tasks waited upon with a timeout will generate an unobserved exception if the•
fault occurs after the timeout interval.

• The act of checking a task’s Exception property after it has faulted makes the•
exception “observed.”

Continuations
A continuation says to a task, “When you’ve finished, continue by doing something
else.” A continuation is usually implemented by a callback that executes once upon
completion of an operation. There are two ways to attach a continuation to a task.
The first is particularly significant because it’s used by C#’s asynchronous functions,
as you’ll see soon. We can demonstrate it with the prime number counting task that
we wrote a short while ago in “Returning Values” on page 650:

Task<int> primeNumberTask = Task.Run (() =>
  Enumerable.Range (2, 3000000).Count (n => 
    Enumerable.Range (2, (int)Math.Sqrt(n)-1).All (i => n % i > 0)));

var awaiter = primeNumberTask.GetAwaiter();
awaiter.OnCompleted (() => 
{
  int result = awaiter.GetResult();
  Console.WriteLine (result);       // Writes result
});

Calling GetAwaiter on the task returns an awaiter object whose OnCompleted
method tells the antecedent task (primeNumberTask) to execute a delegate when
it finishes (or faults). It’s valid to attach a continuation to an already-completed task,
in which case the continuation will be scheduled to execute right away.

An awaiter is any object that exposes the two methods that
we’ve just seen (OnCompleted and GetResult) and a Boolean
property called IsCompleted. There’s no interface or base class
to unify all of these members (although OnCompleted is part of
the interface INotifyCompletion). We explain the significance
of the pattern in “Asynchronous Functions in C#” on page
661.

If an antecedent task faults, the exception is rethrown when the continuation code
calls awaiter.GetResult(). Rather than calling GetResult, we could simply access
the Result property of the antecedent. The benefit of calling GetResult is that if
the antecedent faults, the exception is thrown directly without being wrapped in
AggregateException, allowing for simpler and cleaner catch blocks.

For nongeneric tasks, GetResult() has a void return value. Its useful function is
then solely to rethrow exceptions.
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If a synchronization context is present, OnCompleted automatically captures it and
posts the continuation to that context. This is very useful in rich client applications
because it bounces the continuation back to the UI thread. In writing libraries, how‐
ever, it’s not usually desirable because the relatively expensive UI-thread-bounce
should occur just once upon leaving the library rather than between method calls.
Hence, you can defeat it by using the ConfigureAwait method:

var awaiter = primeNumberTask.ConfigureAwait (false).GetAwaiter();

If no synchronization context is present—or you use ConfigureAwait(false)—the
continuation will (in general) execute on a pooled thread.

The other way to attach a continuation is by calling the task’s ContinueWith
method:

primeNumberTask.ContinueWith (antecedent => 
{
  int result = antecedent.Result;
  Console.WriteLine (result);          // Writes 123
});

ContinueWith itself returns a Task, which is useful if you want to attach further
continuations. However, you must deal directly with AggregateException if the
task faults, and write extra code to marshal the continuation in UI applications
(see “Task Schedulers” on page 962). And in non-UI contexts, you must specify
TaskContinuationOptions.ExecuteSynchronously if you want the continuation to
execute on the same thread; otherwise it will bounce to the thread pool. Continue
With is particularly useful in parallel programming scenarios; we cover it in detail in
Chapter 22.

TaskCompletionSource
We’ve seen how Task.Run creates a task that runs a delegate on a pooled (or
non-pooled) thread. Another way to create a task is with TaskCompletionSource.

TaskCompletionSource lets you create a task out of any operation that completes
in the future. It works by giving you a “slave” task that you manually drive—by
indicating when the operation finishes or faults. This is ideal for I/O-bound work:
you get all the benefits of tasks (with their ability to propagate return values,
exceptions, and continuations) without blocking a thread for the duration of the
operation.

To use TaskCompletionSource, you simply instantiate the class. It exposes a Task
property that returns a task upon which you can wait and attach continuations—
just as with any other task. The task, however, is controlled entirely by the Task
CompletionSource object via the following methods:

public class TaskCompletionSource<TResult>
{
  public void SetResult (TResult result);
  public void SetException (Exception exception);

Tasks | 653

C
o

ncurrency and
A

synchro
ny



  public void SetCanceled();

  public bool TrySetResult (TResult result);
  public bool TrySetException (Exception exception);
  public bool TrySetCanceled();
  public bool TrySetCanceled (CancellationToken cancellationToken);
  ...
}

Calling any of these methods signals the task, putting it into a completed, faulted,
or canceled state (we cover the latter in the section “Cancellation” on page 681).
You’re supposed to call one of these methods exactly once: if called again, Set
Result, SetException, or SetCanceled will throw an exception, whereas the Try*
methods return false.

The following example prints 42 after waiting for five seconds:

var tcs = new TaskCompletionSource<int>();

new Thread (() => { Thread.Sleep (5000); tcs.SetResult (42); })
  { IsBackground = true }
  .Start();

Task<int> task = tcs.Task;         // Our "slave" task.
Console.WriteLine (task.Result);   // 42

With TaskCompletionSource, we can write our own Run method:

Task<TResult> Run<TResult> (Func<TResult> function)
{
  var tcs = new TaskCompletionSource<TResult>();
  new Thread (() => 
  {
    try { tcs.SetResult (function()); }
    catch (Exception ex) { tcs.SetException (ex); }
  }).Start();
  return tcs.Task;
}
...
Task<int> task = Run (() => { Thread.Sleep (5000); return 42; });

Calling this method is equivalent to calling Task.Factory.StartNew with the Task
CreationOptions.LongRunning option to request a nonpooled thread.

The real power of TaskCompletionSource is in creating tasks that don’t tie up
threads. For instance, consider a task that waits for five seconds and then returns
the number 42. We can write this without a thread by using the Timer class, which,
with the help of the CLR (and in turn, the OS), fires an event in x milliseconds (we
revisit timers in Chapter 21):

Task<int> GetAnswerToLife()
{
  var tcs = new TaskCompletionSource<int>();
  // Create a timer that fires once in 5000 ms:
  var timer = new System.Timers.Timer (5000) { AutoReset = false };
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  timer.Elapsed += delegate { timer.Dispose(); tcs.SetResult (42); };
  timer.Start();
  return tcs.Task;
}

Hence, our method returns a task that completes five seconds later, with a result of
42. By attaching a continuation to the task, we can write its result without blocking
any thread:

var awaiter = GetAnswerToLife().GetAwaiter();
awaiter.OnCompleted (() => Console.WriteLine (awaiter.GetResult()));

We could make this more useful and turn it into a general-purpose Delay method
by parameterizing the delay time and getting rid of the return value. This means
having it return a Task instead of a Task<int>. However, there’s no nongeneric
version of TaskCompletionSource, which means we can’t directly create a nongene‐
ric Task. The workaround is simple: because Task<TResult> derives from Task,
we create a TaskCompletionSource<anything> and then implicitly convert the
Task<anything> that it gives you into a Task, like this:

var tcs = new TaskCompletionSource<object>();
Task task = tcs.Task;

Now we can write our general-purpose Delay method:

Task Delay (int milliseconds)
{
  var tcs = new TaskCompletionSource<object>();
  var timer = new System.Timers.Timer (milliseconds) { AutoReset = false };
  timer.Elapsed += delegate { timer.Dispose(); tcs.SetResult (null); };
  timer.Start();
  return tcs.Task;
}

.NET 5 introduces a nongeneric TaskCompletionSource, so if
you’re targeting .NET 5 or above, you can substitute TaskCom
pletionSource<object> for TaskCompletionSource.

Here’s how we can use it to write “42” after five seconds:

Delay (5000).GetAwaiter().OnCompleted (() => Console.WriteLine (42));

Our use of TaskCompletionSource without a thread means that a thread is engaged
only when the continuation starts, five seconds later. We can demonstrate this by
starting 10,000 of these operations at once without error or excessive resource
consumption:

for (int i = 0; i < 10000; i++)
  Delay (5000).GetAwaiter().OnCompleted (() => Console.WriteLine (42));
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Timers fire their callbacks on pooled threads, so after five
seconds, the thread pool will receive 10,000 requests to call
SetResult(null) on a TaskCompletionSource. If the requests
arrive faster than they can be processed, the thread pool will
respond by enqueuing and then processing them at the opti‐
mum level of parallelism for the CPU. This is ideal if the
thread-bound jobs are short running, which is true in this
case: the thread-bound job is merely the call to SetResult
plus either the action of posting the continuation to the syn‐
chronization context (in a UI application) or otherwise the
continuation itself (Console.WriteLine(42)).

Task.Delay
The Delay method that we just wrote is sufficiently useful that it’s available as a
static method on the Task class:

Task.Delay (5000).GetAwaiter().OnCompleted (() => Console.WriteLine (42));

or:

Task.Delay (5000).ContinueWith (ant => Console.WriteLine (42));

Task.Delay is the asynchronous equivalent of Thread.Sleep.

Principles of Asynchrony
In demonstrating TaskCompletionSource, we ended up writing asynchronous meth‐
ods. In this section, we define exactly what asynchronous operations are and explain
how this leads to asynchronous programming.

Synchronous Versus Asynchronous Operations
A synchronous operation does its work before returning to the caller.

An asynchronous operation can do (most or all of) its work after returning to the
caller.

The majority of methods that you write and call are synchronous. An example
is List<T>.Add, or Console.WriteLine, or Thread.Sleep. Asynchronous methods
are less common and initiate concurrency, because work continues in parallel to
the caller. Asynchronous methods typically return quickly (or immediately) to the
caller; thus, they are also called nonblocking methods.

Most of the asynchronous methods that we’ve seen so far can be described as
general-purpose methods:

• Thread.Start•

• Task.Run•
• Methods that attach continuations to tasks•
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In addition, some of the methods that we discussed in “Synchronization Contexts”
on page 645 (Dispatcher.BeginInvoke, Control.BeginInvoke, and Synchroniza
tionContext.Post) are asynchronous, as are the methods that we wrote in “Task‐
CompletionSource” on page 653, including Delay.

What Is Asynchronous Programming?
The principle of asynchronous programming is that you write long-running (or
potentially long-running) functions asynchronously. This is in contrast to the con‐
ventional approach of writing long-running functions synchronously, and then
calling those functions from a new thread or task to introduce concurrency as
required.

The difference with the asynchronous approach is that concurrency is initiated
inside the long-running function rather than from outside the function. This has
two benefits:

• I/O-bound concurrency can be implemented without tying up threads (as we•
demonstrate in “TaskCompletionSource” on page 653), improving scalability
and efficiency.

• Rich-client applications end up with less code on worker threads, simplifying•
thread safety.

This, in turn, leads to two distinct uses for asynchronous programming. The first
is writing (typically server-side) applications that deal efficiently with a lot of
concurrent I/O. The challenge here is not thread safety (because there’s usually
minimal shared state) but thread efficiency; in particular, not consuming a thread
per network request. So, in this context, it’s only I/O-bound operations that benefit
from asynchrony.

The second use is to simplify thread-safety in rich-client applications. This is par‐
ticularly relevant as a program grows in size, because to deal with complexity, we
typically refactor larger methods into smaller ones, resulting in chains of methods
that call one another (call graphs).

With a traditional synchronous call graph, if any operation within the graph is
long-running, we must run the entire call graph on a worker thread to maintain
a responsive UI. Hence, we end up with a single concurrent operation that spans
many methods (coarse-grained concurrency), and this requires considering thread-
safety for every method in the graph.

With an asynchronous call graph, we need not start a thread until it’s actually
needed, typically low in the graph (or not at all in the case of I/O-bound opera‐
tions). All other methods can run entirely on the UI thread, with much-simplified
thread safety. This results in fine-grained concurrency—a sequence of small concur‐
rent operations, between which execution bounces to the UI thread.
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To benefit from this, both I/O- and compute-bound opera‐
tions need to be written asynchronously; a good rule of thumb
is to include anything that might take longer than 50 ms.
(On the flipside, excessively fine-grained asynchrony can hurt
performance, because asynchronous operations incur an over‐
head—see “Optimizations” on page 677.)

In this chapter, we focus mostly on the rich-client scenario, which is the more
complex of the two. In Chapter 16, we give two examples that illustrate the I/O-
bound scenario (see “Concurrency with TCP” on page 762 and “Writing an HTTP
Server” on page 755).

The UWP framework encourages asynchronous program‐
ming to the point where synchronous versions of some long-
running methods are either not exposed or throw exceptions.
Instead, you must call asynchronous methods that return
tasks (or objects that can be converted into tasks via the
AsTask extension method).

Asynchronous Programming and Continuations
Tasks are ideally suited to asynchronous programming, because they support con‐
tinuations, which are essential for asynchrony (consider the Delay method that we
wrote in “TaskCompletionSource” on page 653). In writing Delay, we used TaskCom
pletionSource, which is a standard way to implement “bottom-level” I/O-bound
asynchronous methods.

For compute-bound methods, we use Task.Run to initiate thread-bound concur‐
rency. Simply by returning the task to the caller, we create an asynchronous method.
What distinguishes asynchronous programming is that we aim to do so lower in the
call graph so that in rich-client applications, higher-level methods can remain on
the UI thread and access controls and shared state without thread-safety issues. To
illustrate, consider the following method that computes and counts prime numbers,
using all available cores (we discuss ParallelEnumerable in Chapter 22):

int GetPrimesCount (int start, int count)
{
  return
    ParallelEnumerable.Range (start, count).Count (n => 
      Enumerable.Range (2, (int)Math.Sqrt(n)-1).All (i => n % i > 0));
}

The details of how this works are unimportant; what matters is that it can take a
while to run. We can demonstrate this by writing another method to call it:

void DisplayPrimeCounts()
{
  for (int i = 0; i < 10; i++)
    Console.WriteLine (GetPrimesCount (i*1000000 + 2, 1000000) +
      " primes between " + (i*1000000) + " and " + ((i+1)*1000000-1));
  Console.WriteLine ("Done!");
}
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Here’s the output:

78498 primes between 0 and 999999
70435 primes between 1000000 and 1999999
67883 primes between 2000000 and 2999999
66330 primes between 3000000 and 3999999
65367 primes between 4000000 and 4999999
64336 primes between 5000000 and 5999999
63799 primes between 6000000 and 6999999
63129 primes between 7000000 and 7999999
62712 primes between 8000000 and 8999999
62090 primes between 9000000 and 9999999

Now we have a call graph, with DisplayPrimeCounts calling GetPrimesCount. The
former uses Console.WriteLine for simplicity, although in reality it would more
likely be updating UI controls in a rich-client application, as we demonstrate later.
We can initiate coarse-grained concurrency for this call graph as follows:

Task.Run (() => DisplayPrimeCounts());

With a fine-grained asynchronous approach, we instead start by writing an asyn‐
chronous version of GetPrimesCount:

Task<int> GetPrimesCountAsync (int start, int count)
{
  return Task.Run (() =>
    ParallelEnumerable.Range (start, count).Count (n => 
      Enumerable.Range (2, (int) Math.Sqrt(n)-1).All (i => n % i > 0)));
}

Why Language Support Is Important
Now we must modify DisplayPrimeCounts so that it calls GetPrimesCountAsync.
This is where C#’s await and async keywords come into play, because to do so
otherwise is trickier than it sounds. If we simply modify the loop as follows:

for (int i = 0; i < 10; i++)
{
  var awaiter = GetPrimesCountAsync (i*1000000 + 2, 1000000).GetAwaiter();
  awaiter.OnCompleted (() =>
    Console.WriteLine (awaiter.GetResult() + " primes between... "));
}
Console.WriteLine ("Done");

the loop will rapidly spin through 10 iterations (the methods being nonblocking),
and all 10 operations will execute in parallel (followed by a premature “Done”).
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Executing these tasks in parallel is undesirable in this case
because their internal implementations are already parallel‐
ized; it will only make us wait longer to see the first results
(and muck up the ordering).
There is a much more common reason, however, for need‐
ing to serialize the execution of tasks, which is that Task B
depends on the result of Task A. For example, in fetching a
web page, a DNS lookup must precede the HTTP request.

To get them running sequentially, we must trigger the next loop iteration from the
continuation itself. This means eliminating the for loop and resorting to a recursive
call in the continuation:

void DisplayPrimeCounts()
{
  DisplayPrimeCountsFrom (0);
}

void DisplayPrimeCountsFrom (int i)
{
  var awaiter = GetPrimesCountAsync (i*1000000 + 2, 1000000).GetAwaiter();
  awaiter.OnCompleted (() => 
  {
    Console.WriteLine (awaiter.GetResult() + " primes between...");
    if (++i < 10) DisplayPrimeCountsFrom (i);
    else Console.WriteLine ("Done");
  });
}

It gets even worse if we want to make DisplayPrimesCount itself asynchronous,
returning a task that it signals upon completion. To accomplish this requires creat‐
ing a TaskCompletionSource:

Task DisplayPrimeCountsAsync()
{
  var machine = new PrimesStateMachine();
  machine.DisplayPrimeCountsFrom (0);
  return machine.Task;
}

class PrimesStateMachine
{
  TaskCompletionSource<object> _tcs = new TaskCompletionSource<object>();
  public Task Task { get { return _tcs.Task; } }

  public void DisplayPrimeCountsFrom (int i)
  {
    var awaiter = GetPrimesCountAsync (i*1000000+2, 1000000).GetAwaiter();
    awaiter.OnCompleted (() => 
    {
      Console.WriteLine (awaiter.GetResult());
      if (++i < 10) DisplayPrimeCountsFrom (i);
      else { Console.WriteLine ("Done"); _tcs.SetResult (null); }
    });
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  }
}

Fortunately, C#’s asynchronous functions do all of this work for us. With the async
and await keywords, we need only write this:

async Task DisplayPrimeCountsAsync()
{
  for (int i = 0; i < 10; i++)
    Console.WriteLine (await GetPrimesCountAsync (i*1000000 + 2, 1000000) +
      " primes between " + (i*1000000) + " and " + ((i+1)*1000000-1));
  Console.WriteLine ("Done!");
}

Consequently, async and await are essential for implementing asynchrony without
excessive complexity. Let’s now see how these keywords work.

Another way of looking at the problem is that imperative
looping constructs (for, foreach, and so on) do not mix well
with continuations, because they rely on the current local state
of the method (“How many more times is this loop going to
run?”).

Although the async and await keywords offer one solution,
it’s sometimes possible to solve it in another way by replacing
the imperative looping constructs with the functional equiv‐
alent (in other words, LINQ queries). This is the basis of
Reactive Extensions (Rx) and can be a good option when you
want to execute query operators over the result—or combine
multiple sequences. The price to pay is that to prevent block‐
ing, Rx operates over push-based sequences, which can be
conceptually tricky.

Asynchronous Functions in C#
The async and await keywords let you write asynchronous code that has the same
structure and simplicity as synchronous code while eliminating the “plumbing” of
asynchronous programming.

Awaiting
The await keyword simplifies the attaching of continuations. Starting with a basic
scenario, the compiler expands this:

var result = await expression;
statement(s);

into something functionally similar to this:

var awaiter = expression.GetAwaiter();
awaiter.OnCompleted (() => 
{
  var result = awaiter.GetResult();
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  statement(s);
});

The compiler also emits code to short-circuit the continuation
in case of synchronous completion (see “Optimizations” on
page 677) and to handle various nuances that we pick up in
later sections.

To demonstrate, let’s revisit the asynchronous method that we wrote previously that
computes and counts prime numbers:

Task<int> GetPrimesCountAsync (int start, int count)
{
  return Task.Run (() =>
    ParallelEnumerable.Range (start, count).Count (n => 
      Enumerable.Range (2, (int)Math.Sqrt(n)-1).All (i => n % i > 0)));
}

With the await keyword, we can call it as follows:

int result = await GetPrimesCountAsync (2, 1000000);
Console.WriteLine (result);

To compile, we need to add the async modifier to the containing method:

async void DisplayPrimesCount()
{
  int result = await GetPrimesCountAsync (2, 1000000);
  Console.WriteLine (result);
}

The async modifier instructs the compiler to treat await as a keyword rather
than an identifier should an ambiguity arise within that method (this ensures that
code written prior to C# 5 that might use await as an identifier will still compile
without error). The async modifier can be applied only to methods (and lambda
expressions) that return void or (as you’ll see later) a Task or Task<TResult>.

The async modifier is similar to the unsafe modifier in that
it has no effect on a method’s signature or public metadata; it
affects only what happens inside the method. For this reason,
it makes no sense to use async in an interface. However it
is legal, for instance, to introduce async when overriding a
non-async virtual method, as long as you keep the signature
the same.

Methods with the async modifier are called asynchronous functions, because they
themselves are typically asynchronous. To see why, let’s look at how execution
proceeds through an asynchronous function.

Upon encountering an await expression, execution (normally) returns to the caller
—rather like with yield return in an iterator. But before returning, the runtime
attaches a continuation to the awaited task, ensuring that when the task completes,
execution jumps back into the method and continues where it left off. If the task
faults, its exception is rethrown, otherwise its return value is assigned to the await
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expression. We can summarize everything we just said by looking at the logical
expansion of the asynchronous method we just examined:

void DisplayPrimesCount()
{
  var awaiter = GetPrimesCountAsync (2, 1000000).GetAwaiter();
  awaiter.OnCompleted (() =>    
  {
    int result = awaiter.GetResult();
    Console.WriteLine (result);
  });
}

The expression upon which you await is typically a task; however, any object
with a GetAwaiter method that returns an awaiter (implementing INotifyComple
tion.OnCompleted and with an appropriately typed GetResult method and a bool
IsCompleted property) will satisfy the compiler.

Notice that our await expression evaluates to an int type; this is because the
expression that we awaited was a Task<int> (whose GetAwaiter().GetResult()
method returns an int).

Awaiting a nongeneric task is legal and generates a void expression:

await Task.Delay (5000);
Console.WriteLine ("Five seconds passed!");

Capturing local state
The real power of await expressions is that they can appear almost anywhere in
code. Specifically, an await expression can appear in place of any expression (within
an asynchronous function) except for inside a lock statement or unsafe context.

In the following example, we await inside a loop:

async void DisplayPrimeCounts()
{
  for (int i = 0; i < 10; i++)
    Console.WriteLine (await GetPrimesCountAsync (i*1000000+2, 1000000));
}

Upon first executing GetPrimesCountAsync, execution returns to the caller by virtue
of the await expression. When the method completes (or faults), execution resumes
where it left off, with the values of local variables and loop counters preserved.

Without the await keyword, the simplest equivalent might be the example we wrote
in “Why Language Support Is Important” on page 659. The compiler, however, takes
the more general strategy of refactoring such methods into state machines (rather
like it does with iterators).

The compiler relies on continuations (via the awaiter pattern) to resume execution
after an await expression. This means that if running on the UI thread of a rich
client application, the synchronization context ensures execution resumes on the
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same thread. Otherwise, execution resumes on whatever thread the task finished
on. The change of thread does not affect the order of execution and is of little
consequence unless you’re somehow relying on thread affinity, perhaps through
the use of thread-local storage (see “Thread-Local Storage” on page 923). It’s like
touring a city and hailing taxis to get from one destination to another. With a
synchronization context, you’ll always get the same taxi; with no synchronization
context, you’ll usually get a different taxi each time. In either case, though, the
journey is the same.

Awaiting in a UI
We can demonstrate asynchronous functions in a more practical context by writing
a simple UI that remains responsive while calling a compute-bound method. Let’s
begin with a synchronous solution:

class TestUI : Window
{
  Button _button = new Button { Content = "Go" };
  TextBlock _results = new TextBlock();
    
  public TestUI()
  {
    var panel = new StackPanel();
    panel.Children.Add (_button);
    panel.Children.Add (_results);
    Content = panel;
    _button.Click += (sender, args) => Go();
  }
    
  void Go()
  {
    for (int i = 1; i < 5; i++)
      _results.Text += GetPrimesCount (i * 1000000, 1000000) +
        " primes between " + (i*1000000) + " and " + ((i+1)*1000000-1) +
        Environment.NewLine;
  }
    
  int GetPrimesCount (int start, int count)
  {
    return ParallelEnumerable.Range (start, count).Count (n => 
      Enumerable.Range (2, (int) Math.Sqrt(n)-1).All (i => n % i > 0));
  }
}

Upon pressing the “Go” button, the application becomes unresponsive for the time
it takes to execute the compute-bound code. There are two steps in asynchronizing
this; the first is to switch to the asynchronous version of GetPrimesCount that we
used in previous examples:
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Task<int> GetPrimesCountAsync (int start, int count)
{
  return Task.Run (() =>
    ParallelEnumerable.Range (start, count).Count (n => 
      Enumerable.Range (2, (int) Math.Sqrt(n)-1).All (i => n % i > 0)));
}

The second step is to modify Go to call GetPrimesCountAsync:

async void Go()
{
  _button.IsEnabled = false;
  for (int i = 1; i < 5; i++)
    _results.Text += await GetPrimesCountAsync (i * 1000000, 1000000) +
      " primes between " + (i*1000000) + " and " + ((i+1)*1000000-1) +
      Environment.NewLine;
  _button.IsEnabled = true;
}

This illustrates the simplicity of programming with asynchronous functions: you
program as you would synchronously but call asynchronous functions instead of
blocking functions and await them. Only the code within GetPrimesCountAsync
runs on a worker thread; the code in Go “leases” time on the UI thread. We
could say that Go executes pseudo-concurrently to the message loop (in that its
execution is interspersed with other events that the UI thread processes). With this
pseudo-concurrency, the only point at which preemption can occur is during an
await. This simplifies thread safety: in our case, the only problem that this could
cause is reentrancy (clicking the button again while it’s running, which we prevent
by disabling the button). True concurrency occurs lower in the call stack, inside
code called by Task.Run. To benefit from this model, truly concurrent code prevents
accessing shared state or UI controls.

To give another example, suppose that instead of calculating prime numbers, we
want to download several web pages and sum their lengths. .NET exposes numer‐
ous task-returning asynchronous methods, one of which is the WebClient class
in System.Net. The DownloadDataTaskAsync method asynchronously downloads a
URI to a byte array, returning a Task<byte[]>, so by awaiting it, we get a byte[].
Let’s now rewrite our Go method:

async void Go() 
{
  _button.IsEnabled = false;
  string[] urls = "www.albahari.com www.oreilly.com www.linqpad.net".Split();
  int totalLength = 0;
  try
  {
    foreach (string url in urls)
    {
      var uri = new Uri ("http://" + url);
      byte[] data = await new WebClient().DownloadDataTaskAsync (uri);
      _results.Text += "Length of " + url + " is " + data.Length +
                       Environment.NewLine;
      totalLength += data.Length;
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    }
    _results.Text += "Total length: " + totalLength;
  }
  catch (WebException ex)
  {
    _results.Text += "Error: " + ex.Message;
  }
  finally { _button.IsEnabled = true; }
}

Again, this mirrors how we’d write it synchronously—including the use of catch
and finally blocks. Even though execution returns to the caller after the first
await, the finally block does not execute until the method has logically completed
(by virtue of all its code executing—or an early return or unhandled exception).

It can be helpful to consider exactly what’s happening underneath. First, we need to
revisit the pseudo-code that runs the message loop on the UI thread:

Set synchronization context for this thread to WPF sync context
while (!thisApplication.Ended)
{
  wait for something to appear in message queue
  Got something: what kind of message is it?
    Keyboard/mouse message -> fire an event handler
    User BeginInvoke/Invoke message -> execute delegate
}

Event handlers that we attach to UI elements execute via this message loop. When
our Go method runs, execution proceeds as far as the await expression and then
returns to the message loop (freeing the UI to respond to further events). However,
the compiler’s expansion of await ensures that before returning, a continuation is
set up such that execution resumes where it left off upon completion of the task.
And because we awaited on a UI thread, the continuation posts to the synchroniza‐
tion context, which executes it via the message loop, keeping our entire Go method
executing pseudo-concurrently on the UI thread. True (I/O-bound) concurrency
occurs within the implementation of DownloadDataTaskAsync.

Comparison to coarse-grained concurrency
Asynchronous programming was difficult prior to C# 5, not only because there
was no language support, but because the .NET Framework exposed asynchronous
functionality through clumsy patterns called the EAP and the APM (see “Obsolete
Patterns” on page 689) rather than task-returning methods.

The popular workaround was coarse-grained concurrency (in fact, there was even
a type called BackgroundWorker to help with that). Returning to our original
synchronous example with GetPrimesCount, we can demonstrate coarse-grained
asynchrony by modifying the button’s event handler, as follows:

  ...
  _button.Click += (sender, args) =>
  {
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    _button.IsEnabled = false;
    Task.Run (() => Go());
  };

(We’ve chosen to use Task.Run rather than BackgroundWorker because the latter
would do nothing to simplify our particular example.) In either case, the end result
is that our entire synchronous call graph (Go plus GetPrimesCount) runs on a
worker thread. And because Go updates UI elements, we must now litter our code
with Dispatcher.BeginInvoke:

void Go()
{
  for (int i = 1; i < 5; i++)
  {
    int result = GetPrimesCount (i * 1000000, 1000000);
    Dispatcher.BeginInvoke (new Action (() =>
      _results.Text += result + " primes between " + (i*1000000) +
      " and " + ((i+1)*1000000-1) + Environment.NewLine));
  }
  Dispatcher.BeginInvoke (new Action (() => _button.IsEnabled = true));
}

Unlike with the asynchronous version, the loop itself runs on a worker thread. This
might seem innocuous, and yet, even in this simple case, our use of multithreading
has introduced a race condition. (Can you spot it? If not, try running the program:
it will almost certainly become apparent.)

Implementing cancellation and progress reporting creates more possibilities for
thread-safety errors, as does any additional code in the method. For instance, sup‐
pose that the upper limit for the loop is not hardcoded but comes from a method
call:

  for (int i = 1; i < GetUpperBound(); i++)

Now suppose that GetUpperBound() reads the value from a lazily loaded configura‐
tion file, which loads from disk upon first call. All of this code now runs on your
worker thread, code that’s most likely not thread-safe. This is the danger of starting
worker threads high in the call graph.

Writing Asynchronous Functions
With any asynchronous function, you can replace the void return type with a
Task to make the method itself usefully asynchronous (and awaitable). No further
changes are required:

async Task PrintAnswerToLife()   // We can return Task instead of void
{
  await Task.Delay (5000);
  int answer = 21 * 2;
  Console.WriteLine (answer);  
}
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Notice that we don’t explicitly return a task in the method body. The compiler
manufactures the task, which it signals upon completion of the method (or upon an
unhandled exception). This makes it easy to create asynchronous call chains:

async Task Go()
{
  await PrintAnswerToLife();
  Console.WriteLine ("Done");
}

And because we’ve declared Go with a Task return type, Go itself is awaitable.

The compiler expands asynchronous functions that return tasks into code that uses
TaskCompletionSource to create a task that it then signals or faults.

Nuances aside, we can expand PrintAnswerToLife into the following functional
equivalent:

Task PrintAnswerToLife()
{
  var tcs = new TaskCompletionSource<object>();
  var awaiter = Task.Delay (5000).GetAwaiter();
  awaiter.OnCompleted (() =>
  {
    try
    {
      awaiter.GetResult();    // Re-throw any exceptions
      int answer = 21 * 2;
      Console.WriteLine (answer);
      tcs.SetResult (null);
    }
    catch (Exception ex) { tcs.SetException (ex); }
  });
  return tcs.Task;
}

Hence, whenever a task-returning asynchronous method finishes, execution jumps
back to whatever awaited it (by virtue of a continuation).

In a rich-client scenario, execution bounces at this point back
to the UI thread (if it’s not already on the UI thread). Other‐
wise, it continues on whatever thread the continuation came
back on. This means that there’s no latency cost in bubbling
up asynchronous call graphs, other than the first “bounce” if it
was UI-thread-initiated.

Returning Task<TResult>
You can return a Task<TResult> if the method body returns TResult:

async Task<int> GetAnswerToLife()
{
  await Task.Delay (5000);
  int answer = 21 * 2;
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  return answer;    // Method has return type Task<int> we return int
}

Internally, this results in the TaskCompletionSource being signaled with a value
rather than null. We can demonstrate GetAnswerToLife by calling it from PrintAns
werToLife (which in turn, called from Go):

async Task Go()
{
  await PrintAnswerToLife();
  Console.WriteLine ("Done");
}

async Task PrintAnswerToLife()
{
  int answer = await GetAnswerToLife();
  Console.WriteLine (answer);
}

async Task<int> GetAnswerToLife()
{
  await Task.Delay (5000);
  int answer = 21 * 2;
  return answer;
}

In effect, we’ve refactored our original PrintAnswerToLife into two methods—with
the same ease as if we were programming synchronously. The similarity to synchro‐
nous programming is intentional; here’s the synchronous equivalent of our call
graph, for which calling Go() gives the same result after blocking for five seconds:

void Go()
{
  PrintAnswerToLife();
  Console.WriteLine ("Done");
}

void PrintAnswerToLife()
{
  int answer = GetAnswerToLife();
  Console.WriteLine (answer);
}

int GetAnswerToLife()
{
  Thread.Sleep (5000);
  int answer = 21 * 2;
  return answer;
}
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This also illustrates the basic principle of how to design with
asynchronous functions in C#:

1. Write your methods synchronously.1.

2. Replace synchronous method calls with asynchronous2.
method calls, and await them.

3. Except for “top-level” methods (typically event handlers3.
for UI controls), upgrade your asynchronous methods’
return types to Task or Task<TResult> so that they’re
awaitable.

The compiler’s ability to manufacture tasks for asynchronous functions means that
for the most part, you need to explicitly instantiate a TaskCompletionSource only
in (the relatively rare case of) bottom-level methods that initiate I/O-bound concur‐
rency. (And for methods that initiate compute-bound concurrency, you create the
task with Task.Run.)

Asynchronous call graph execution
To see exactly how this executes, it’s helpful to rearrange our code as follows:

async Task Go()
{
  var task = PrintAnswerToLife();
  await task; Console.WriteLine ("Done");
}

async Task PrintAnswerToLife()
{
  var task = GetAnswerToLife();
  int answer = await task; Console.WriteLine (answer);
}

async Task<int> GetAnswerToLife()
{
  var task = Task.Delay (5000);
  await task; int answer = 21 * 2; return answer;
}

Go calls PrintAnswerToLife, which calls GetAnswerToLife, which calls Delay and
then awaits. The await causes execution to return to PrintAnswerToLife, which
itself awaits, returning to Go, which also awaits and returns to the caller. All of this
happens synchronously, on the thread that called Go; this is the brief synchronous
phase of execution.

Five seconds later, the continuation on Delay fires, and execution returns to Get
AnswerToLife on a pooled thread. (If we started on a UI thread, execution now
bounces to that thread.) The remaining statements in GetAnswerToLife then run,
after which the method’s Task<int> completes with a result of 42 and executes the
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continuation in PrintAnswerToLife, which executes the remaining statements in
that method. The process continues until Go’s task is signaled as complete.

Execution flow matches the synchronous call graph that we showed earlier because
we’re following a pattern whereby we await every asynchronous method immedi‐
ately after calling it. This creates a sequential flow with no parallelism or overlap‐
ping execution within the call graph. Each await expression creates a “gap” in
execution, after which the program resumes where it left off.

Parallelism
Calling an asynchronous method without awaiting it allows the code that follows to
execute in parallel. You might have noticed in earlier examples that we had a button
whose event handler called Go, as follows:

_button.Click += (sender, args) => Go();

Despite Go being an asynchronous method, we didn’t await it, and this is indeed
what facilitates the concurrency needed to maintain a responsive UI.

We can use this same principle to run two asynchronous operations in parallel:

var task1 = PrintAnswerToLife();
var task2 = PrintAnswerToLife();
await task1; await task2;

(By awaiting both operations afterward, we “end” the parallelism at that point. Later,
we describe how the WhenAll task combinator helps with this pattern.)

Concurrency created in this manner occurs whether or not the operations are
initiated on a UI thread, although there’s a difference in how it occurs. In both cases,
we get the same “true” concurrency occurring in the bottom-level operations that
initiate it (such as Task.Delay or code farmed to Task.Run). Methods above this in
the call stack will be subject to true concurrency only if the operation was initiated
without a synchronization context present; otherwise they will be subject to the
pseudo-concurrency (and simplified thread safety) that we talked about earlier,
whereby the only place at which we can be preempted is an await statement. This
lets us, for instance, define a shared field, _x, and increment it in GetAnswerToLife
without locking:

async Task<int> GetAnswerToLife()
{
  _x++;
  await Task.Delay (5000);
  return 21 * 2;
}

(We would, though, be unable to assume that _x had the same value before and after
the await.)
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Asynchronous Lambda Expressions
Just as ordinary named methods can be asynchronous:

async Task NamedMethod()
{
  await Task.Delay (1000);
  Console.WriteLine ("Foo");
}

so can unnamed methods (lambda expressions and anonymous methods), if pre‐
ceded by the async keyword:

Func<Task> unnamed = async () =>
{
  await Task.Delay (1000);
  Console.WriteLine ("Foo");
};

We can call and await these in the same way:

await NamedMethod();
await unnamed();

We can use asynchronous lambda expressions when attaching event handlers:

myButton.Click += async (sender, args) =>
{
  await Task.Delay (1000);
  myButton.Content = "Done";
};

This is more succinct than the following, which has the same effect:

myButton.Click += ButtonHandler;
...
async void ButtonHandler (object sender, EventArgs args)
{
  await Task.Delay (1000);
  myButton.Content = "Done";
};

Asynchronous lambda expressions can also return Task<TResult>:

Func<Task<int>> unnamed = async () =>
{
  await Task.Delay (1000);
  return 123;
};
int answer = await unnamed();

Asynchronous Streams
With yield return, you can write an iterator; with await, you can write an asyn‐
chronous function. Asynchronous streams (from C# 8) combine these concepts and
let you write an iterator that awaits, yielding elements asynchronously. This support
builds on the following pair of interfaces, which are asynchronous counterparts to
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the enumeration interfaces we described in “Enumeration and Iterators” on page
203:

public interface IAsyncEnumerable<out T>
{
  IAsyncEnumerator<T> GetAsyncEnumerator (...);
}

public interface IAsyncEnumerator<out T>: IAsyncDisposable
{
  T Current { get; }
  ValueTask<bool> MoveNextAsync();
}

ValueTask<T> is a struct that wraps Task<T> and is behaviorally similar to Task<T>
while enabling more efficient execution when the task completes synchronously
(which can happen often when enumerating a sequence). See “ValueTask<T>” on
page 679 for a discussion of differences. IAsyncDisposable is an asynchronous
version of IDisposable; it provides an opportunity to perform cleanup should you
choose to manually implement the interfaces:

public interface IAsyncDisposable
{
  ValueTask DisposeAsync();
}

The act of fetching each element from the sequence (Move
NextAsync) is an asynchronous operation, so asynchronous
streams are suitable when elements arrive in a piecemeal
fashion (such as when processing data from a video stream).
In contrast, the following type is more suitable when the
sequence as a whole is delayed, but the elements, when they
arrive, arrive all together:

Task<IEnumerable<T>>

To generate an asynchronous stream, you write a method that combines the princi‐
ples of iterators and asynchronous methods. In other words, your method should
include both yield return and await, and it should return IAsyncEnumerable<T>:

async IAsyncEnumerable<int> RangeAsync (
  int start, int count, int delay)
{
  for (int i = start; i < start + count; i++)
  {
    await Task.Delay (delay);
    yield return i;
  }
}

To consume an asynchronous stream, use the await foreach statement:

await foreach (var number in RangeAsync (0, 10, 500))
  Console.WriteLine (number);
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Note that data arrives steadily, every 500 milliseconds (or, in real life, as it becomes
available). Contrast this to a similar construct using Task<IEnumerable<T>> for
which no data is returned until the last piece of data is available:

static async Task<IEnumerable<int>> RangeTaskAsync (int start, int count,
                                                    int delay)
{
  List<int> data = new List<int>();
  for (int i = start; i < start + count; i++)
  {
    await Task.Delay (delay);
    data.Add (i);
  }

  return data;
}

Here’s how to consume it with the foreach statement:

foreach (var data in await RangeTaskAsync(0, 10, 500))
  Console.WriteLine (data);

Querying IAsyncEnumerable<T>
The System.Linq.Async NuGet package defines LINQ query operators that operate
over IAsyncEnumerable<T>, allowing you to write queries much as you would with
IEnumerable<T>.

For instance, we can write a LINQ query over the RangeAsync method that we
defined in the preceding section, as follows:

IAsyncEnumerable<int> query =
  from i in RangeAsync (0, 10, 500)
  where i % 2 == 0   // Even numbers only.
  select i * 10;     // Multiply by 10.

await foreach (var number in query)
  Console.WriteLine (number);

This outputs 0, 20, 40, and so on.

If you’re familiar with Rx, you can benefit from its (more
powerful) query operators, too, by calling the ToObservable
extension method, which converts an IAsyncEnumerable<T>
into an IObservable<T>. A ToAsyncEnumerable extension
method is also available, to convert in the reverse direction.

IAsyncEnumerable<T> in ASP.Net Core
ASP.Net Core controller actions can now return IAsyncEnumerable<T>. Such meth‐
ods must be marked async. For example:

[HttpGet]
public async IAsyncEnumerable<string> Get()
{
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    using var dbContext = new BookContext();
    await foreach (var title in dbContext.Books
                                         .Select(b => b.Title)
                                         .AsAsyncEnumerable())
       yield return title;
}

Asynchronous Methods in WinRT
If you’re developing UWP applications, you will need to work with the WinRT types
defined in the operating system. WinRT’s equivalent of Task is IAsyncAction, and
the equivalent of Task<TResult> is IAsyncOperation<TResult>. And for operations
that report progress, the equivalents are IAsyncActionWithProgress<TProgress>
and IAsyncOperationWithProgress<TResult, TProgress>. They are all defined in
the Windows.Foundation namespace.

You can convert from either into a Task or Task<TResult> via the AsTask extension
method:

Task<StorageFile> fileTask = KnownFolders.DocumentsLibrary.CreateFileAsync
                             ("test.txt").AsTask();

Or you can await them directly:

StorageFile file = await KnownFolders.DocumentsLibrary.CreateFileAsync
                         ("test.txt");

Due to limitations in the COM type system, IAsyncAction
WithProgress<TProgress> and IAsyncOperationWithPro

gress<TResult, TProgress> are not based on IAsyncAction
as you might expect. Instead, both inherit from a common
base type called IAsyncInfo.

The AsTask method is also overloaded to accept a cancellation token (see “Cancella‐
tion” on page 681). It can also accept an IProgress<T> object when chained to the
WithProgress variants (see “Progress Reporting” on page 683).

Asynchrony and Synchronization Contexts
We’ve already seen how the presence of a synchronization context is significant
in terms of posting continuations. There are a couple of other more subtle ways
in which such synchronization contexts come into play with void-returning asyn‐
chronous functions. These are not a direct result of C# compiler expansions, but
a function of the Async*MethodBuilder types in the System.CompilerServices
namespace that the compiler uses in expanding asynchronous functions.

Exception posting
It’s common practice in rich-client applications to rely on the central exception
handling event (Application.DispatcherUnhandledException in WPF) to pro‐
cess unhandled exceptions thrown on the UI thread. And in ASP.NET Core
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applications, a custom ExceptionFilterAttribute in the ConfigureServices
method of Startup.cs does a similar job. Internally, they work by invoking UI events
(or in ASP.NET Core, the pipeline of page-processing methods) in their own try/
catch block.

Top-level asynchronous functions complicate this. Consider the following event
handler for a button click:

async void ButtonClick (object sender, RoutedEventArgs args)
{
  await Task.Delay(1000);
  throw new Exception ("Will this be ignored?");
}

When the button is clicked and the event handler runs, execution returns normally
to the message loop after the await statement, and the exception that’s thrown a
second later cannot be caught by the catch block in the message loop.

To mitigate this problem, AsyncVoidMethodBuilder catches unhandled exceptions
(in void-returning asynchronous functions) and posts them to the synchronization
context if present, ensuring that global exception-handling events still fire.

The compiler applies this logic only to void-returning asyn‐
chronous functions. So, if we changed ButtonClick to return
a Task instead of void, the unhandled exception would fault
the resultant Task, which would then have nowhere to go
(resulting in an unobserved exception).

An interesting nuance is that it makes no difference whether you throw before
or after an await. Thus, in the following example, the exception is posted to the
synchronization context (if present) and never to the caller:

async void Foo() { throw null; await Task.Delay(1000); }

(If no synchronization context is present, the exception will propagate on the thread
pool, which will terminate the application.)

The reason for the exception not being thrown directly back to the caller is to
ensure predictability and consistency. In the following example, the InvalidOper
ationException will always have the same effect of faulting the resultant Task—
regardless of someCondition:

async Task Foo()
{
  if (someCondition) await Task.Delay (100);
  throw new InvalidOperationException();
}

Iterators work in a similar way:

IEnumerable<int> Foo() { throw null; yield return 123; }

In this example, an exception is never thrown straight back to the caller: not until
the sequence is enumerated is the exception thrown.
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OperationStarted and OperationCompleted
If a synchronization context is present, void-returning asynchronous functions also
call its OperationStarted method upon entering the function, and its Operation
Completed method when the function finishes.

Overriding these methods is useful if writing a custom synchronization context for
unit testing void-returning asynchronous methods. This is discussed on Microsoft’s
Parallel Programming blog.

Optimizations

Completing synchronously
An asynchronous function can return before awaiting. Consider the following
method that caches the downloading of web pages:

static Dictionary<string,string> _cache = new Dictionary<string,string>();

async Task<string> GetWebPageAsync (string uri)
{
  string html;
  if (_cache.TryGetValue (uri, out html)) return html;
  return _cache [uri] = 
    await new WebClient().DownloadStringTaskAsync (uri);
}

Should a URI already exist in the cache, execution returns to the caller with no
awaiting having occurred, and the method returns an already-signaled task. This is
referred to as synchronous completion.

When you await a synchronously completed task, execution does not return to
the caller and bounce back via a continuation; instead, it proceeds immediately to
the next statement. The compiler implements this optimization by checking the
IsCompleted property on the awaiter; in other words, whenever you await

Console.WriteLine (await GetWebPageAsync ("http://oreilly.com"));

the compiler emits code to short-circuit the continuation in case of synchronization
completion:

var awaiter = GetWebPageAsync().GetAwaiter();
if (awaiter.IsCompleted)
  Console.WriteLine (awaiter.GetResult());
else
  awaiter.OnCompleted (() => Console.WriteLine (awaiter.GetResult());
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Awaiting an asynchronous function that returns synchro‐
nously still incurs a (very) small overhead—maybe 20 nano‐
seconds on a 2019-era PC.
In contrast, bouncing to the thread pool introduces the cost
of a context switch—perhaps one or two microseconds—and
bouncing to a UI message loop, at least 10 times that (much
longer if the UI thread is busy).

It’s even legal to write asynchronous methods that never await, although the com‐
piler will generate a warning:

async Task<string> Foo() { return "abc"; }

Such methods can be useful when overriding virtual/abstract methods, if your
implementation doesn’t happen to need asynchrony. (An example is MemoryStream’s
ReadAsync/WriteAsync methods; see Chapter 15.) Another way to achieve the same
result is to use Task.FromResult, which returns an already-signaled task:

Task<string> Foo() { return Task.FromResult ("abc"); }

Our GetWebPageAsync method is implicitly thread safe if called from a UI thread,
in that you could invoke it several times in succession (thereby initiating multiple
concurrent downloads), and no locking is required to protect the cache. If the series
of calls were to the same URI, though, we’d end up initiating multiple redundant
downloads, all of which would eventually update the same cache entry (the last
one winning). Although not erroneous, it would be more efficient if subsequent
calls to the same URI could instead (asynchronously) wait upon the result of the
in-progress request.

There’s an easy way to accomplish this—without resorting to locks or signaling con‐
structs. Instead of a cache of strings, we create a cache of “futures” (Task<string>):

static Dictionary<string,Task<string>> _cache = 
   new Dictionary<string,Task<string>>();

Task<string> GetWebPageAsync (string uri)
{
  if (_cache.TryGetValue (uri, out var downloadTask)) return downloadTask;
  return _cache [uri] = new WebClient().DownloadStringTaskAsync (uri);
}

(Notice that we don’t mark the method as async, because we’re directly returning
the task we obtain from calling WebClient’s method.)

If we call GetWebPageAsync repeatedly with the same URI, we’re now guaranteed
to get the same Task<string> object back. (This has the additional benefit of
minimizing garbage collection load.) And if the task is complete, awaiting it is
cheap, thanks to the compiler optimization that we just discussed.

We could further extend our example to make it thread-safe without the protection
of a synchronization context, by locking around the entire method body:
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lock (_cache)
  if (_cache.TryGetValue (uri, out var downloadTask))
    return downloadTask;
  else
    return _cache [uri] = new WebClient().DownloadStringTaskAsync (uri);
}

This works because we’re not locking for the duration of downloading a page
(which would hurt concurrency); we’re locking for the small duration of checking
the cache, starting a new task if necessary, and updating the cache with that task.

ValueTask<T>

ValueTask<T> is intended for micro-optimization scenarios,
and you might never need to write methods that return this
type. However, it still pays to be aware of the precautions that
we outline in the next section because some .NET methods
return ValueTask<T>, and IAsyncEnumerable<T> makes use
of it, too.

We just described how the compiler optimizes an await expression on a synchro‐
nously completed task—by short-circuiting the continuation and proceeding imme‐
diately to the next statement. If the synchronous completion is due to caching, we
saw that caching the task itself can provide an elegant and efficient solution.

It’s not practical, however, to cache the task in all synchronous completion scenar‐
ios. Sometimes, a fresh task must be instantiated, and this creates a (tiny) poten‐
tial inefficiency. This is because Task and Task<T> are reference types, and so
instantiation requires a heap-based memory allocation and subsequent collection.
An extreme form of optimization is to write code that’s allocation-free; in other
words, that does not instantiate any reference types, adding no burden to garbage
collection. To support this pattern, the ValueTask and ValueTask<T> structs have
been introduced, which the compiler allows in place of Task and Task<T>:

async ValueTask<int> Foo() { ... }

Awaiting ValueTask<T> is allocation-free, if the operation completes synchronously:

int answer = await Foo();   // (Potentially) allocation-free

If the operation doesn’t complete synchronously, ValueTask<T> creates an ordinary
Task<T> behind the scenes (to which it forwards the await), and nothing is gained.

You can convert a ValueTask<T> into an ordinary Task<T> by calling the AsTask
method.

There’s also a nongeneric version—ValueTask—which is akin to Task.

Precautions when using ValueTask<T>
ValueTask<T> is relatively unusual in that it’s defined as a struct purely for per‐
formance reasons. This means that it’s encumbered with inappropriate value-type
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semantics that can lead to surprises. To avoid incorrect behavior, you must avoid the
following:

• Awaiting the same ValueTask<T> multiple times•

• Calling .GetAwaiter().GetResult() when the operation hasn’t completed•

If you need to perform these actions, call .AsTask() and operate instead on the
resulting Task.

The easiest way to avoid these traps is to directly await a
method call, for instance:

await Foo();   // Safe

The door to erroneous behavior opens when you assign the
(value) task to a variable:

ValueTask<int> valueTask = Foo();  // Caution!
// Our use of valueTask can now lead to errors.

which can be mitigated by converting immediately to an ordi‐
nary task:

Task<int> task = Foo().AsTask();   // Safe
// task is safe to work with.

Avoiding excessive bouncing
For methods that are called many times in a loop, you can avoid the cost of
repeatedly bouncing to a UI message loop by calling ConfigureAwait. This forces
a task not to bounce continuations to the synchronization context, cutting the
overhead closer to the cost of a context switch (or much less if the method that
you’re awaiting completes synchronously):

async void A() { ... await B(); ... }

async Task B()
{
  for (int i = 0; i < 1000; i++)
    await C().ConfigureAwait (false);
}

async Task C() { ... }

This means that for the B and C methods, we rescind the simple thread-safety model
in UI apps whereby code runs on the UI thread and can be preempted only during
an await statement. Method A, however, is unaffected and will remain on a UI
thread if it started on one.

This optimization is particularly relevant when writing libraries: you don’t need the
benefit of simplified thread-safety because your code typically does not share state
with the caller—and does not access UI controls. (It would also make sense, in our
example, for method C to complete synchronously if it knew the operation was
likely to be short-running.)

680 | Chapter 14: Concurrency and Asynchrony



Asynchronous Patterns
Cancellation
It’s often important to be able to cancel a concurrent operation after it’s started,
perhaps in response to a user request. A simple way to implement this is with a
cancellation flag, which we could encapsulate by writing a class like this:

class CancellationToken
{
  public bool IsCancellationRequested { get; private set; }
  public void Cancel() { IsCancellationRequested = true; }
  public void ThrowIfCancellationRequested()
  {
    if (IsCancellationRequested)
      throw new OperationCanceledException();
  }
}

We could then write a cancellable asynchronous method as follows:

async Task Foo (CancellationToken cancellationToken)
{
  for (int i = 0; i < 10; i++)
  {
    Console.WriteLine (i);
    await Task.Delay (1000);
    cancellationToken.ThrowIfCancellationRequested();
  }
}

When the caller wants to cancel, it calls Cancel on the cancellation token that
it passed into Foo. This sets IsCancellationRequested to true, which causes Foo
to fault a short time later with an OperationCanceledException (a predefined
exception in the System namespace designed for this purpose).

Thread-safety aside (we should be locking around reading/writing IsCancellation
Requested), this pattern is effective, and the CLR provides a type called Cancella
tionToken that is very similar to what we’ve just shown. However, it lacks a Cancel
method; this method is instead exposed on another type called CancellationToken
Source. This separation provides some security: a method that has access only to a
CancellationToken object can check for but not initiate cancellation.

To get a cancellation token, we first instantiate a CancellationTokenSource:

var cancelSource = new CancellationTokenSource();

This exposes a Token property, which returns a CancellationToken. Hence, we
could call our Foo method, as follows:

var cancelSource = new CancellationTokenSource();
Task foo = Foo (cancelSource.Token);
...
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... (sometime later)
cancelSource.Cancel();

Most asynchronous methods in the CLR support cancellation tokens, including
Delay. If we modify Foo such that it passes its token into the Delay method, the task
will end immediately upon request (rather than up to a second later):

async Task Foo (CancellationToken cancellationToken)
{
  for (int i = 0; i < 10; i++)
  {
    Console.WriteLine (i);
    await Task.Delay (1000, cancellationToken);
  }
}

Notice that we no longer need to call ThrowIfCancellationRequested because
Task.Delay is doing that for us. Cancellation tokens propagate nicely down the
call stack (just as cancellation requests cascade up the call stack, by virtue of being
exceptions).

UWP relies on WinRT types, whose asynchronous methods
follow an inferior protocol for cancellation whereby instead of
accepting a CancellationToken, the IAsyncInfo type exposes
a Cancel method. The AsTask extension method is overloaded
to accept a cancellation token, however, bridging the gap.

Synchronous methods can support cancellation, too (such as Task’s Wait method).
In such cases, the instruction to cancel will need to come asynchronously (e.g., from
another task). For example:

var cancelSource = new CancellationTokenSource();
Task.Delay (5000).ContinueWith (ant => cancelSource.Cancel());
...

In fact, you can specify a time interval when constructing CancellationToken
Source to initiate cancellation after a set period of time (just as we demonstrated).
It’s useful for implementing timeouts, whether synchronous or asynchronous:

var cancelSource = new CancellationTokenSource (5000);
try { await Foo (cancelSource.Token); }
catch (OperationCanceledException ex) { Console.WriteLine ("Cancelled"); }

The CancellationToken struct provides a Register method that lets you register a
callback delegate that will be fired upon cancellation; it returns an object that can be
disposed to undo the registration.

Tasks generated by the compiler’s asynchronous functions automatically enter a
“Canceled” state upon an unhandled OperationCanceledException (IsCanceled
returns true, and IsFaulted returns false). The same goes for tasks created with
Task.Run for which you pass the (same) CancellationToken to the constructor. The
distinction between a faulted and a canceled task is unimportant in asynchronous
scenarios, in that both throw an OperationCanceledException when awaited; it
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matters in advanced parallel programming scenarios (specifically conditional con‐
tinuations). We pick up this topic in “Canceling Tasks” on page 957.

Progress Reporting
Sometimes, you’ll want an asynchronous operation to report back progress as it’s
running. A simple solution is to pass an Action delegate to the asynchronous
method, which the method fires whenever progress changes:

Task Foo (Action<int> onProgressPercentChanged)
{
  return Task.Run (() =>
  {
    for (int i = 0; i < 1000; i++)
    {
      if (i % 10 == 0) onProgressPercentChanged (i / 10);
      // Do something compute-bound...
    }
  });
}

Here’s how we could call it:

Action<int> progress = i => Console.WriteLine (i + " %");
await Foo (progress);

Although this works well in a console application, it’s not ideal in rich-client scenar‐
ios because it reports progress from a worker thread, causing potential thread-safety
issues for the consumer. (In effect, we’ve allowed a side effect of concurrency to
“leak” to the outside world, which is unfortunate given that the method is otherwise
isolated if called from a UI thread.)

IProgress<T> and Progress<T>
The CLR provides a pair of types to solve this problem: an interface called
IProgress<T> and a class that implements this interface called Progress<T>. Their
purpose, in effect, is to “wrap” a delegate so that UI applications can report progress
safely through the synchronization context.

The interface defines just one method:

public interface IProgress<in T>
{
  void Report (T value);
}

Using IProgress<T> is easy; our method hardly changes:

Task Foo (IProgress<int> onProgressPercentChanged)
{
  return Task.Run (() =>
  {
    for (int i = 0; i < 1000; i++)
    {
      if (i % 10 == 0) onProgressPercentChanged.Report (i / 10);
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      // Do something compute-bound...
    }
  });
}

The Progress<T> class has a constructor that accepts a delegate of type Action<T>
that it wraps:

var progress = new Progress<int> (i => Console.WriteLine (i + " %"));
await Foo (progress);

(Progress<T> also has a ProgressChanged event that you can subscribe to instead of
[or in addition to] passing an action delegate to the constructor.) Upon instantiating
Progress<int>, the class captures the synchronization context, if present. When
Foo then calls Report, the delegate is invoked through that context.

Asynchronous methods can implement more elaborate progress reporting by
replacing int with a custom type that exposes a range of properties.

If you’re familiar with Rx, you’ll notice that IProgress<T>
together with the task returned by the asynchronous function
provide a feature set similar to IObserver<T>. The difference
is that a task can expose a “final” return value in addition to
(and differently typed to) the values emitted by IProgress<T>.

Values emitted by IProgress<T> are typically “throwaway”
values (e.g., percent complete or bytes downloaded so far),
whereas values pushed by IObserver<T>’s OnNext typically
comprise the result itself and are the very reason for calling it.

Asynchronous methods in WinRT also offer progress reporting, although the proto‐
col is complicated by COM’s (relatively) primitive type system. Instead of accepting
an IProgress<T> object, asynchronous WinRT methods that report progress return
one of the following interfaces, in place of IAsyncAction and IAsyncOperation
<TResult>:

IAsyncActionWithProgress<TProgress>
IAsyncOperationWithProgress<TResult, TProgress>

Interestingly, both are based on IAsyncInfo (not IAsyncAction and IAsyncOpera
tion<TResult>).

The good news is that the AsTask extension method is also overloaded to accept
IProgress<T> for the aforementioned interfaces, so as a .NET consumer, you can
ignore the COM interfaces and do this:

var progress = new Progress<int> (i => Console.WriteLine (i + " %"));
CancellationToken cancelToken = ...
var task = someWinRTobject.FooAsync().AsTask (cancelToken, progress);
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The Task-Based Asynchronous Pattern
.NET exposes hundreds of task-returning asynchronous methods that you can
await (mainly related to I/O). Most of these methods (at least partly) follow a
pattern called the Task-Based Asynchronous Pattern (TAP), which is a sensible
formalization of what we have described to date. A TAP method does the following:

• Returns a “hot” (running) Task or Task<TResult>•
• Has an “Async” suffix (except for special cases such as task combinators)•

• Is overloaded to accept a cancellation token and/or IProgress<T> if it supports•
cancellation and/or progress reporting

• Returns quickly to the caller (has only a small initial synchronous phase)•
• Does not tie up a thread if I/O-bound•

As we’ve seen, TAP methods are easy to write with C#’s asynchronous functions.

Task Combinators
A nice consequence of there being a consistent protocol for asynchronous functions
(whereby they consistently return tasks) is that it’s possible to use and write task
combinators—functions that usefully combine tasks, without regard for what those
specific tasks do.

The CLR includes two task combinators: Task.WhenAny and Task.WhenAll. In
describing them, we’ll assume the following methods are defined:

async Task<int> Delay1() { await Task.Delay (1000); return 1; }
async Task<int> Delay2() { await Task.Delay (2000); return 2; }
async Task<int> Delay3() { await Task.Delay (3000); return 3; }

WhenAny
Task.WhenAny returns a task that completes when any one of a set of tasks complete.
The following completes in one second:

Task<int> winningTask = await Task.WhenAny (Delay1(), Delay2(), Delay3());
Console.WriteLine ("Done");
Console.WriteLine (winningTask.Result);   // 1

Because Task.WhenAny itself returns a task, we await it, which returns the task that
finished first. Our example is entirely nonblocking—including the last line when
we access the Result property (because winningTask will already have finished).
Nonetheless, it’s usually better to await the winningTask:

Console.WriteLine (await winningTask);   // 1

because any exceptions are then rethrown without an AggregateException wrap‐
ping. In fact, we can perform both awaits in one step:

int answer = await await Task.WhenAny (Delay1(), Delay2(), Delay3());
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If a nonwinning task subsequently faults, the exception will go unobserved unless
you subsequently await the task (or query its Exception property).

WhenAny is useful for applying timeouts or cancellation to operations that don’t
otherwise support it:

Task<string> task = SomeAsyncFunc();
Task winner = await (Task.WhenAny (task, Task.Delay(5000)));
if (winner != task) throw new TimeoutException();
string result = await task;   // Unwrap result/re-throw

Notice that because in this case we’re calling WhenAny with differently typed tasks,
the winner is reported as a plain Task (rather than a Task<string>).

WhenAll
Task.WhenAll returns a task that completes when all of the tasks that you pass
to it complete. The following completes after three seconds (and demonstrates the
fork/join pattern):

await Task.WhenAll (Delay1(), Delay2(), Delay3());

We could get a similar result by awaiting task1, task2, and task3 in turn rather
than using WhenAll:

Task task1 = Delay1(), task2 = Delay2(), task3 = Delay3();
await task1; await task2; await task3;

The difference (apart from it being less efficient by virtue of requiring three awaits
rather than one) is that should task1 fault, we’ll never get to await task2/task3, and
any of their exceptions will go unobserved.

In contrast, Task.WhenAll doesn’t complete until all tasks have completed—even
when there’s a fault. And if there are multiple faults, their exceptions are combined
into the task’s AggregateException (this is when AggregateException actually
becomes useful—should you be interested in all the exceptions, that is). Awaiting
the combined task, however, throws only the first exception, so to see all the
exceptions, you need to do this:

Task task1 = Task.Run (() => { throw null; } );
Task task2 = Task.Run (() => { throw null; } );
Task all = Task.WhenAll (task1, task2);
try { await all; }
catch
{
  Console.WriteLine (all.Exception.InnerExceptions.Count);   // 2 
}   

Calling WhenAll with tasks of type Task<TResult> returns a Task<TResult[]>,
giving the combined results of all the tasks. This reduces to a TResult[] when
awaited:
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Task<int> task1 = Task.Run (() => 1);
Task<int> task2 = Task.Run (() => 2);
int[] results = await Task.WhenAll (task1, task2);   // { 1, 2 }

To give a practical example, the following downloads URIs in parallel and sums
their total length:

async Task<int> GetTotalSize (string[] uris)
{
  IEnumerable<Task<byte[]>> downloadTasks = uris.Select (uri => 
    new WebClient().DownloadDataTaskAsync (uri));
        
  byte[][] contents = await Task.WhenAll (downloadTasks);
  return contents.Sum (c => c.Length);
}

There’s a slight inefficiency here, though, in that we’re unnecessarily hanging onto
the byte arrays that we download until every task is complete. It would be more effi‐
cient if we collapsed byte arrays into their lengths immediately after downloading
them. This is where an asynchronous lambda comes in handy because we need to
feed an await expression into LINQ’s Select query operator:

async Task<int> GetTotalSize (string[] uris)
{
  IEnumerable<Task<int>> downloadTasks = uris.Select (async uri =>
    (await new WebClient().DownloadDataTaskAsync (uri)).Length);
        
  int[] contentLengths = await Task.WhenAll (downloadTasks);
  return contentLengths.Sum();
}

Custom combinators
It can be useful to write your own task combinators. The simplest “combinator”
accepts a single task, such as the following, which lets you await any task with a
timeout:

async static Task<TResult> WithTimeout<TResult> (this Task<TResult> task,
                                                 TimeSpan timeout)
{
  Task winner = await Task.WhenAny (task, Task.Delay (timeout))
                          .ConfigureAwait (false);
  if (winner != task) throw new TimeoutException();
  return await task.ConfigureAwait (false);   // Unwrap result/re-throw
}

Because this is very much a “library method” that doesn’t access external shared
state, we use ConfigureAwait(false) when awaiting to avoid potentially bouncing
to a UI synchronization context. We can further improve efficiency by canceling the
Task.Delay when the task completes on time (this avoids the small overhead of a
timer hanging around):

async static Task<TResult> WithTimeout<TResult> (this Task<TResult> task,
                                                 TimeSpan timeout)
{
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  var cancelSource = new CancellationTokenSource();
  var delay = Task.Delay (timeout, cancelSource.Token);
  Task winner = await Task.WhenAny (task, delay).ConfigureAwait (false);
  if (winner == task)
    cancelSource.Cancel();
  else
    throw new TimeoutException();
  return await task.ConfigureAwait (false);   // Unwrap result/re-throw
}

The following lets you “abandon” a task via a CancellationToken:

static Task<TResult> WithCancellation<TResult> (this Task<TResult> task,
                                          CancellationToken cancelToken)
{
  var tcs = new TaskCompletionSource<TResult>();
  var reg = cancelToken.Register (() => tcs.TrySetCanceled ());
  task.ContinueWith (ant => 
  {
    reg.Dispose();
    if (ant.IsCanceled)
      tcs.TrySetCanceled();
    else if (ant.IsFaulted)
      tcs.TrySetException (ant.Exception.InnerExceptions);
    else
      tcs.TrySetResult (ant.Result);
  });
  return tcs.Task;
}

Task combinators can be complex to write, sometimes requiring the use of signaling
constructs, which we cover in Chapter 21. This is actually a good thing, because it
keeps concurrency-related complexity out of your business logic and into reusable
methods that can be tested in isolation.

The next combinator works like WhenAll, except that if any of the tasks fault, the
resultant task faults immediately:

async Task<TResult[]> WhenAllOrError<TResult> 
  (params Task<TResult>[] tasks)
{
  var killJoy = new TaskCompletionSource<TResult[]>();
  foreach (var task in tasks)
    task.ContinueWith (ant =>
    {
      if (ant.IsCanceled) 
        killJoy.TrySetCanceled();
      else if (ant.IsFaulted)
        killJoy.TrySetException (ant.Exception.InnerExceptions);
    });
  return await await Task.WhenAny (killJoy.Task, Task.WhenAll (tasks))
                         .ConfigureAwait (false);
}
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We begin by creating a TaskCompletionSource whose sole job is to end the party if
a task faults. Hence, we never call its SetResult method, only its TrySetCanceled
and TrySetException methods. In this case, ContinueWith is more convenient
than GetAwaiter().OnCompleted because we’re not accessing the tasks’ results and
wouldn’t want to bounce to a UI thread at that point.

Asynchronous Locking
In “Asynchronous semaphores and locks” on page 906, we describe how to use
SemaphoreSlim to lock or limit concurrency asynchronously.

Obsolete Patterns
.NET employs other patterns for asynchrony, which precede tasks and asynchro‐
nous functions. These are rarely required now that task-based asynchrony has
become the dominant pattern.

Asynchronous Programming Model
The oldest pattern is called the Asynchronous Programming Model (APM) and uses
a pair of methods starting in “Begin” and “End” and an interface called IAsyncRe
sult. To illustrate, let’s take the Stream class in System.IO and look at its Read
method. First, the synchronous version:

public int Read (byte[] buffer, int offset, int size);

You can probably predict what the task-based asynchronous version looks like:

public Task<int> ReadAsync (byte[] buffer, int offset, int size);

Now let’s examine the APM version:

public IAsyncResult BeginRead (byte[] buffer, int offset, int size,
                               AsyncCallback callback, object state);
public int EndRead (IAsyncResult asyncResult);

Calling the Begin* method initiates the operation, returning an IAsyncResult
object that acts as a token for the asynchronous operation. When the operation
completes (or faults), the AsyncCallback delegate fires:

public delegate void AsyncCallback (IAsyncResult ar);

Whoever handles this delegate then calls the End* method, which provides the
operation’s return value as well as rethrowing an exception if the operation faulted.

The APM is not only awkward to use but is surprisingly difficult to implement cor‐
rectly. The easiest way to deal with APM methods is to call the Task.Factory.From
Async adapter method, which converts an APM method pair into a Task. Internally,
it uses a TaskCompletionSource to give you a task that’s signaled when an APM
operation completes or faults.

Obsolete Patterns | 689

C
o

ncurrency and
A

synchro
ny



The FromAsync method requires the following parameters:

• A delegate specifying a BeginXXX method•

• A delegate specifying an EndXXX method•
• Additional arguments that will get passed to these methods•

FromAsync is overloaded to accept delegate types and arguments that match nearly
all the asynchronous method signatures found in .NET. For instance, assuming
stream is a Stream and buffer is a byte[], we could do this:

Task<int> readChunk = Task<int>.Factory.FromAsync (
  stream.BeginRead, stream.EndRead, buffer, 0, 1000, null);

Event-Based Asynchronous Pattern
The Event-Based Asynchronous Pattern (EAP) was introduced in 2005 to provide a
simpler alternative to the APM, particularly in UI scenarios. It was implemented
in only a handful of types, however, most notably WebClient in System.Net. The
EAP is just a pattern; no types are provided to assist. Essentially the pattern is this: a
class offers a family of members that internally manage concurrency, similar to the
following:

// These members are from the WebClient class:

public byte[] DownloadData (Uri address);    // Synchronous version
public void DownloadDataAsync (Uri address);
public void DownloadDataAsync (Uri address, object userToken);
public event DownloadDataCompletedEventHandler DownloadDataCompleted;

public void CancelAsync (object userState);  // Cancels an operation
public bool IsBusy { get; }                  // Indicates if still running

The *Async methods initiate an operation asynchronously. When the operation
completes, the *Completed event fires (automatically posting to the captured syn‐
chronization context if present). This event passes back an event arguments object
that contains the following:

• A flag indicating whether the operation was canceled (by the consumer calling•
CancelAsync)

• An Error object indicating an exception that was thrown (if any)•

• The userToken object if supplied when calling the Async method•

EAP types can also expose a progress reporting event, which fires whenever pro‐
gress changes (also posted through the synchronization context):

public event DownloadProgressChangedEventHandler DownloadProgressChanged;

Implementing the EAP requires a large amount of boilerplate code, making the
pattern poorly compositional.
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BackgroundWorker
BackgroundWorker in System.ComponentModel is a general-purpose implementa‐
tion of the EAP. It allows rich-client apps to start a worker thread and report
completion and percentage-based progress without needing to explicitly capture
synchronization context. Here’s an example:

var worker = new BackgroundWorker { WorkerSupportsCancellation = true };
worker.DoWork += (sender, args) =>
{                                      // This runs on a worker thread
  if (args.Cancel) return;
  Thread.Sleep(1000); 
  args.Result = 123;
};
worker.RunWorkerCompleted += (sender, args) =>    
{                                                  // Runs on UI thread
  // We can safely update UI controls here...
  if (args.Cancelled)
    Console.WriteLine ("Cancelled");
  else if (args.Error != null)
    Console.WriteLine ("Error: " + args.Error.Message);
  else
    Console.WriteLine ("Result is: " + args.Result);
};
worker.RunWorkerAsync();   // Captures sync context and starts operation

RunWorkerAsync starts the operation, firing the DoWork event on a pooled worker
thread. It also captures the synchronization context, and when the operation com‐
pletes (or faults), the RunWorkerCompleted event is invoked through that synchroni‐
zation context (like a continuation).

BackgroundWorker creates coarse-grained concurrency, in that the DoWork event
runs entirely on a worker thread. If you need to update UI controls in that
event handler (other than posting a percentage-complete message), you must use
Dispatcher.BeginInvoke or similar).

We describe BackgroundWorker in more detail at http://albahari.com/threading.
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15
Streams and I/O

This chapter describes the fundamental types for input and output in .NET, with
emphasis on the following topics:

• The .NET stream architecture and how it provides a consistent programming•
interface for reading and writing across a variety of I/O types

• Classes for manipulating files and directories on disk•
• Specialized streams for compression, named pipes, and memory-mapped files•

This chapter concentrates on the types in the System.IO namespace, the home of
lower-level I/O functionality.

Stream Architecture
The .NET stream architecture centers on three concepts: backing stores, decorators,
and adapters, as shown in Figure 15-1.

A backing store is the endpoint that makes input and output useful, such as a file or
network connection. Precisely, it is either or both of the following:

• A source from which bytes can be sequentially read•
• A destination to which bytes can be sequentially written•
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Figure 15-1. Stream architecture

A backing store is of no use, though, unless exposed to the programmer. A Stream
is the standard .NET class for this purpose; it exposes a standard set of methods for
reading, writing, and positioning. Unlike an array, for which all the backing data
exists in memory at once, a stream deals with data serially—either one byte at a time
or in blocks of a manageable size. Hence, a stream can use a small, fixed amount of
memory regardless of the size of its backing store.

Streams fall into two categories:

Backing store streams
These are hardwired to a particular type of backing store, such as FileStream
or NetworkStream.

Decorator streams
These feed off another stream, transforming the data in some way, such as
DeflateStream or CryptoStream.

Decorator streams have the following architectural benefits:

• They liberate backing store streams from needing to implement such features•
as compression and encryption themselves.

• Streams don’t suffer a change of interface when decorated.•
• You connect decorators at runtime.•
• You can chain decorators together (e.g., a compressor followed by an•

encryptor).
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Both backing store and decorator streams deal exclusively in bytes. Although this is
flexible and efficient, applications often work at higher levels such as text or XML.
Adapters bridge this gap by wrapping a stream in a class with specialized methods
typed to a particular format. For example, a text reader exposes a ReadLine method;
an XML writer exposes a WriteAttributes method.

An adapter wraps a stream, just like a decorator. Unlike a
decorator, however, an adapter is not itself a stream; it typically
hides the byte-oriented methods completely.

To summarize, backing store streams provide the raw data; decorator streams pro‐
vide transparent binary transformations such as encryption; adapters offer typed
methods for dealing in higher-level types such as strings and XML.

Figure 15-1 illustrates their associations. To compose a chain, you simply pass one
object into another’s constructor.

Using Streams
The abstract Stream class is the base for all streams. It defines methods and prop‐
erties for three fundamental operations: reading, writing, and seeking, as well as
for administrative tasks such as closing, flushing, and configuring timeouts (see
Table 15-1).

Table 15-1. Stream class members

Category Members

Reading public abstract bool CanRead { get; }

public abstract int Read (byte[] buffer, int offset, int count)

public virtual int ReadByte();

Writing public abstract bool CanWrite { get; }

public abstract void Write (byte[] buffer, int offset, int 

count);

public virtual void WriteByte (byte value);

Seeking public abstract bool CanSeek { get; }

public abstract long Position { get; set; }

public abstract void SetLength (long value);

public abstract long Length { get; }

public abstract long Seek (long offset, SeekOrigin origin);

Closing/
flushing

public virtual void Close();

public void Dispose();

public abstract void Flush();
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Category Members

Timeouts public virtual bool CanTimeout { get; }

public virtual int ReadTimeout { get; set; }

public virtual int WriteTimeout { get; set; }

Other public static readonly Stream Null; // "Null" stream

public static Stream Synchronized (Stream stream);

There are also asynchronous versions of the Read and Write methods, both of
which return Tasks and optionally accept a cancellation token, and overloads that
work with Span<T> and Memory<T> types that we describe in Chapter 23.

In the following example, we use a file stream to read, write, and seek:

using System;
using System.IO;

// Create a file called test.txt in the current directory:
using (Stream s = new FileStream ("test.txt", FileMode.Create))
{
  Console.WriteLine (s.CanRead);       // True
  Console.WriteLine (s.CanWrite);      // True
  Console.WriteLine (s.CanSeek);       // True

  s.WriteByte (101);
  s.WriteByte (102);
  byte[] block = { 1, 2, 3, 4, 5 };
  s.Write (block, 0, block.Length);     // Write block of 5 bytes

  Console.WriteLine (s.Length);         // 7
  Console.WriteLine (s.Position);       // 7
  s.Position = 0;                       // Move back to the start

  Console.WriteLine (s.ReadByte());     // 101
  Console.WriteLine (s.ReadByte());     // 102

  // Read from the stream back into the block array:
  Console.WriteLine (s.Read (block, 0, block.Length));   // 5

  // Assuming the last Read returned 5, we'll be at
  // the end of the file, so Read will now return 0:
  Console.WriteLine (s.Read (block, 0, block.Length));   // 0
}

Reading or writing asynchronously is simply a question of calling ReadAsync/Write
Async instead of Read/Write, and awaiting the expression (we must also add the
async keyword to the calling method, as we described in Chapter 14):

async static void AsyncDemo()
{
  using (Stream s = new FileStream ("test.txt", FileMode.Create))
  {
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    byte[] block = { 1, 2, 3, 4, 5 };
    await s.WriteAsync (block, 0, block.Length);    // Write asychronously

    s.Position = 0;                       // Move back to the start

    // Read from the stream back into the block array:
    Console.WriteLine (await s.ReadAsync (block, 0, block.Length));   // 5
  }
}

The asynchronous methods make it easy to write responsive and scalable appli‐
cations that work with potentially slow streams (particularly network streams),
without tying up a thread.

For the sake of brevity, we’ll continue to use synchronous
methods for most of the examples in this chapter; however,
we recommend the asynchronous Read/Write operations as
preferable in most scenarios involving network I/O.

Reading and Writing
A stream can support reading, writing, or both. If CanWrite returns false, the
stream is read-only; if CanRead returns false, the stream is write-only.

Read receives a block of data from the stream into an array. It returns the number of
bytes received, which is always either less than or equal to the count argument. If it’s
less than count, it means that either the end of the stream has been reached or the
stream is giving you the data in smaller chunks (as is often the case with network
streams). In either case, the balance of bytes in the array will remain unwritten, their
previous values preserved.

With Read, you can be certain you’ve reached the end of the
stream only when the method returns 0. So, if you have a
1,000-byte stream, the following code might fail to read it all
into memory:

// Assuming s is a stream:
byte[] data = new byte [1000];
s.Read (data, 0, data.Length);

The Read method could read anywhere from 1 to 1,000 bytes,
leaving the balance of the stream unread.

Here’s the correct way to read a 1,000-byte stream via the Read method:

byte[] data = new byte [1000];

// bytesRead will always end up at 1000, unless the stream is
// itself smaller in length:

int bytesRead = 0;
int chunkSize = 1;
while (bytesRead < data.Length && chunkSize > 0)
  bytesRead +=
    chunkSize = s.Read (data, bytesRead, data.Length - bytesRead);
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To make this easier, from .NET 7, the Stream class includes helper methods called
ReadExactly and ReadAtLeast (and async versions of each). The following reads
exactly 1,000 bytes from the stream (throwing an exception if the stream ends
before then):

byte[] data = new byte [1000];
s.ReadExactly (data);   // Reads exactly 1000 bytes

The last line is equivalent to:

s.ReadExactly (data, offset:0, count:1000);

The BinaryReader type provides another solution:
byte[] data = new BinaryReader (s).ReadBytes (1000);

If the stream is less than 1,000 bytes long, the byte array
returned reflects the actual stream size. If the stream is seeka‐
ble, you can read its entire contents by replacing 1000 with
(int)s.Length.

We describe the BinaryReader type further in “Stream Adapt‐
ers” on page 709.

The ReadByte method is simpler: it reads just a single byte, returning −1 to indicate
the end of the stream. ReadByte actually returns an int rather than a byte because
the latter cannot return −1.

The Write and WriteByte methods send data to the stream. If they are unable to
send the specified bytes, an exception is thrown.

In the Read and Write methods, the offset argument refers
to the index in the buffer array at which reading or writing
begins, not the position within the stream.

Seeking
A stream is seekable if CanSeek returns true. With a seekable stream (such as a file
stream), you can query or modify its Length (by calling SetLength) and at any time
change the Position at which you’re reading or writing. The Position property is
relative to the beginning of the stream; the Seek method, however, allows you to
move relative to the current position or the end of the stream.

Changing the Position on a FileStream typically takes a few
microseconds. If you’re doing this millions of times in a loop,
the MemoryMappedFile class might be a better choice than a
FileStream (see “Memory-Mapped Files” on page 736).

With a nonseekable stream (such as an encryption stream), the only way to deter‐
mine its length is to read it completely through. Furthermore, if you need to reread
a previous section, you must close the stream and start afresh with a new one.
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Closing and Flushing
Streams must be disposed after use to release underlying resources such as file and
socket handles. A simple way to guarantee this is by instantiating streams within
using blocks. In general, streams follow standard disposal semantics:

• Dispose and Close are identical in function.•
• Disposing or closing a stream repeatedly causes no error.•

Closing a decorator stream closes both the decorator and its backing store stream.
With a chain of decorators, closing the outermost decorator (at the head of the
chain) closes the whole lot.

Some streams internally buffer data to and from the backing store to lessen round-
tripping and so improve performance (file streams are a good example of this). This
means that data you write to a stream might not hit the backing store immediately;
it can be delayed as the buffer fills up. The Flush method forces any internally buf‐
fered data to be written immediately. Flush is called automatically when a stream is
closed, so you never need to do the following:

s.Flush(); s.Close();

Timeouts
A stream supports read and write timeouts if CanTimeout returns true. Network
streams support timeouts; file and memory streams do not. For streams that sup‐
port timeouts, the ReadTimeout and WriteTimeout properties determine the desired
timeout in milliseconds, where 0 means no timeout. The Read and Write methods
indicate that a timeout has occurred by throwing an exception.

The asynchronous ReadAsync/WriteAsync methods do not support timeouts;
instead you can pass a cancellation token into these methods.

Thread Safety
As a rule, streams are not thread-safe, meaning that two threads cannot concur‐
rently read or write to the same stream without possible error. The Stream class
offers a simple workaround via the static Synchronized method. This method
accepts a stream of any type and returns a thread-safe wrapper. The wrapper works
by obtaining an exclusive lock around each read, write, or seek, ensuring that
only one thread can perform such an operation at a time. In practice, this allows
multiple threads to simultaneously append data to the same stream—other kinds of
activities (such as concurrent reading) require additional locking to ensure that each
thread accesses the desired portion of the stream. We discuss thread safety fully in
Chapter 21.
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From .NET 6, you can use the RandomAccess class for per‐
formant thread-safe file I/O operations. RandomAccess also
lets you pass in multiple buffers to improve performance.

Backing Store Streams
Figure 15-2 shows the key backing store streams provided by .NET. A “null stream”
is also available via the Stream’s static Null field. Null streams can be useful when
writing unit tests.

Figure 15-2. Backing store streams

In the following sections, we describe FileStream and MemoryStream; in the final
section in this chapter, we describe IsolatedStorageStream. In Chapter 16, we
cover NetworkStream.

FileStream
Earlier in this section, we demonstrated the basic use of a FileStream to read and
write bytes of data. Let’s now examine the special features of this class.

If you’re still using Universal Windows Platform [UWP],
you can also do file I/O with the types in Windows.Storage.
We describe this in the online supplement at http://www.alba
hari.com/nutshell.

Constructing a FileStream
The simplest way to instantiate a FileStream is to use one of the following static
façade methods on the File class:

FileStream fs1 = File.OpenRead  ("readme.bin");            // Read-only
FileStream fs2 = File.OpenWrite ("writeme.tmp");           // Write-only
FileStream fs3 = File.Create    ("readwrite.tmp");         // Read/write
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OpenWrite and Create differ in behavior if the file already exists. Create truncates
any existing content; OpenWrite leaves existing content intact with the stream posi‐
tioned at zero. If you write fewer bytes than were previously in the file, OpenWrite
leaves you with a mixture of old and new content.

You can also directly instantiate a FileStream. Its constructors provide access
to every feature, allowing you to specify a filename or low-level file handle, file
creation and access modes, and options for sharing, buffering, and security. The
following opens an existing file for read/write access without overwriting it (the
using keyword ensures it is disposed when fs exits scope):

using var fs = new FileStream ("readwrite.tmp", FileMode.Open);

We look closer at FileMode shortly.

Shortcut Methods on the File Class
The following static methods read an entire file into memory in one step:

• File.ReadAllText (returns a string)•

• File.ReadAllLines (returns an array of strings)•

• File.ReadAllBytes (returns a byte array)•

The following static methods write an entire file in one step:

• File.WriteAllText•

• File.WriteAllLines•

• File.WriteAllBytes•

• File.AppendAllText (great for appending to a log file)•

There’s also a static method called File.ReadLines: this is like ReadAllLines except
that it returns a lazily evaluated IEnumerable<string>. This is more efficient because
it doesn’t load the entire file into memory at once. LINQ is ideal for consuming the
results: the following calculates the number of lines greater than 80 characters in
length:

int longLines = File.ReadLines ("filePath")
                    .Count (l => l.Length > 80);

Specifying a filename
A filename can be either absolute (e.g., c:\temp\test.txt—or in Unix, /tmp/test.txt)
or relative to the current directory (e.g., test.txt or temp\test.txt). You can access
or change the current directory via the static Environment.CurrentDirectory
property.
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When a program starts, the current directory might or might
not coincide with that of the program’s executable. For this
reason, you should never rely on the current directory for
locating additional runtime files packaged along with your
executable.

AppDomain.CurrentDomain.BaseDirectory returns the application base directory,
which in normal cases is the folder containing the program’s executable. To specify a
filename relative to this directory, you can call Path.Combine:

string baseFolder = AppDomain.CurrentDomain.BaseDirectory;
string logoPath = Path.Combine (baseFolder, "logo.jpg");
Console.WriteLine (File.Exists (logoPath));

You can read and write across a Windows network via a Universal Naming Conven‐
tion (UNC) path, such as \\JoesPC\PicShare\pic.jpg or \\10.1.1.2\PicShare\pic.jpg.
(To access a Windows file share from macOS or Unix, mount it to your filesystem
following instructions specific to your OS, and then open it using an ordinary path
from C#).

Specifying a FileMode
All of FileStream’s constructors that accept a filename also require a FileMode
enum argument. Figure 15-3 shows how to choose a FileMode, and the choices yield
results akin to calling a static method on the File class.

Figure 15-3. Choosing a FileMode
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File.Create and FileMode.Create will throw an exception
if used on hidden files. To overwrite a hidden file, you must
delete and re-create it:

File.Delete ("hidden.txt");
using var file = File.Create ("hidden.txt");
...

Constructing a FileStream with just a filename and FileMode gives you (with just
one exception) a readable writable stream. You can request a downgrade if you also
supply a FileAccess argument:

[Flags]
public enum FileAccess { Read = 1, Write = 2, ReadWrite = 3 }

The following returns a read-only stream, equivalent to calling File.OpenRead:

using var fs = new FileStream ("x.bin", FileMode.Open, FileAccess.Read);
...

FileMode.Append is the odd one out: with this mode, you get a write-only stream.
To append with read-write support, you must instead use FileMode.Open or File
Mode.OpenOrCreate and then seek the end of the stream:

using var fs = new FileStream ("myFile.bin", FileMode.Open);

fs.Seek (0, SeekOrigin.End);
...

Advanced FileStream features
Here are other optional arguments you can include when constructing a File
Stream:

• A FileShare enum describing how much access to grant other processes•
wanting to dip into the same file before you’ve finished (None, Read [default],
ReadWrite, or Write).

• The size, in bytes, of the internal buffer (default is currently 4 KB).•
• A flag indicating whether to defer to the operating system for asynchronous•

I/O.

• A FileOptions flags enum for requesting operating system encryption (Encryp•
ted), automatic deletion upon closure for temporary files (DeleteOnClose),
and optimization hints (RandomAccess and SequentialScan). There is also a
WriteThrough flag that requests that the OS disable write-behind caching; this
is for transactional files or logs. Flags not supported by the underlying OS are
silently ignored.

Opening a file with FileShare.ReadWrite allows other processes or users to simul‐
taneously read and write to the same file. To avoid chaos, you can all agree to lock
specified portions of the file before reading or writing, using these methods:
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// Defined on the FileStream class:
public virtual void Lock   (long position, long length);
public virtual void Unlock (long position, long length);

Lock throws an exception if part or all of the requested file section has already been
locked.

MemoryStream
MemoryStream uses an array as a backing store. This partly defeats the purpose of
having a stream because the entire backing store must reside in memory at once.
MemoryStream is still useful when you need random access to a nonseekable stream.
If you know the source stream will be of a manageable size, you can copy it into a
MemoryStream as follows:

var ms = new MemoryStream();
sourceStream.CopyTo (ms);

You can convert a MemoryStream to a byte array by calling ToArray. The GetBuffer
method does the same job more efficiently by returning a direct reference to the
underlying storage array; unfortunately, this array is usually longer than the stream’s
real length.

Closing and flushing a MemoryStream is optional. If you close
a MemoryStream, you can no longer read or write to it, but
you are still permitted to call ToArray to obtain the underlying
data. Flush does absolutely nothing on a memory stream.

You can find further MemoryStream examples in “Compression Streams” on page
718 and in “Overview” on page 875.

PipeStream
PipeStream provides a simple means by which one process can communicate with
another through the operating system’s pipes protocol. There are two kinds of pipe:

Anonymous pipe (faster)
Allows one-way communication between a parent and child process on the
same computer

Named pipe (more flexible)
Allows two-way communication between arbitrary processes on the same com‐
puter or different computers across a network

A pipe is good for interprocess communication (IPC) on a single computer: it
doesn’t rely on a network transport, which means no network protocol overhead,
and it has no issues with firewalls.
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Pipes are stream-based, so one process waits to receive a series
of bytes while another process sends them. An alternative is
for processes to communicate via a block of shared memory;
we describe how to do this in “Memory-Mapped Files” on
page 736.

PipeStream is an abstract class with four concrete subtypes. Two are used for
anonymous pipes and the other two for named pipes:

Anonymous pipes
AnonymousPipeServerStream and AnonymousPipeClientStream

Named pipes
NamedPipeServerStream and NamedPipeClientStream

Named pipes are simpler to use, so we describe them first.

Named pipes
With named pipes, the parties communicate through a pipe of the same name. The
protocol defines two distinct roles: the client and server. Communication happens
between the client and server as follows:

• The server instantiates a NamedPipeServerStream and then calls WaitForCon•
nection.

• The client instantiates a NamedPipeClientStream and then calls Connect (with•
an optional timeout).

The two parties then read and write the streams to communicate.

The following example demonstrates a server that sends a single byte (100) and then
waits to receive a single byte:

using var s = new NamedPipeServerStream ("pipedream");

s.WaitForConnection();
s.WriteByte (100);                // Send the value 100.
Console.WriteLine (s.ReadByte());

Here’s the corresponding client code:

using var s = new NamedPipeClientStream ("pipedream");

s.Connect();
Console.WriteLine (s.ReadByte());
s.WriteByte (200);                 // Send the value 200 back.

Named pipe streams are bidirectional by default, so either party can read or write
their stream. This means that the client and server must agree on some protocol to
coordinate their actions, so both parties don’t end up sending or receiving at once.
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There also needs to be agreement on the length of each transmission. Our example
was trivial in this regard, because we bounced just a single byte in each direction.
To help with messages longer than one byte, pipes provide a message transmission
mode (Windows only). If this is enabled, a party calling Read can know when a
message is complete by checking the IsMessageComplete property. To demonstrate,
we begin by writing a helper method that reads a whole message from a message-
enabled PipeStream—in other words, reads until IsMessageComplete is true:

static byte[] ReadMessage (PipeStream s)
{
  MemoryStream ms = new MemoryStream();
  byte[] buffer = new byte [0x1000];      // Read in 4 KB blocks

  do    { ms.Write (buffer, 0, s.Read (buffer, 0, buffer.Length)); }
  while (!s.IsMessageComplete);

  return ms.ToArray();
}

(To make this asynchronous, replace “s.Read” with “await s.ReadAsync”.)

You cannot determine whether a PipeStream has finished
reading a message simply by waiting for Read to return 0. This
is because, unlike most other stream types, pipe streams and
network streams have no definite end. Instead, they temporar‐
ily “dry up” between message transmissions.

Now we can activate message transmission mode. On the server, this is done by
specifying PipeTransmissionMode.Message when constructing the stream:

using var s = new NamedPipeServerStream ("pipedream", PipeDirection.InOut,
                                          1, PipeTransmissionMode.Message);

s.WaitForConnection();

byte[] msg = Encoding.UTF8.GetBytes ("Hello");
s.Write (msg, 0, msg.Length);

Console.WriteLine (Encoding.UTF8.GetString (ReadMessage (s)));

On the client, we activate message transmission mode by setting ReadMode after
calling Connect:

using var s = new NamedPipeClientStream ("pipedream");

s.Connect();
s.ReadMode = PipeTransmissionMode.Message;

Console.WriteLine (Encoding.UTF8.GetString (ReadMessage (s)));

byte[] msg = Encoding.UTF8.GetBytes ("Hello right back!");
s.Write (msg, 0, msg.Length);
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Message mode is supported only on Windows. Other plat‐
forms throw PlatformNotSupportedException.

Anonymous pipes
An anonymous pipe provides a one-way communication stream between a parent
and child process. Instead of using a system-wide name, anonymous pipes tune in
through a private handle.

As with named pipes, there are distinct client and server roles. The system of
communication is a little different, however, and proceeds as follows:

1. The server instantiates an AnonymousPipeServerStream, committing to a Pipe1.
Direction of In or Out.

2. The server calls GetClientHandleAsString to obtain an identifier for the pipe,2.
which it then passes to the client (typically as an argument when starting the
child process).

3. The child process instantiates an AnonymousPipeClientStream, specifying the3.
opposite PipeDirection.

4. The server releases the local handle that was generated in Step 2, by calling4.
DisposeLocalCopyOfClientHandle.

5. The parent and child processes communicate by reading/writing the stream.5.

Because anonymous pipes are unidirectional, a server must create two pipes for
bidirectional communication. The following Console program creates two pipes
(input and output) and then starts up a child process. It then sends a single byte to
the child process, and receives a single byte in return:

class Program
{
  static void Main (string[] args)
  {
    if (args.Length == 0)
      // No arguments signals server mode
      AnonymousPipeServer();
    else
      // We pass in the pipe handle IDs as arguments to signal client mode
      AnonymousPipeClient (args [0], args [1]);
  }

  static void AnonymousPipeClient (string rxID, string txID)
  {
    using var rx = new AnonymousPipeClientStream (PipeDirection.In, rxID);
    using var tx = new AnonymousPipeClientStream (PipeDirection.Out, txID);

    Console.WriteLine ("Client received: " + rx.ReadByte ());
    tx.WriteByte (200);
  }
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  static void AnonymousPipeServer ()
  {
    using var tx = new AnonymousPipeServerStream (
                     PipeDirection.Out, HandleInheritability.Inheritable);
    using var rx = new AnonymousPipeServerStream (
                     PipeDirection.In, HandleInheritability.Inheritable);

    string txID = tx.GetClientHandleAsString ();
    string rxID = rx.GetClientHandleAsString ();

    // Create and start up a child process.
    // We'll use the same Console executable, but pass in arguments:
    string thisAssembly = Assembly.GetEntryAssembly().Location;
    string thisExe = Path.ChangeExtension (thisAssembly, ".exe");
    var args = $"{txID} {rxID}";
    var startInfo = new ProcessStartInfo (thisExe, args);

    startInfo.UseShellExecute = false;       // Required for child process
    Process p = Process.Start (startInfo);

    tx.DisposeLocalCopyOfClientHandle ();    // Release unmanaged
    rx.DisposeLocalCopyOfClientHandle ();    // handle resources.

    tx.WriteByte (100);    // Send a byte to the child process

    Console.WriteLine ("Server received: " + rx.ReadByte ());

    p.WaitForExit ();
  }
}

As with named pipes, the client and server must coordinate their sending and
receiving and agree on the length of each transmission. Anonymous pipes don’t,
unfortunately, support message mode, so you must implement your own protocol
for message length agreement. One solution is to send, in the first four bytes of
each transmission, an integer value defining the length of the message to follow.
The BitConverter class provides methods for converting between an integer and an
array of four bytes.

BufferedStream
BufferedStream decorates, or wraps, another stream with buffering capability, and
it is one of a number of decorator stream types in .NET, all of which are illustrated
in Figure 15-4.
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Figure 15-4. Decorator streams

Buffering improves performance by reducing round trips to the backing store.
Here’s how we wrap a FileStream in a 20 KB BufferedStream:

// Write 100K to a file:
File.WriteAllBytes ("myFile.bin", new byte [100000]);

using FileStream fs = File.OpenRead ("myFile.bin");
using BufferedStream bs = new BufferedStream (fs, 20000);  //20K buffer

bs.ReadByte();
Console.WriteLine (fs.Position);         // 20000

In this example, the underlying stream advances 20,000 bytes after reading just one
byte, thanks to the read-ahead buffering. We could call ReadByte another 19,999
times before the FileStream would be hit again.

Coupling a BufferedStream to a FileStream, as in this example, is of limited
value because FileStream already has built-in buffering. Its only use might be in
enlarging the buffer on an already constructed FileStream.

Closing a BufferedStream automatically closes the underlying backing store
stream.

Stream Adapters
A Stream deals only in bytes; to read or write data types such as strings, integers, or
XML elements, you must plug in an adapter. Here’s what .NET provides:

Text adapters (for string and character data)
TextReader, TextWriter
StreamReader, StreamWriter
StringReader, StringWriter

Binary adapters (for primitive types such as int, bool, string, and float)
BinaryReader, BinaryWriter

Stream Adapters | 709

Stream
s and

 I/O



XML adapters (covered in Chapter 11)
XmlReader, XmlWriter

Figure 15-5 illustrates the relationships between these types.

Figure 15-5. Readers and writers

Text Adapters
TextReader and TextWriter are the abstract base classes for adapters that deal
exclusively with characters and strings. Each has two general-purpose implementa‐
tions in .NET:

StreamReader/StreamWriter
Uses a Stream for its raw data store, translating the stream’s bytes into charac‐
ters or strings

StringReader/StringWriter
Implements TextReader/TextWriter using in-memory strings

Table 15-2 lists TextReader’s members by category. Peek returns the next character
in the stream without advancing the position. Both Peek and the zero-argument
version of Read return −1 if at the end of the stream; otherwise, they return an
integer that can be cast directly to a char. The overload of Read that accepts a
char[] buffer is identical in functionality to the ReadBlock method. ReadLine reads
until reaching either a CR (character 13) or LF (character 10), or a CR+LF pair in
sequence. It then returns a string, discarding the CR/LF characters.
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Table 15-2. TextReader members

Category Members

Reading one
char

public virtual int Peek(); // Cast the result to a char

public virtual int Read(); // Cast the result to a char

Reading many
chars

public virtual int Read (char[] buffer, int index, int 

count);

public virtual int ReadBlock (char[] buffer, int index, int 

count);

public virtual string ReadLine();

public virtual string ReadToEnd();

Closing public virtual void Close();

public void Dispose(); // Same as Close

Other public static readonly TextReader Null;

public static TextReader Synchronized (TextReader reader);

Environment.NewLine returns the new-line sequence for the
current OS.

On Windows, this is "\r\n" (think “ReturN”) and is loosely
modeled on a mechanical typewriter: a CR (character 13)
followed by an LF (character 10). Reverse the order and you’ll
get either two new lines or none!

On Unix and macOS, it’s simply "\n".

TextWriter has analogous methods for writing, as shown in Table 15-3. The Write
and WriteLine methods are additionally overloaded to accept every primitive type,
plus the object type. These methods simply call the ToString method on whatever
is passed in (optionally through an IFormatProvider specified either when calling
the method or when constructing the TextWriter).

Table 15-3. TextWriter members

Category Members

Writing one char public virtual void Write (char value);

Writing many chars public virtual void Write (string value);

public virtual void Write (char[] buffer, int index, int 

count);

public virtual void Write (string format, params object[] 

arg);

public virtual void WriteLine (string value);

Stream Adapters | 711

Stream
s and

 I/O



Category Members

Closing and
flushing

public virtual void Close();

public void Dispose(); // Same as Close

public virtual void Flush();

Formatting and
encoding

public virtual IFormatProvider FormatProvider { get; }

public virtual string NewLine { get; set; }

public abstract Encoding Encoding { get; }

Other public static readonly TextWriter Null;

public static TextWriter Synchronized (TextWriter writer);

WriteLine simply appends the given text with Environment.NewLine. You can
change this via the NewLine property (this can be useful for interoperability with
Unix file formats).

As with Stream, TextReader and TextWriter offer task-based
asynchronous versions of their read/write methods.

StreamReader and StreamWriter
In the following example, a StreamWriter writes two lines of text to a file, and then
a StreamReader reads the file back:

using (FileStream fs = File.Create ("test.txt"))
using (TextWriter writer = new StreamWriter (fs))
{
  writer.WriteLine ("Line1");
  writer.WriteLine ("Line2");
}

using (FileStream fs = File.OpenRead ("test.txt"))
using (TextReader reader = new StreamReader (fs))
{
  Console.WriteLine (reader.ReadLine());       // Line1
  Console.WriteLine (reader.ReadLine());       // Line2
}

Because text adapters are so often coupled with files, the File class provides the
static methods CreateText, AppendText, and OpenText to shortcut the process:

using (TextWriter writer = File.CreateText ("test.txt"))
{
  writer.WriteLine ("Line1");
  writer.WriteLine ("Line2");
}
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using (TextWriter writer = File.AppendText ("test.txt"))
  writer.WriteLine ("Line3");

using (TextReader reader = File.OpenText ("test.txt"))
  while (reader.Peek() > -1)
    Console.WriteLine (reader.ReadLine());     // Line1
                                               // Line2
                                               // Line3

This also illustrates how to test for the end of a file (viz. reader.Peek()). Another
option is to read until reader.ReadLine returns null.

You can also read and write other types such as integers, but because TextWriter
invokes ToString on your type, you must parse a string when reading it back:

using (TextWriter w = File.CreateText ("data.txt"))
{
  w.WriteLine (123);          // Writes "123"
  w.WriteLine (true);         // Writes the word "true"
}

using (TextReader r = File.OpenText ("data.txt"))
{
  int myInt = int.Parse (r.ReadLine());     // myInt == 123
  bool yes = bool.Parse (r.ReadLine());     // yes == true
}

Character encodings
TextReader and TextWriter are by themselves just abstract classes with no connec‐
tion to a stream or backing store. The StreamReader and StreamWriter types,
however, are connected to an underlying byte-oriented stream, so they must convert
between characters and bytes. They do so through an Encoding class from the
System.Text namespace, which you choose when constructing the StreamReader
or StreamWriter. If you choose none, the default UTF-8 encoding is used.

If you explicitly specify an encoding, StreamWriter will, by
default, write a prefix to the start of the stream to identity the
encoding. This is usually undesirable, and you can prevent it
by constructing the encoding as follows:

var encoding = new UTF8Encoding (
  encoderShouldEmitUTF8Identifier:false,
  throwOnInvalidBytes:true);

The second argument tells the StreamWriter (or Stream
Reader) to throw an exception if it encounters bytes that do
not have a valid string translation for their encoding, which
matches its default behavior if you do not specify an encoding.

The simplest of the encodings is ASCII because each character is represented by one
byte. The ASCII encoding maps the first 127 characters of the Unicode set into its
single byte, covering what you see on a US-style keyboard. Most other characters,
including specialized symbols and non-English characters, cannot be represented
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and are converted to the □ character. The default UTF-8 encoding can map all
allocated Unicode characters, but it is more complex. The first 127 characters
encode to a single byte, for ASCII compatibility; the remaining characters encode to
a variable number of bytes (most commonly two or three). Consider the following:

using (TextWriter w = File.CreateText ("but.txt"))    // Use default UTF-8
  w.WriteLine ("but-");                               // encoding.

using (Stream s = File.OpenRead ("but.txt"))
  for (int b; (b = s.ReadByte()) > -1;)
    Console.WriteLine (b);

The word “but” is followed not by a stock-standard hyphen but by the longer em
dash (—) character, U+2014. This is the one that won’t get you into trouble with
your book editor! Let’s examine the output:

98     // b
117    // u
116    // t
226    // em dash byte 1       Note that the byte values
128    // em dash byte 2       are >= 128 for each part
148    // em dash byte 3       of the multibyte sequence.
13     // <CR>
10     // <LF>

Because the em dash is outside the first 127 characters of the Unicode set, it requires
more than a single byte to encode in UTF-8 (in this case, three). UTF-8 is efficient
with the Western alphabet as most popular characters consume just one byte. It also
downgrades easily to ASCII simply by ignoring all bytes above 127. Its disadvantage
is that seeking within a stream is troublesome because a character’s position does
not correspond to its byte position in the stream. An alternative is UTF-16 (labeled
just “Unicode” in the Encoding class). Here’s how we write the same string with
UTF-16:

using (Stream s = File.Create ("but.txt"))
using (TextWriter w = new StreamWriter (s, Encoding.Unicode))
  w.WriteLine ("but-");

foreach (byte b in File.ReadAllBytes ("but.txt"))
  Console.WriteLine (b);

And here’s the output:

255    // Byte-order mark 1
254    // Byte-order mark 2
98     // 'b' byte 1
0      // 'b' byte 2
117    // 'u' byte 1
0      // 'u' byte 2
116    // 't' byte 1
0      // 't' byte 2
20     // '--' byte 1
32     // '--' byte 2
13     // <CR> byte 1
0      // <CR> byte 2
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10     // <LF> byte 1
0      // <LF> byte 2

Technically, UTF-16 uses either two or four bytes per character (there are close
to a million Unicode characters allocated or reserved, so two bytes is not always
enough). However, because the C# char type is itself only 16 bits wide, a UTF-16
encoding will always use exactly two bytes per .NET char. This makes it easy to
jump to a particular character index within a stream.

UTF-16 uses a two-byte prefix to identify whether the byte pairs are written in
a “little-endian” or “big-endian” order (the least significant byte first or the most
significant byte first). The default little-endian order is standard for Windows-based
systems.

StringReader and StringWriter
The StringReader and StringWriter adapters don’t wrap a stream at all; instead,
they use a string or StringBuilder as the underlying data source. This means
no byte translation is required—in fact, the classes do nothing you couldn’t easily
achieve with a string or StringBuilder coupled with an index variable. Their
advantage, though, is that they share a base class with StreamReader/StreamWriter.
For instance, suppose that we have a string containing XML and want to parse it
with an XmlReader. The XmlReader.Create method accepts one of the following:

• A URI•

• A Stream•

• A TextReader•

So, how do we XML-parse our string? Because StringReader is a subclass of
TextReader, we’re in luck. We can instantiate and pass in a StringReader as follows:

XmlReader r = XmlReader.Create (new StringReader (myString));

Binary Adapters
BinaryReader and BinaryWriter read and write native data types: bool, byte, char,
decimal, float, double, short, int, long, sbyte, ushort, uint, and ulong, as well
as strings and arrays of the primitive data types.

Unlike StreamReader and StreamWriter, binary adapters store primitive data types
efficiently because they are represented in memory. So, an int uses four bytes; a
double uses eight bytes. Strings are written through a text encoding (as with Stream
Reader and StreamWriter) but are length-prefixed in order to make it possible to
read back a series of strings without needing special delimiters.

Imagine that we have a simple type, defined as follows:
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public class Person
{
  public string Name;
  public int    Age;
  public double Height;
}

We can add the following methods to Person to save/load its data to/from a stream
using binary adapters:

public void SaveData (Stream s)
{
  var w = new BinaryWriter (s);
  w.Write (Name);
  w.Write (Age);
  w.Write (Height);
  w.Flush();         // Ensure the BinaryWriter buffer is cleared.
                     // We won't dispose/close it, so more data
}                    // can be written to the stream.

public void LoadData (Stream s)
{
  var r = new BinaryReader (s);
  Name   = r.ReadString();
  Age    = r.ReadInt32();
  Height = r.ReadDouble();
}

BinaryReader can also read into byte arrays. The following reads the entire contents
of a seekable stream:

byte[] data = new BinaryReader (s).ReadBytes ((int) s.Length);

This is more convenient than reading directly from a stream because it doesn’t
require a loop to ensure that all data has been read.

Closing and Disposing Stream Adapters
You have four choices in tearing down stream adapters:

1. Close the adapter only1.
2. Close the adapter and then close the stream2.
3. (For writers) Flush the adapter and then close the stream3.
4. (For readers) Close just the stream4.

Close and Dispose are synonymous with adapters, just as they
are with streams.
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Options 1 and 2 are semantically identical because closing an adapter automatically
closes the underlying stream. Whenever you nest using statements, you’re implicitly
taking option 2:

using (FileStream fs = File.Create ("test.txt"))
using (TextWriter writer = new StreamWriter (fs))
  writer.WriteLine ("Line");

Because the nest disposes from the inside out, the adapter is first closed, and then
the stream. Furthermore, if an exception is thrown within the adapter’s constructor,
the stream still closes. It’s hard to go wrong with nested using statements!

Never close a stream before closing or flushing its writer—
you’ll amputate any data that’s buffered in the adapter.

Options 3 and 4 work because adapters are in the unusual category of optionally
disposable objects. An example of when you might choose not to dispose an adapter
is when you’ve finished with the adapter but you want to leave the underlying
stream open for subsequent use:

using (FileStream fs = new FileStream ("test.txt", FileMode.Create))
{
  StreamWriter writer = new StreamWriter (fs);
  writer.WriteLine ("Hello");
  writer.Flush();

  fs.Position = 0;
  Console.WriteLine (fs.ReadByte());
}

Here, we write to a file, reposition the stream, and then read the first byte before
closing the stream. If we disposed the StreamWriter, it would also close the under‐
lying FileStream, causing the subsequent read to fail. The proviso is that we call
Flush to ensure that the StreamWriter’s buffer is written to the underlying stream.

Stream adapters—with their optional disposal semantics—do
not implement the extended disposal pattern where the final‐
izer calls Dispose. This allows an abandoned adapter to evade
automatic disposal when the garbage collector catches up with
it.

There’s also a constructor on StreamReader/StreamWriter that instructs it to keep
the stream open after disposal. Consequently, we can rewrite the preceding example
as follows:

using (var fs = new FileStream ("test.txt", FileMode.Create))
{
  using (var writer = new StreamWriter (fs, new UTF8Encoding (false, true),
                                       0x400, true))
    writer.WriteLine ("Hello");

  fs.Position = 0;
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  Console.WriteLine (fs.ReadByte());
  Console.WriteLine (fs.Length);
}

Compression Streams
Two general-purpose compression streams are provided in the System.IO.Compres
sion namespace: DeflateStream and GZipStream. Both use a popular compression
algorithm similar to that of the ZIP format. They differ in that GZipStream writes
an additional protocol at the start and end—including a CRC to detect errors.
GZipStream also conforms to a standard recognized by other software.

.NET also includes BrotliStream, which implements the Brotli compression algo‐
rithm. BrotliStream is more than 10 times slower than DeflateStream and GZip
Stream but achieves a better compression ratio. (The performance hit applies only
to compression—decompression performs very well.)

All three streams allow reading and writing, with the following provisos:

• You always write to the stream when compressing.•
• You always read from the stream when decompressing.•

DeflateStream, GZipStream, and BrotliStream are decorators; they compress or
decompress data from another stream that you supply in construction. In the fol‐
lowing example, we compress and decompress a series of bytes using a FileStream
as the backing store:

using (Stream s = File.Create ("compressed.bin"))
using (Stream ds = new DeflateStream (s, CompressionMode.Compress))
  for (byte i = 0; i < 100; i++)
    ds.WriteByte (i);

using (Stream s = File.OpenRead ("compressed.bin"))
using (Stream ds = new DeflateStream (s, CompressionMode.Decompress))
  for (byte i = 0; i < 100; i++)
    Console.WriteLine (ds.ReadByte());     // Writes 0 to 99

With DeflateStream, the compressed file is 102 bytes: slightly larger than the origi‐
nal (BrotliStream would compress it to 73 bytes). Compression works poorly with
“dense,” nonrepetitive binary data (and worst of all with encrypted data, which lacks
regularity by design). It works well with most text files; in the next example, we
compress and decompress a text stream composed of 1,000 words chosen randomly
from a small sentence with the Brotli algorithm. This also demonstrates chaining a
backing store stream, a decorator stream, an adapter (as depicted at the start of the
chapter in Figure 15-1), and the use of asynchronous methods:

string[] words = "The quick brown fox jumps over the lazy dog".Split();
Random rand = new Random (0);   // Give it a seed for consistency

using (Stream s = File.Create ("compressed.bin"))
using (Stream ds = new BrotliStream (s, CompressionMode.Compress))
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using (TextWriter w = new StreamWriter (ds))
  for (int i = 0; i < 1000; i++)
    await w.WriteAsync (words [rand.Next (words.Length)] + " ");

Console.WriteLine (new FileInfo ("compressed.bin").Length);      // 808

using (Stream s = File.OpenRead ("compressed.bin"))
using (Stream ds = new BrotliStream (s, CompressionMode.Decompress))
using (TextReader r = new StreamReader (ds))
  Console.Write (await r.ReadToEndAsync());  // Output below:

lazy lazy the fox the quick The brown fox jumps over fox over fox The
brown brown brown over brown quick fox brown dog dog lazy fox dog brown
over fox jumps lazy lazy quick The jumps fox jumps The over jumps dog...

In this case, BrotliStream compresses efficiently to 808 bytes—less than one byte
per word. (For comparison, DeflateStream compresses the same data to 885 bytes.)

Compressing in Memory
Sometimes, you need to compress entirely in memory. Here’s how to use a Memory
Stream for this purpose:

byte[] data = new byte[1000];          // We can expect a good compression
                                       // ratio from an empty array!
var ms = new MemoryStream();
using (Stream ds = new DeflateStream (ms, CompressionMode.Compress))
  ds.Write (data, 0, data.Length);

byte[] compressed = ms.ToArray();
Console.WriteLine (compressed.Length);       // 11

// Decompress back to the data array:
ms = new MemoryStream (compressed);
using (Stream ds = new DeflateStream (ms, CompressionMode.Decompress))
  for (int i = 0; i < 1000; i += ds.Read (data, i, 1000 - i));

The using statement around the DeflateStream closes it in a textbook fashion,
flushing any unwritten buffers in the process. This also closes the MemoryStream it
wraps—meaning we must then call ToArray to extract its data.

Here’s an alternative that avoids closing the MemoryStream and uses the asynchro‐
nous read and write methods:

byte[] data = new byte[1000];

MemoryStream ms = new MemoryStream();
using (Stream ds = new DeflateStream (ms, CompressionMode.Compress, true))
  await ds.WriteAsync (data, 0, data.Length);

Console.WriteLine (ms.Length);             // 113
ms.Position = 0;
using (Stream ds = new DeflateStream (ms, CompressionMode.Decompress))
  for (int i = 0; i < 1000; i += await ds.ReadAsync (data, i, 1000 - i));
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The additional flag sent to DeflateStream’s constructor instructs it to not follow the
usual protocol of taking the underlying stream with it in disposal. In other words,
the MemoryStream is left open, allowing us to position it back to zero and reread it.

Unix gzip File Compression
GZipStream’s compression algorithm is popular on Unix systems as a file compres‐
sion format. Each source file is compressed into a separate target file with a .gz
extension.

The following methods do the work of the Unix command-line gzip and gunzip
utilities:

async Task GZip (string sourcefile, bool deleteSource = true)
{
  var gzip = $"{sourcefile}.gz";
  if (File.Exists (gzip))
    throw new Exception ("Gzip file already exists");

  // Compress
  using (FileStream inStream = File.Open (sourcefile, FileMode.Open))
  using (FileStream outStream = new FileStream (gzip, FileMode.CreateNew))
  using (GZipStream gzipStream = 
    new GZipStream (outStream, CompressionMode.Compress))
    await inStream.CopyToAsync (gzipStream); 
  
  if (deleteSource) File.Delete(sourcefile);
}

async Task GUnzip (string gzipfile, bool deleteGzip = true)
{
  if (Path.GetExtension (gzipfile) != ".gz") 
    throw new Exception ("Not a gzip file");

  var uncompressedFile = gzipfile.Substring (0, gzipfile.Length - 3);
  if (File.Exists (uncompressedFile)) 
    throw new Exception ("Destination file already exists");

  // Uncompress
  using (FileStream uncompressToStream = 
         File.Open (uncompressedFile, FileMode.Create))
  using (FileStream zipfileStream = File.Open (gzipfile, FileMode.Open))
  using (var unzipStream = 
         new GZipStream (zipfileStream, CompressionMode.Decompress))
    await unzipStream.CopyToAsync (uncompressToStream);
    
  if (deleteGzip) File.Delete (gzipfile);
}

The following compresses a file:

await GZip ("/tmp/myfile.txt");      // Creates /tmp/myfile.txt.gz
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And the following decompresses it:

await GUnzip ("/tmp/myfile.txt.gz")  // Creates /tmp/myfile.txt

Working with ZIP Files
The ZipArchive and ZipFile classes in System.IO.Compression support the ZIP
compression format. The advantage of the ZIP format over DeflateStream and
GZipStream is that it also acts as a container for multiple files and is compatible with
ZIP files created with Windows Explorer.

ZipArchive works with streams, whereas ZipFile addresses the more common
scenario of working with files. (ZipFile is a static helper class for ZipArchive.)

ZipFile’s CreateFromDirectory method adds all the files in a specified directory
into a ZIP file:

ZipFile.CreateFromDirectory (@"d:\MyFolder", @"d:\archive.zip");

ExtractToDirectory does the opposite and extracts a ZIP file to a directory:

ZipFile.ExtractToDirectory (@"d:\archive.zip", @"d:\MyFolder");

(From .NET 8, you can also specify a Stream instead of a zip file path.)

When compressing, you can specify whether to optimize for file size or speed as
well as whether to include the name of the source directory in the archive. Enabling
the latter option in our example would create a subdirectory in the archive called
MyFolder into which the compressed files would go.

ZipFile has an Open method for reading/writing individual entries. This returns
a ZipArchive object (which you can also obtain by instantiating ZipArchive with
a Stream object). When calling Open, you must specify a filename and indicate
whether you want to Read, Create, or Update the archive. You can then enumerate
existing entries via the Entries property or find a particular file by calling GetEn
try:

using (ZipArchive zip = ZipFile.Open (@"d:\zz.zip", ZipArchiveMode.Read))

  foreach (ZipArchiveEntry entry in zip.Entries)
    Console.WriteLine (entry.FullName + " " + entry.Length);

ZipArchiveEntry also has a Delete method, an ExtractToFile method (this is
actually an extension method in the ZipFileExtensions class), and an Open method
that returns a readable/writable Stream. You can create new entries by calling
CreateEntry (or the CreateEntryFromFile extension method) on the ZipArchive.
The following creates the archive d:\zz.zip, to which it adds foo.dll, under a directory
structure within the archive called bin\X86:

byte[] data = File.ReadAllBytes (@"d:\foo.dll"); 
using (ZipArchive zip = ZipFile.Open (@"d:\zz.zip", ZipArchiveMode.Update))
  zip.CreateEntry (@"bin\X64\foo.dll").Open().Write (data, 0, data.Length);
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You could do the same thing entirely in memory by constructing ZipArchive with a
MemoryStream.

Working with Tar Files
The types in the System.Formats.Tar namespace (from .NET 7) support the .tar
archive format, popular on Unix systems for bundling multiple files. To create a .tar
file (a tarball), call TarFile.CreateFromDirectory:

TarFile.CreateFromDirectory ("/tmp/testfolder", "/tmp/test.tar", false);

(The third argument indicates whether to include the base directory name in the
archive entries.)

To extract a tarball, call TarFile.ExtractToDirectory:

TarFile.ExtractToDirectory ("/tmp/test.tar", "/tmp/testfolder", true);

(The third argument indicates whether to overwrite existing files.)

Both of these methods let you specify a Stream instead of a .tar filepath. In the fol‐
lowing example, we write the tarball to a memory stream, and then use GZipStream
to compress that stream to a .tar.gz file:

var ms = new MemoryStream();
TarFile.CreateFromDirectory ("/tmp/testfolder", ms, false);
ms.Position = 0;    // So that we can re-use the stream for reading.
using (var fs = File.Create ("/tmp/test.tar.gz"))
using (var gz = new GZipStream (fs, CompressionMode.Compress))
  ms.CopyTo (gz);

(Compressing a .tar into a .tar.gz is useful because the .tar format does not itself
incorporate compression, unlike the .zip format.) We can extract the .tar.gz file as
follows:

using (var fs = File.OpenRead ("/tmp/test.tar.gz"))
using (var gz = new GZipStream (fs, CompressionMode.Decompress))
  TarFile.ExtractToDirectory (gz, "/tmp/testfolder", true);

You can also access the API at a more granular level with the TarReader and
TarWriter classes. The following illustrates the use of TarReader:

using (FileStream archiveStream = File.OpenRead ("/tmp/test.tar "))
using (TarReader reader = new (archiveStream))
  while (true)
  {
    TarEntry entry = reader.GetNextEntry();
    if (entry == null) break;   // No more entries
    Console.WriteLine (
      $"Entry {entry.Name} is {entry.DataStream.Length} bytes long");
    entry.ExtractToFile (
      Path.Combine ("/tmp/testfolder", entry.Name), true);
  }
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File and Directory Operations
The System.IO namespace provides a set of types for performing “utility” file and
directory operations, such as copying and moving, creating directories, and setting
file attributes and permissions. For most features, you can choose between either of
two classes, one offering static methods and the other instance methods:

Static classes
File and Directory

Instance-method classes (constructed with a file or directory name)
FileInfo and DirectoryInfo

Additionally, there’s a static class called Path. This does nothing to files or directo‐
ries; instead, it provides string manipulation methods for filenames and directory
paths. Path also assists with temporary files.

The File Class
File is a static class whose methods all accept a filename. The filename can be
either relative to the current directory or fully qualified with a directory. Here are its
methods (all public and static):

bool Exists (string path);      // Returns true if the file is present

void Delete  (string path);
void Copy    (string sourceFileName, string destFileName);
void Move    (string sourceFileName, string destFileName);
void Replace (string sourceFileName, string destinationFileName,
                                     string destinationBackupFileName);

FileAttributes GetAttributes (string path);
void SetAttributes           (string path, FileAttributes fileAttributes);

void Decrypt (string path);
void Encrypt (string path);

DateTime GetCreationTime   (string path);      // UTC versions are
DateTime GetLastAccessTime (string path);      // also provided.
DateTime GetLastWriteTime  (string path);

void SetCreationTime   (string path, DateTime creationTime);
void SetLastAccessTime (string path, DateTime lastAccessTime);
void SetLastWriteTime  (string path, DateTime lastWriteTime);

FileSecurity GetAccessControl (string path);
FileSecurity GetAccessControl (string path,
                               AccessControlSections includeSections);
void SetAccessControl (string path, FileSecurity fileSecurity);

Move throws an exception if the destination file already exists; Replace does not.
Both methods allow the file to be renamed as well as moved to another directory.
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Delete throws an UnauthorizedAccessException if the file is marked read-only;
you can tell this in advance by calling GetAttributes. It also throws that exception
if the OS denies delete permission for that file to your process. Here are all the
members of the FileAttribute enum that GetAttributes returns:

Archive, Compressed, Device, Directory, Encrypted,
Hidden, IntegritySystem, Normal, NoScrubData, NotContentIndexed, 
Offline, ReadOnly, ReparsePoint, SparseFile, System, Temporary

Members in this enum are combinable. Here’s how to toggle a single file attribute
without upsetting the rest:

string filePath = "test.txt";

FileAttributes fa = File.GetAttributes (filePath);
if ((fa & FileAttributes.ReadOnly) != 0)
{
    // Use the exclusive-or operator (^) to toggle the ReadOnly flag
    fa ^= FileAttributes.ReadOnly;
    File.SetAttributes (filePath, fa);
}

// Now we can delete the file, for instance:
File.Delete (filePath);

FileInfo offers an easier way to change a file’s read-only flag:
new FileInfo ("test.txt").IsReadOnly = false;

Compression and encryption attributes
This feature is Windows-only and requires the NuGet package
System.Management.

The Compressed and Encrypted file attributes correspond to the compression and
encryption checkboxes on a file or directory’s Properties dialog box in Windows
Explorer. This type of compression and encryption is transparent in that the OS
does all the work behind the scenes, allowing you to read and write plain data.

You cannot use SetAttributes to change a file’s Compressed or Encrypted
attributes—it fails silently if you try! The workaround is simple in the latter case:
you instead call the Encrypt() and Decrypt() methods in the File class. With
compression, it’s more complicated; one solution is to use the Windows Manage‐
ment Instrumentation (WMI) API in System.Management. The following method
compresses a directory, returning 0 if successful (or a WMI error code if not):

static uint CompressFolder (string folder, bool recursive)
{
  string path = "Win32_Directory.Name='" + folder + "'";
  using (ManagementObject dir = new ManagementObject (path))
  using (ManagementBaseObject p = dir.GetMethodParameters ("CompressEx"))
  {
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    p ["Recursive"] = recursive;
    using (ManagementBaseObject result = dir.InvokeMethod ("CompressEx",
                                                             p, null))
      return (uint) result.Properties ["ReturnValue"].Value;
  }
}

To uncompress, replace CompressEx with UncompressEx.

Transparent encryption relies on a key seeded from the logged-in user’s password.
The system is robust to password changes performed by the authenticated user, but
if a password is reset via an administrator, data in encrypted files is unrecoverable.

Transparent encryption and compression require special file‐
system support. NTFS (used most commonly on hard drives)
supports these features; CDFS (on CD-ROMs) and FAT (on
removable media cards) do not.

You can determine whether a volume supports compression and encryption with
Win32 interop:

using System;
using System.IO;
using System.Text;
using System.ComponentModel;
using System.Runtime.InteropServices;

class SupportsCompressionEncryption
{
  const int SupportsCompression = 0x10;
  const int SupportsEncryption = 0x20000;

  [DllImport ("Kernel32.dll", SetLastError = true)]
  extern static bool GetVolumeInformation (string vol, StringBuilder name,
    int nameSize, out uint serialNum, out uint maxNameLen, out uint flags,
    StringBuilder fileSysName, int fileSysNameSize);

  static void Main()
  {
    uint serialNum, maxNameLen, flags;
    bool ok = GetVolumeInformation (@"C:\", null, 0, out serialNum,
                                    out maxNameLen, out flags, null, 0);
    if (!ok)
      throw new Win32Exception();

    bool canCompress = (flags & SupportsCompression) != 0;
    bool canEncrypt = (flags & SupportsEncryption) != 0;
  }
}
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Windows file security
This feature is Windows-only and requires the NuGet package
System.IO.FileSystem.AccessControl.

The FileSecurity class allow you to query and change the OS permissions
assigned to users and roles (namespace System.Security.AccessControl).

In this example, we list a file’s existing permissions and then assign Write permis‐
sion to the “Users” group:

using System;
using System.IO;
using System.Security.AccessControl;
using System.Security.Principal;

void ShowSecurity (FileSecurity sec)
{
  AuthorizationRuleCollection rules = sec.GetAccessRules (true, true,
                                                       typeof (NTAccount));
  foreach (FileSystemAccessRule r in rules.Cast<FileSystemAccessRule>()
    .OrderBy (rule => rule.IdentityReference.Value))
  {
    // e.g., MyDomain/Joe
    Console.WriteLine ($"  {r.IdentityReference.Value}");
    // Allow or Deny: e.g., FullControl
    Console.WriteLine ($"    {r.FileSystemRights}: {r.AccessControlType}");
  }
}

var file = "sectest.txt";
File.WriteAllText (file, "File security test.");

var sid = new SecurityIdentifier (WellKnownSidType.BuiltinUsersSid, null);
string usersAccount = sid.Translate (typeof (NTAccount)).ToString();

Console.WriteLine ($"User: {usersAccount}");

FileSecurity sec = new FileSecurity (file,
                          AccessControlSections.Owner |
                          AccessControlSections.Group |
                          AccessControlSections.Access);

Console.WriteLine ("AFTER CREATE:");
ShowSecurity(sec); // BUILTIN\Users doesn't have Write permission

sec.ModifyAccessRule (AccessControlModification.Add,
    new FileSystemAccessRule (usersAccount, FileSystemRights.Write, 
                              AccessControlType.Allow),
    out bool modified);

Console.WriteLine ("AFTER MODIFY:");
ShowSecurity (sec); // BUILTIN\Users has Write permission
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We give another example, later, in “Special Folders” on page 730.

Unix file security
From .NET 7, the File class includes the methods GetUnixFileMode and SetUnix
FileMode to get and set file permissions on Unix systems. The Directory.Create
Directory method is also now overloaded to accept a Unix file mode, and it’s
possible to specify a file mode when creating a file, as follows: 

var fs = new FileStream ("test.txt",
  new FileStreamOptions
  {
    Mode = FileMode.Create,
    UnixCreateMode = UnixFileMode.UserRead | UnixFileMode.UserWrite
  });

The Directory Class
The static Directory class provides a set of methods analogous to those in the File
class—for checking whether a directory exists (Exists), moving a directory (Move),
deleting a directory (Delete), getting/setting times of creation or last access, and
getting/setting security permissions. Furthermore, Directory exposes the following
static methods:

string GetCurrentDirectory ();
void   SetCurrentDirectory (string path);

DirectoryInfo CreateDirectory  (string path);
DirectoryInfo GetParent        (string path);
string        GetDirectoryRoot (string path);

string[] GetLogicalDrives(); // Gets mount points on Unix

// The following methods all return full paths:

string[] GetFiles             (string path);
string[] GetDirectories       (string path);
string[] GetFileSystemEntries (string path);

IEnumerable<string> EnumerateFiles             (string path);
IEnumerable<string> EnumerateDirectories       (string path);
IEnumerable<string> EnumerateFileSystemEntries (string path);

The last three methods are potentially more efficient than the
Get* variants because they’re lazily evaluated—fetching data
from the file system as you enumerate the sequence. They’re
particularly well suited to LINQ queries.

The Enumerate* and Get* methods are overloaded to also accept searchPattern
(string) and searchOption (enum) parameters. If you specify SearchOption
.SearchAllSubDirectories, a recursive subdirectory search is performed. The
*FileSystemEntries methods combine the results of *Files with *Directories.
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Here’s how to create a directory if it doesn’t already exist:

if (!Directory.Exists (@"d:\test"))
  Directory.CreateDirectory (@"d:\test");

FileInfo and DirectoryInfo
The static methods on File and Directory are convenient for executing a single file
or directory operation. If you need to call a series of methods in a row, the FileInfo
and DirectoryInfo classes provide an object model that makes the job easier.

FileInfo offers most of the File’s static methods in instance form—with some
additional properties such as Extension, Length, IsReadOnly, and Directory—for
returning a DirectoryInfo object. For example:

static string TestDirectory => 
  RuntimeInformation.IsOSPlatform (OSPlatform.Windows)
    ? @"C:\Temp" 
    : "/tmp"; 

Directory.CreateDirectory (TestDirectory);

FileInfo fi = new FileInfo (Path.Combine (TestDirectory, "FileInfo.txt"));

Console.WriteLine (fi.Exists);         // false

using (TextWriter w = fi.CreateText())
  w.Write ("Some text");

Console.WriteLine (fi.Exists);         // false (still)
fi.Refresh();
Console.WriteLine (fi.Exists);         // true

Console.WriteLine (fi.Name);           // FileInfo.txt
Console.WriteLine (fi.FullName);       // c:\temp\FileInfo.txt (Windows)
                                       // /tmp/FileInfo.txt (Unix)
Console.WriteLine (fi.DirectoryName);  // c:\temp (Windows)
                                       // /tmp (Unix)
Console.WriteLine (fi.Directory.Name); // temp
Console.WriteLine (fi.Extension);      // .txt
Console.WriteLine (fi.Length);         // 9

fi.Encrypt();
fi.Attributes ^= FileAttributes.Hidden;   // (Toggle hidden flag)
fi.IsReadOnly = true;

Console.WriteLine (fi.Attributes);    // ReadOnly,Archive,Hidden,Encrypted
Console.WriteLine (fi.CreationTime);  // 3/09/2019 1:24:05 PM

fi.MoveTo (Path.Combine (TestDirectory, "FileInfoX.txt")); 

DirectoryInfo di = fi.Directory;
Console.WriteLine (di.Name);             // temp or tmp
Console.WriteLine (di.FullName);         // c:\temp or /tmp
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Console.WriteLine (di.Parent.FullName);  // c:\ or /
di.CreateSubdirectory ("SubFolder");

Here’s how to use DirectoryInfo to enumerate files and subdirectories:

DirectoryInfo di = new DirectoryInfo (@"e:\photos");

foreach (FileInfo fi in di.GetFiles ("*.jpg"))
  Console.WriteLine (fi.Name);

foreach (DirectoryInfo subDir in di.GetDirectories())
  Console.WriteLine (subDir.FullName);

Path
The static Path class defines methods and fields for working with paths and
filenames.

Assuming this setup code:

string dir  = @"c:\mydir";    // or /mydir
string file = "myfile.txt";
string path = @"c:\mydir\myfile.txt";    // or /mydir/myfile.txt

Directory.SetCurrentDirectory (@"k:\demo");    // or /demo

we can demonstrate Path’s methods and fields with the following expressions:

Expression Result (Windows, then Unix)

Directory.GetCurrentDirectory() k:\demo\ or /demo

Path.IsPathRooted (file) False

Path.IsPathRooted (path) True

Path.GetPathRoot (path) c:\ or /

Path.GetDirectoryName (path) c:\mydir or /mydir

Path.GetFileName (path) myfile.txt

Path.GetFullPath (file) k:\demo\myfile.txt or /demo/
myfile.txt

Path.Combine (dir, file) c:\mydir\myfile.txt or /mydir/
myfile.txt

File extensions:

Path.HasExtension (file) True

Path.GetExtension (file) .txt

Path.GetFileNameWithoutExtension (file) myfile

Path.ChangeExtension (file, ".log") myfile.log

Separators and characters:

Path.DirectorySeparatorChar \ or /
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Expression Result (Windows, then Unix)

Path.AltDirectorySeparatorChar /

Path.PathSeparator ; or:

Path.VolumeSeparatorChar : or /

Path.GetInvalidPathChars() chars 0 to 31 and "<>|eor 0

Path.GetInvalidFileNameChars() chars 0 to 31 and "<>|:*?\/ or 0 and /

Temporary files:

Path.GetTempPath() <local user folder>\Temp or /tmp/

Path.GetRandomFileName() d2dwuzjf.dnp

Path.GetTempFileName() <local user folder>\Temp\tmp14B.tmp
or /tmp/tmpubSUYO.tmp

Combine is particularly useful: it allows you to combine a directory and filename—
or two directories—without first having to check whether a trailing path separator is
present, and it automatically uses the correct path separator for the OS. It provides
overloads that accept up to four directory and/or filenames.

GetFullPath converts a path relative to the current directory to an absolute path. It
accepts values such as ..\..\file.txt.

GetRandomFileName returns a genuinely unique 8.3-character filename, without
actually creating any file. GetTempFileName generates a temporary filename using an
autoincrementing counter that repeats every 65,000 files. It then creates a zero-byte
file of this name in the local temporary directory.

You must delete the file generated by GetTempFileName when
you’re done; otherwise, it will eventually throw an exception
(after your 65,000th call to GetTempFileName). If this is a
problem, you can instead Combine GetTempPath with GetRan
domFileName. Just be careful not to fill up the user’s hard
drive!

Special Folders
One thing missing from Path and Directory is a means to locate folders such as My
Documents, Program Files, Application Data, and so on. This is provided instead by
the GetFolderPath method in the System.Environment class:

string myDocPath = Environment.GetFolderPath
  (Environment.SpecialFolder.MyDocuments);

Environment.SpecialFolder is an enum whose values encompass all special direc‐
tories in Windows, such as AdminTools, ApplicationData, Fonts, History, SendTo,
StartMenu, and so on. Everything is covered here except the .NET runtime direc‐
tory, which you can obtain as follows:

System.Runtime.InteropServices.RuntimeEnvironment.GetRuntimeDirectory()
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Most of the special folders have no path assigned on
Unix systems. The following have paths on Ubuntu Linux
18.04 Desktop: ApplicationData, CommonApplicationData,
Desktop, DesktopDirectory, LocalApplicationData, MyDocu
ments, MyMusic, MyPictures, MyVideos, Templates, and User
Profile.

Of particular value on Windows systems is ApplicationData, where you can store
settings that travel with a user across a network (if roaming profiles are enabled
on the network domain); LocalApplicationData, which is for nonroaming data
(specific to the logged-in user); and CommonApplicationData, which is shared by
every user of the computer. Writing application data to these folders is considered
preferable to using the Windows Registry. The standard protocol for storing data in
these folders is to create a subdirectory with the name of your application:

string localAppDataPath = Path.Combine (
  Environment.GetFolderPath (Environment.SpecialFolder.ApplicationData),
  "MyCoolApplication");

if (!Directory.Exists (localAppDataPath))
  Directory.CreateDirectory (localAppDataPath);

There’s a horrible trap when using CommonApplicationData: if a user starts your
program with administrative elevation and your program then creates folders and
files in CommonApplicationData, that user might lack permissions to replace those
files later, when run under a restricted Windows login. (A similar problem exists
when switching between restricted-permission accounts.) You can work around it
by creating the desired folder (with permissions assigned to everyone) as part of
your setup.

Another place to write configuration and log files is to the application’s base direc‐
tory, which you can obtain with AppDomain.CurrentDomain.BaseDirectory. This
is not recommended, however, because the OS is likely to deny your application
permissions to write to this folder after initial installation (without administrative
elevation).

Querying Volume Information
You can query the drives on a computer with the DriveInfo class:

DriveInfo c = new DriveInfo ("C");       // Query the C: drive.
                                         // On Unix: /

long totalSize = c.TotalSize;            // Size in bytes.
long freeBytes = c.TotalFreeSpace;       // Ignores disk quotas.
long freeToMe  = c.AvailableFreeSpace;   // Takes quotas into account.

foreach (DriveInfo d in DriveInfo.GetDrives())  // All defined drives.
                                                // On Unix: mount points
{
  Console.WriteLine (d.Name);             // C:\
  Console.WriteLine (d.DriveType);        // Fixed
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  Console.WriteLine (d.RootDirectory);    // C:\

  if (d.IsReady)   // If the drive is not ready, the following two
                   // properties will throw exceptions:
  {
    Console.WriteLine (d.VolumeLabel);    // The Sea Drive
    Console.WriteLine (d.DriveFormat);    // NTFS
  }
}

The static GetDrives method returns all mapped drives, including CD-ROMs,
media cards, and network connections. DriveType is an enum with the following
values:

Unknown, NoRootDirectory, Removable, Fixed, Network, CDRom, Ram

Catching Filesystem Events
The FileSystemWatcher class lets you monitor a directory (and optionally, subdir‐
ectories) for activity. FileSystemWatcher has events that fire when files or subdirec‐
tories are created, modified, renamed, and deleted, as well as when their attributes
change. These events fire regardless of the user or process performing the change.
Here’s an example:

Watch (GetTestDirectory(), "*.txt", true);

void Watch (string path, string filter, bool includeSubDirs)
{
  using (var watcher = new FileSystemWatcher (path, filter))
  {
    watcher.Created += FileCreatedChangedDeleted;
    watcher.Changed += FileCreatedChangedDeleted;
    watcher.Deleted += FileCreatedChangedDeleted;
    watcher.Renamed += FileRenamed;
    watcher.Error   += FileError;

    watcher.IncludeSubdirectories = includeSubDirs;
    watcher.EnableRaisingEvents = true;

    Console.WriteLine ("Listening for events - press <enter> to end");
    Console.ReadLine();
  }
  // Disposing the FileSystemWatcher stops further events from firing.
}

void FileCreatedChangedDeleted (object o, FileSystemEventArgs e)
  => Console.WriteLine ("File {0} has been {1}", e.FullPath, e.ChangeType);

void FileRenamed (object o, RenamedEventArgs e)
  => Console.WriteLine ("Renamed: {0}->{1}", e.OldFullPath, e.FullPath);

void FileError (object o, ErrorEventArgs e)
  => Console.WriteLine ("Error: " + e.GetException().Message);
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string GetTestDirectory() =>
  RuntimeInformation.IsOSPlatform (OSPlatform.Windows)
    ? @"C:\Temp"
    : "/tmp";

Because FileSystemWatcher raises events on a separate
thread, you must exception-handle the event handling code
to prevent an error from taking down the application. For
more information, see “Exception Handling” on page 640.

The Error event does not inform you of filesystem errors; instead, it indicates that
the FileSystemWatcher’s event buffer overflowed because it was overwhelmed by
Changed, Created, Deleted, or Renamed events. You can change the buffer size via
the InternalBufferSize property.

IncludeSubdirectories applies recursively. So, if you create a FileSystemWatcher
on C:\ with IncludeSubdirectories true, its events will fire when a file or direc‐
tory changes anywhere on the hard drive.

A trap in using FileSystemWatcher is to open and read newly
created or updated files before the file has been fully popula‐
ted or updated. If you’re working in conjunction with some
other software that’s creating files, you might need to consider
some strategy to mitigate this, such as creating files with an
unwatched extension and then renaming them after they’re
fully written.

OS Security
All applications are subject to OS restrictions, based on the user’s login privileges.
These restrictions affect file I/O as well as other capabilities, such as access to the
Windows Registry.

In Windows and Unix, there are two types of accounts:

• An administrative/superuser account that imposes no restrictions in accessing•
the local computer

• A limited permissions account that restricts administrative functions and visi‐•
bility of other users’ data

On Windows, a feature called User Account Control (UAC) means that administra‐
tors receive two tokens or “hats” when logging in: an administrative hat and an
ordinary user hat. By default, programs run wearing the ordinary user hat—with
restricted permissions—unless the program requests administrative elevation. The
user must then approve the request in the dialog box that’s presented.

On Unix, users typically log in with restricted accounts. That is also true for admin‐
istrators to lessen the probability of inadvertently damaging the system. When a
user needs to run a command that requires elevated permissions, they precede the
command with sudo (short for “super-user do”).
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By default, your application will run with restricted user privileges. This means that
you must either:

• Write your application such that it can run without administrative privileges.•
• Demand administrative elevation in the application manifest (Windows only),•

or detect the lack of required privileges and alert the user to restart the applica‐
tion as an administrator/super-user.

The first option is safer and more convenient for the user. Designing your program
to run without administrative privileges is easy in most cases.

You can find out whether you’re running under an administrative account as
follows:

[DllImport("libc")]
public static extern uint getuid();

static bool IsRunningAsAdmin()
{
  if (RuntimeInformation.IsOSPlatform (OSPlatform.Windows))
  {
    using var identity = WindowsIdentity.GetCurrent();
    var principal = new WindowsPrincipal (identity);
    return principal.IsInRole (WindowsBuiltInRole.Administrator);
  }
  return getuid() == 0;
}

With UAC enabled on Windows, this returns true only if the current process has
administrative elevation. On Linux, it returns true only if the current process is
running as super-user (e.g., sudo myapp).

Running in a Standard User Account
Here are the key things that you cannot do in a standard user account:

• Write to the following directories:•
— The OS folder (typically \Windows or /bin, /sbin, ...) and subdirectories—
— The program files folder (\Program Files or /usr/bin, /opt) and—

subdirectories
— The root of the OS drive (e.g., C:\ or /)—

• Write to the HKEY_LOCAL_MACHINE branch of the Registry (Windows)•
• Read performance monitoring (WMI) data (Windows)•

Additionally, as an ordinary Windows user (or even as an administrator), you
might be refused access to files or resources that belong to other users. Windows
uses a system of Access Control Lists (ACLs) to protect such resources—you can
query and assert your own rights in the ACLs via types in System.Security.Access
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Control. ACLs can also be applied to cross-process wait handles, described in
Chapter 21.

If you’re refused access to anything as a result of OS security, the CLR detects the
failure and throws an UnauthorizedAccessException (rather than failing silently).

In most cases, you can deal with standard user restrictions as follows:

• Write files to their recommended locations.•
• Avoid using the Registry for information that can be stored in files (aside from•

the HKEY_CURRENT_USER hive, which you will have read/write access to on
Windows only).

• Register ActiveX or COM components during setup (Windows only).•

The recommended location for user documents is SpecialFolder.MyDocuments:

string docsFolder = Environment.GetFolderPath
                    (Environment.SpecialFolder.MyDocuments);

string path = Path.Combine (docsFolder, "test.txt");

The recommended location for configuration files that a user might need to modify
outside of your application is SpecialFolder.ApplicationData (current user only)
or SpecialFolder.CommonApplicationData (all users). You typically create subdir‐
ectories within these folders, based on your organization and product name.

Administrative Elevation and Virtualization
With an application manifest, you can request that Windows prompt the user
for administrative elevation whenever running your program (Linux ignores this
request):

<?xml version="1.0" encoding="utf-8"?>
<assembly manifestVersion="1.0" xmlns="urn:schemas-microsoft-com:asm.v1">
  <trustInfo xmlns="urn:schemas-microsoft-com:asm.v2">
    <security>
      <requestedPrivileges>
        <requestedExecutionLevel level="requireAdministrator" />
      </requestedPrivileges>
    </security>
  </trustInfo>
</assembly>

(We describe application manifests in more detail in Chapter 17.)

If you replace requireAdministrator with asInvoker, it instructs Windows that
administrative elevation is not required. The effect is almost the same as not having
an application manifest at all—except that virtualization is disabled. Virtualization is
a temporary measure introduced with Windows Vista to help old applications run
correctly without administrative privileges. The absence of an application manifest
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with a requestedExecutionLevel element activates this backward-compatibility
feature.

Virtualization comes into play when an application writes to the Program Files or
Windows directory, or the HKEY_LOCAL_MACHINE area of the Registry. Instead
of throwing an exception, changes are redirected to a separate location on the hard
disk where they can’t affect the original data. This prevents the application from
interfering with the OS—or other well-behaved applications.

Memory-Mapped Files
Memory-mapped files provide two key features:

• Efficient random access to file data•
• The ability to share memory between different processes on the same computer•

The types for memory-mapped files reside in the System.IO.MemoryMappedFiles
namespace. Internally, they work by wrapping the operating system’s API for
memory-mapped files.

Memory-Mapped Files and Random File I/O
Although an ordinary FileStream allows random file I/O (by setting the stream’s
Position property), it’s optimized for sequential I/O. As a rough rule of thumb:

• FileStreams are approximately 10 times faster than memory-mapped files for•
sequential I/O.

• Memory-mapped files are approximately 10 times faster than FileStreams for•
random I/O.

Changing a FileStream’s Position can cost several microseconds—which adds up
if done within a loop. A FileStream is also unsuitable for multithreaded access—
because its position changes as it is read or written.

To create a memory-mapped file:

1. Obtain a FileStream as you would ordinarily.1.

2. Instantiate a MemoryMappedFile, passing in the file stream.2.

3. Call CreateViewAccessor on the memory-mapped file object.3.

The last step gives you a MemoryMappedViewAccessor object that provides methods
for randomly reading and writing simple types, structures, and arrays (more on this
in “Working with View Accessors” on page 738).
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The following creates a one million–byte file and then uses the memory-mapped file
API to read and then write a byte at position 500,000:

File.WriteAllBytes ("long.bin", new byte [1000000]);

using MemoryMappedFile mmf = MemoryMappedFile.CreateFromFile ("long.bin");
using MemoryMappedViewAccessor accessor = mmf.CreateViewAccessor();

accessor.Write (500000, (byte) 77);
Console.WriteLine (accessor.ReadByte (500000));   // 77

You can also specify a map name and capacity when calling CreateFromFile.
Specifying a non-null map name allows the memory block to be shared with other
processes (see the following section); specifying a capacity automatically enlarges
the file to that value. The following creates a 1,000-byte file:

File.WriteAllBytes ("short.bin", new byte [1]);
using (var mmf = MemoryMappedFile.CreateFromFile
                 ("short.bin", FileMode.Create, null, 1000))
  ...

Memory-Mapped Files and Shared Memory (Windows)
Under Windows, you can also use memory-mapped files as a means of sharing
memory between processes on the same computer. One process creates a shared
memory block by calling MemoryMappedFile.CreateNew, and then other processes
subscribe to that same memory block by calling MemoryMappedFile.OpenExisting
with the same name. Although it’s still referred to as a memory-mapped “file,” it
resides entirely in memory and has no disk presence.

The following code creates a 500-byte shared memory-mapped file and writes the
integer 12345 at position 0:

using (MemoryMappedFile mmFile = MemoryMappedFile.CreateNew ("Demo", 500))
using (MemoryMappedViewAccessor accessor = mmFile.CreateViewAccessor())
{
  accessor.Write (0, 12345);
  Console.ReadLine();   // Keep shared memory alive until user hits Enter.
}

The following code opens that memory-mapped file and reads that integer:

// This can run in a separate executable:
using (MemoryMappedFile mmFile = MemoryMappedFile.OpenExisting ("Demo"))
using (MemoryMappedViewAccessor accessor = mmFile.CreateViewAccessor())
  Console.WriteLine (accessor.ReadInt32 (0));   // 12345

Cross-Platform Interprocess Shared Memory
Both Windows and Unix allow multiple processes to memory-map the same file.
You must exercise care to ensure appropriate file sharing settings:

static void Writer()
{
  var file = Path.Combine (TestDirectory, "interprocess.bin");
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  File.WriteAllBytes (file, new byte [100]);

  using FileStream fs = 
    new FileStream (file, FileMode.Open, FileAccess.ReadWrite, 
                    FileShare.ReadWrite);
                    
  using MemoryMappedFile mmf = MemoryMappedFile
    .CreateFromFile (fs, null, fs.Length, MemoryMappedFileAccess.ReadWrite,
                     HandleInheritability.None, true);
  using MemoryMappedViewAccessor accessor = mmf.CreateViewAccessor();
    
  accessor.Write (0, 12345);

  Console.ReadLine();   // Keep shared memory alive until user hits Enter.

  File.Delete (file);
}

static void Reader()
{
  // This can run in a separate executable:
  var file = Path.Combine (TestDirectory, "interprocess.bin");
  using FileStream fs = 
    new FileStream (file, FileMode.Open, FileAccess.ReadWrite, 
                    FileShare.ReadWrite);
  using MemoryMappedFile mmf = MemoryMappedFile
    .CreateFromFile (fs, null, fs.Length, MemoryMappedFileAccess.ReadWrite, 
                      HandleInheritability.None, true);
  using MemoryMappedViewAccessor accessor = mmf.CreateViewAccessor();
  
  Console.WriteLine (accessor.ReadInt32 (0));   // 12345
}
  
static string TestDirectory =>
  RuntimeInformation.IsOSPlatform (OSPlatform.Windows)
    ?  @"C:\Test"
    : "/tmp";

Working with View Accessors
Calling CreateViewAccessor on a MemoryMappedFile gives you a view accessor that
lets you read/write values at random positions.

The Read*/Write* methods accept numeric types, bool, and char, as well as arrays
and structs that contain value-type elements or fields. Reference types—and arrays
or structs that contain reference types—are prohibited because they cannot map
into unmanaged memory. So, if you want to write a string, you must encode it into
an array of bytes:

byte[] data = Encoding.UTF8.GetBytes ("This is a test");
accessor.Write (0, data.Length);
accessor.WriteArray (4, data, 0, data.Length);
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Notice that we wrote the length first. This means we know how many bytes to read
back later:

byte[] data = new byte [accessor.ReadInt32 (0)];
accessor.ReadArray (4, data, 0, data.Length);
Console.WriteLine (Encoding.UTF8.GetString (data));   // This is a test

Here’s an example of reading/writing a struct:

struct Data { public int X, Y; }
...
var data = new Data { X = 123, Y = 456 };
accessor.Write (0, ref data);
accessor.Read (0, out data);
Console.WriteLine (data.X + " " + data.Y);   // 123 456

The Read and Write methods are surprisingly slow. You can get much better per‐
formance by directly accessing the underlying unmanaged memory via a pointer.
Following on from the previous example:

unsafe
{
  byte* pointer = null;
  try
  {
    accessor.SafeMemoryMappedViewHandle.AcquirePointer (ref pointer);
    int* intPointer = (int*) pointer;
    Console.WriteLine (*intPointer);               // 123
  }
  finally
  {
    if (pointer != null)
      accessor.SafeMemoryMappedViewHandle.ReleasePointer();
  }
}

Your project must be configured to allow unsafe code. You can do that by editing
your .csproj file:

  <PropertyGroup>
    <AllowUnsafeBlocks>true</AllowUnsafeBlocks>
  </PropertyGroup>

The performance advantage of pointers is even more pronounced when working
with large structures because they let you work directly with the raw data rather
than using Read/Write to copy data between managed and unmanaged memory. We
explore this further in Chapter 24.
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16
Networking

.NET offers a variety of classes in the System.Net.* namespaces for communicating
via standard network protocols, such as HTTP and TCP/IP. Here’s a summary of the
key components:

• HttpClient for consuming HTTP web APIs and RESTful services•

• HttpListener for writing an HTTP server•

• SmtpClient for constructing and sending mail messages via SMTP•

• Dns for converting between domain names and addresses•

• TcpClient, UdpClient, TcpListener, and Socket classes for direct access to the•
transport and network layers

The .NET types in this chapter are in the System.Net.* and System.IO namespaces.

.NET also provides client-side support for FTP, but only
through classes that have been marked as obsolete from .NET
6. If you need to use FTP, your best option is to reach for a
NuGet library such as FluentFTP.

Network Architecture
Figure 16-1 illustrates the .NET networking types and the communication layers
in which they reside. Most types reside in the transport layer or application layer.
The transport layer defines basic protocols for sending and receiving bytes (TCP
and UDP); the application layer defines higher-level protocols designed for specific
applications such as retrieving web pages (HTTP), sending mail (SMTP), and
converting between domain names and IP addresses (DNS).
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Figure 16-1. Network architecture

It’s usually most convenient to program at the application layer; however, there are
a couple of reasons why you might want to work directly at the transport layer.
One is if you need an application protocol not provided in .NET, such as POP3 for
retrieving mail. Another is if you want to invent a custom protocol for a special
application such as a peer-to-peer client.

Of the application protocols, HTTP is special in its applicability to general-purpose
communication. Its basic mode of operation—“give me the web page with this
URL”—adapts nicely to “get me the result of calling this endpoint with these argu‐
ments.” (In addition to the “get” verb, there is “put,” “post,” and “delete,” allowing for
REST-based services.)

HTTP also has a rich set of features that are useful in multitier business applica‐
tions and service-oriented architectures, such as protocols for authentication and
encryption, message chunking, extensible headers and cookies, and the ability to
have many server applications share a single port and IP address. For these reasons,
HTTP is well supported in .NET—both directly, as described in this chapter, and at
a higher level, through such technologies as Web API and ASP.NET Core.

As the preceding discussion makes clear, networking is a field that is awash in
acronyms. We list the most common in Table 16-1.

Table 16-1. Network acronyms

Acronym Expansion Notes

DNS Domain Name Service Converts between domain names (e.g., ebay.com) and IP addresses
(e.g., 199.54.213.2)

FTP File Transfer Protocol Internet-based protocol for sending and receiving files
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Acronym Expansion Notes

HTTP Hypertext Transfer Protocol Retrieves web pages and runs web services

IIS Internet Information Services Microsoft’s web server software

IP Internet Protocol Network-layer protocol below TCP and UDP

LAN Local Area Network Most LANs use internet-based protocols such as TCP/IP

POP Post Office Protocol Retrieves internet mail

REST REpresentational State
Transfer

A popular web service architecture that uses machine-followable
links in responses and that can operate over basic HTTP

SMTP Simple Mail Transfer
Protocol

Sends internet mail

TCP Transmission and Control
Protocol

Transport-layer internet protocol on top of which most higher-layer
services are built

UDP Universal Datagram Protocol Transport-layer internet protocol used for low-overhead services
such as VoIP

UNC Universal Naming
Convention

\\computer\sharename\filename

URI Uniform Resource Identifier Ubiquitous resource naming system (e.g., http://www.amazon.com
or mailto:joe@bloggs.org)

URL Uniform Resource Locator Technical meaning (fading from use): subset of URI; popular
meaning: synonym of URI

Addresses and Ports
For communication to work, a computer or device requires an address. The internet
uses two addressing systems:

IPv4
Currently the dominant addressing system; IPv4 addresses are 32 bits wide.
When string-formatted, IPv4 addresses are written as four dot-separated deci‐
mals (e.g., 101.102.103.104). An address can be unique in the world—or unique
within a particular subnet (such as on a corporate network).

IPv6
The newer 128-bit addressing system. Addresses are string-formatted
in hexadecimal with a colon separator (e.g., [3EA0:FFFF:198A:E4A3:
4FF2:54fA:41BC:8D31]). .NET requires that you add square brackets around
the address.

The IPAddress class in the System.Net namespace represents an address in either
protocol. It has a constructor accepting a byte array, and a static Parse method
accepting a correctly formatted string:

IPAddress a1 = new IPAddress (new byte[] { 101, 102, 103, 104 });
IPAddress a2 = IPAddress.Parse ("101.102.103.104");
Console.WriteLine (a1.Equals (a2));                     // True
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Console.WriteLine (a1.AddressFamily);                   // InterNetwork

IPAddress a3 = IPAddress.Parse
  ("[3EA0:FFFF:198A:E4A3:4FF2:54fA:41BC:8D31]");
Console.WriteLine (a3.AddressFamily);   // InterNetworkV6

The TCP and UDP protocols break out each IP address into 65,535 ports, allowing
a computer on a single address to run multiple applications, each on its own port.
Many applications have standard default port assignments; for instance, HTTP uses
port 80; SMTP uses port 25.

The TCP and UDP ports from 49152 to 65535 are officially
unassigned, so they are good for testing and small-scale
deployments.

An IP address and port combination is represented in .NET by the IPEndPoint
class:

IPAddress a = IPAddress.Parse ("101.102.103.104");
IPEndPoint ep = new IPEndPoint (a, 222);           // Port 222
Console.WriteLine (ep.ToString());                 // 101.102.103.104:222

Firewalls block ports. In many corporate environments, only
a few ports are open—typically, port 80 (for unencrypted
HTTP) and port 443 (for secure HTTP).

URIs
A URI is a specially formatted string that describes a resource on the internet
or a LAN, such as a web page, file, or email address. Examples include http://
www.ietf.org, ftp://myisp/doc.txt, and mailto:joe@bloggs.com. The exact formatting is
defined by the Internet Engineering Task Force (IETF).

A URI can be broken up into a series of elements—typically, scheme, authority, and
path. The Uri class in the System namespace performs just this division, exposing a
property for each element, as illustrated in Figure 16-2.

Figure 16-2. URI properties
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The Uri class is useful when you need to validate the format
of a URI string or to split a URI into its component parts.
Otherwise, you can treat a URI simply as a string—most net‐
working methods are overloaded to accept either a Uri object
or a string.

You can construct a Uri object by passing any of the following strings into its
constructor:

• A URI string, such as http://www.ebay.com or file://janespc/sharedpics/dol‐•
phin.jpg

• An absolute path to a file on your hard disk, such as c:\myfiles\data.xlsx or, on•
Unix, /tmp/myfiles/data.xlsx

• A UNC path to a file on the LAN, such as \\janespc\sharedpics\dolphin.jpg•

File and UNC paths are automatically converted to URIs: the “file:” protocol is
added, and backslashes are converted to forward slashes. The Uri constructors
also perform some basic cleanup on your string before creating the Uri, including
converting the scheme and hostname to lowercase and removing default and blank
port numbers. If you supply a URI string without the scheme, such as www.test.com,
a UriFormatException is thrown.

Uri has an IsLoopback property, which indicates whether the Uri references the
local host (IP address 127.0.0.1), and an IsFile property, which indicates whether
the Uri references a local or UNC (IsUnc) path (IsUnc reports false for a Samba
share mounted in a Linux filesystem). If IsFile returns true, the LocalPath prop‐
erty returns a version of AbsolutePath that is friendly to the local OS (with slashes
or backslashes as appropriate to the OS), on which you can call File.Open.

Instances of Uri have read-only properties. To modify an existing Uri, instantiate a
UriBuilder object—this has writable properties and can be converted back via its
Uri property.

Uri also provides methods for comparing and subtracting paths:

Uri info = new Uri ("http://www.domain.com:80/info/");
Uri page = new Uri ("http://www.domain.com/info/page.html");

Console.WriteLine (info.Host);     // www.domain.com
Console.WriteLine (info.Port);     // 80
Console.WriteLine (page.Port);     // 80  (Uri knows the default HTTP port)

Console.WriteLine (info.IsBaseOf (page));         // True
Uri relative = info.MakeRelativeUri (page);
Console.WriteLine (relative.IsAbsoluteUri);       // False
Console.WriteLine (relative.ToString());          // page.html
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A relative Uri, such as page.html in this example, will throw an exception if you
call almost any property or method other than IsAbsoluteUri and ToString(). You
can directly instantiate a relative Uri, as follows:

Uri u = new Uri ("page.html", UriKind.Relative);

A trailing slash is significant in a URI and makes a difference
as to how a server processes a request if a path component is
present.
In a traditional web server, for instance, given the URI http://
www.albahari.com/nutshell/, you can expect an HTTP web
server to look in the nutshell subdirectory in the site’s web
folder and return the default document (usually index.html).
Without the trailing slash, the web server will instead look for
a file called nutshell (without an extension) directly in the site’s
root folder—which is usually not what you want. If no such
file exists, most web servers will assume the user mistyped
and will return a 301 Permanent Redirect error, suggesting the
client retry with the trailing slash. A .NET HTTP client, by
default, will respond transparently to a 301 in the same way
as a web browser—by retrying with the suggested URI. This
means that if you omit a trailing slash when it should have
been included, your request will still work—but will suffer an
unnecessary extra round trip.

The Uri class also provides static helper methods such as EscapeUriString(),
which converts a string to a valid URL by converting all characters with an ASCII
value greater than 127 to hexadecimal representation. The CheckHostName() and
CheckSchemeName() methods accept a string and check whether it is syntactically
valid for the given property (although they do not attempt to determine whether a
host or URI exists).

HttpClient
The HttpClient class exposes a modern API for HTTP client operations, replacing
the old WebClient and WebRequest/WebResponse types (which have since been
marked as obsolete).

HttpClient was written in response to the growth of HTTP-based web APIs and
REST services, and provides a good experience when dealing with protocols more
elaborate than simply fetching a web page. In particular:

• A single HttpClient instance can handle concurrent requests and plays well•
with features such as custom headers, cookies, and authentication schemes.

• HttpClient lets you write and plug in custom message handlers. This enables•
mocking in unit tests, and the creation of custom pipelines (for logging, com‐
pression, encryption, and so on).
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• HttpClient has a rich and extensible type system for headers and content.•

HttpClient does not support progress reporting. For a solu‐
tion, see “HttpClient with Progress.linq” at http://www.alba‐
hari.com/nutshell/code.aspx or via LINQPad’s interactive
samples gallery.

The simplest way to use HttpClient is to instantiate it and then call one of its Get*
methods, passing in a URI:

string html = await new HttpClient().GetStringAsync ("http://linqpad.net");

(There’s also GetByteArrayAsync and GetStreamAsync.) All I/O-bound methods in
HttpClient are asynchronous.

Unlike its WebRequest/WebResponse predecessors, to get the best performance with
HttpClient, you must reuse the same instance (otherwise things such as DNS
resolution can be unnecessarily repeated and sockets are held open longer than
necessary). HttpClient permits concurrent operations, so the following is legal and
downloads two web pages at once:

var client = new HttpClient();
var task1 = client.GetStringAsync ("http://www.linqpad.net");
var task2 = client.GetStringAsync ("http://www.albahari.com");
Console.WriteLine (await task1);
Console.WriteLine (await task2);

HttpClient has a Timeout property and a BaseAddress property, which prefixes
a URI to every request. HttpClient is somewhat of a thin shell: most of the
other properties that you might expect to find here are defined in another class
called HttpClientHandler. To access this class, you instantiate it and then pass the
instance into HttpClient’s constructor:

var handler = new HttpClientHandler { UseProxy = false };
var client = new HttpClient (handler);
...

In this example, we told the handler to disable proxy support, which can sometimes
improve performance by avoiding the cost of automatic proxy detection. There are
also properties to control cookies, automatic redirection, authentication, and so on
(we describe these in the following sections).

GetAsync and Response Messages
The GetStringAsync, GetByteArrayAsync, and GetStreamAsync methods are con‐
venient shortcuts for calling the more general GetAsync method, which returns a
response message:

var client = new HttpClient();
// The GetAsync method also accepts a CancellationToken.
HttpResponseMessage response = await client.GetAsync ("http://...");
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response.EnsureSuccessStatusCode();
string html = await response.Content.ReadAsStringAsync();

HttpResponseMessage exposes properties for accessing the headers (see “Headers”
on page 753) and the HTTP StatusCode. An unsuccessful status code such as
404 (not found) doesn’t cause an exception to be thrown unless you explicitly
call EnsureSuccessStatusCode. Communication or DNS errors, however, do throw
exceptions.

HttpContent has a CopyToAsync method for writing to another stream, which is
useful in writing the output to a file:

using (var fileStream = File.Create ("linqpad.html"))
  await response.Content.CopyToAsync (fileStream);

GetAsync is one of four methods corresponding to HTTP’s four verbs (the others
are PostAsync, PutAsync, and DeleteAsync). We demonstrate PostAsync later in
“Uploading Form Data” on page 754.

SendAsync and Request Messages
GetAsync, PostAsync, PutAsync, and DeleteAsync are all shortcuts for calling Send
Async, the single low-level method into which everything else feeds. To use this, you
first construct an HttpRequestMessage:

var client = new HttpClient();
var request = new HttpRequestMessage (HttpMethod.Get, "http://...");
HttpResponseMessage response = await client.SendAsync (request);
response.EnsureSuccessStatusCode();
...

Instantiating a HttpRequestMessage object means that you can customize proper‐
ties of the request, such as the headers (see “Headers” on page 753) and the content
itself, allowing you to upload data.

Uploading Data and HttpContent
After instantiating a HttpRequestMessage object, you can upload content by assign‐
ing its Content property. The type for this property is an abstract class called
HttpContent. .NET includes the following concrete subclasses for different kinds of
content (you can also write your own):

• ByteArrayContent•

• StringContent•

• FormUrlEncodedContent (see “Uploading Form Data” on page 754)•

• StreamContent•
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For example:

var client = new HttpClient (new HttpClientHandler { UseProxy = false });
var request = new HttpRequestMessage (
  HttpMethod.Post, "http://www.albahari.com/EchoPost.aspx");
request.Content = new StringContent ("This is a test");
HttpResponseMessage response = await client.SendAsync (request);
response.EnsureSuccessStatusCode();
Console.WriteLine (await response.Content.ReadAsStringAsync());

HttpMessageHandler
We said previously that most of the properties for customizing requests are defined
not in HttpClient but in HttpClientHandler. The latter is actually a subclass of the
abstract HttpMessageHandler class, defined as follows:

public abstract class HttpMessageHandler : IDisposable
{
  protected internal abstract Task<HttpResponseMessage> SendAsync
    (HttpRequestMessage request, CancellationToken cancellationToken);

  public void Dispose();
  protected virtual void Dispose (bool disposing);
}

The SendAsync method is called from HttpClient’s SendAsync method.

HttpMessageHandler is simple enough to subclass easily and offers an extensibility
point into HttpClient.

Unit testing and mocking
We can subclass HttpMessageHandler to create a mocking handler to assist with unit
testing:

class MockHandler : HttpMessageHandler
{
  Func <HttpRequestMessage, HttpResponseMessage> _responseGenerator;
    
  public MockHandler
    (Func <HttpRequestMessage, HttpResponseMessage> responseGenerator)
  {
    _responseGenerator = responseGenerator;
  }
    
  protected override Task <HttpResponseMessage> SendAsync
    (HttpRequestMessage request, CancellationToken cancellationToken)
  {
    cancellationToken.ThrowIfCancellationRequested();
    var response = _responseGenerator (request);
    response.RequestMessage = request;
    return Task.FromResult (response);
  }
}
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Its constructor accepts a function that tells the mocker how to generate a response
from a request. This is the most versatile approach because the same handler can
test multiple requests.

SendAsync is synchronous by virtue of Task.FromResult. We could have main‐
tained asynchrony by having our response generator return a Task<HttpResponse
Message>, but this is pointless given that we can expect a mocking function to be
short running. Here’s how to use our mocking handler:

var mocker = new MockHandler (request => 
  new HttpResponseMessage (HttpStatusCode.OK)
  {
    Content = new StringContent ("You asked for " + request.RequestUri)
  });

var client = new HttpClient (mocker);    
var response = await client.GetAsync ("http://www.linqpad.net");
string result = await response.Content.ReadAsStringAsync();
Assert.AreEqual ("You asked for http://www.linqpad.net/", result);

(Assert.AreEqual is a method you’d expect to find in a unit-testing framework
such as NUnit.)

Chaining handlers with DelegatingHandler
You can create a message handler that calls another (resulting in a chain of han‐
dlers) by subclassing DelegatingHandler. You can use this to implement custom
authentication, compression, and encryption protocols. The following demonstrates
a simple logging handler:

class LoggingHandler : DelegatingHandler 
{
  public LoggingHandler (HttpMessageHandler nextHandler)
  {
     InnerHandler = nextHandler;
  }
    
  protected async override Task <HttpResponseMessage> SendAsync
    (HttpRequestMessage request, CancellationToken cancellationToken)
  {
    Console.WriteLine ("Requesting: " + request.RequestUri);
    var response = await base.SendAsync (request, cancellationToken);
    Console.WriteLine ("Got response: " + response.StatusCode);
    return response;
  }
}

Notice that we’ve maintained asynchrony in overriding SendAsync. Introducing the
async modifier when overriding a task-returning method is perfectly legal—and
desirable in this case.
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A better solution than writing to the Console would be to have the constructor
accept some kind of logging object. Better still would be to accept a couple of
Action<T> delegates that tell it how to log the request and response objects.

Proxies
A proxy server is an intermediary through which HTTP requests can be routed.
Organizations sometimes set up a proxy server as the only means by which employ‐
ees can access the internet—primarily because it simplifies security. A proxy has an
address of its own and can demand authentication so that only selected users on the
LAN can access the internet.

To use a proxy with HttpClient, first create an HttpClientHandler and assign its
Proxy property and then feed that into HttpClient’s constructor:

WebProxy p = new WebProxy ("192.178.10.49", 808);
p.Credentials = new NetworkCredential ("username", "password", "domain");

var handler = new HttpClientHandler { Proxy = p };
var client = new HttpClient (handler);
...

HttpClientHandler also has a UseProxy property that you can assign to false
instead of nulling out the Proxy property to defeat autodetection.

If you supply a domain when constructing the NetworkCredential, Windows-based
authentication protocols are used. To use the currently authenticated Windows
user, assign the static CredentialCache.DefaultNetworkCredentials value to the
proxy’s Credentials property.

As an alternative to repeatedly setting the Proxy, you can set the global default as
follows:

HttpClient.DefaultWebProxy = myWebProxy;

Authentication
You can supply a username and password to an HttpClient as follows:

string username = "myuser";
string password = "mypassword";

var handler = new HttpClientHandler();
handler.Credentials = new NetworkCredential (username, password);
var client = new HttpClient (handler);
...

This works with dialog-based authentication protocols, such as Basic and Digest,
and is extensible through the AuthenticationManager class. It also supports Win‐
dows NTLM and Kerberos (if you include a domain name when constructing
the NetworkCredential object). If you want to use the currently authenticated
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Windows user, you can leave the Credentials property null and instead set Use
DefaultCredentials to true.

When you provide credentials, HttpClient automatically negotiates a compatible
protocol. In some cases, there can be a choice: if you examine the initial response
from a Microsoft Exchange server web mail page, for instance, it might contain the
following headers:

HTTP/1.1 401 Unauthorized
Content-Length: 83
Content-Type: text/html
Server: Microsoft-IIS/6.0
WWW-Authenticate: Negotiate
WWW-Authenticate: NTLM
WWW-Authenticate: Basic realm="exchange.somedomain.com"
X-Powered-By: ASP.NET
Date: Sat, 05 Aug 2006 12:37:23 GMT

The 401 code signals that authorization is required; the “WWW-Authenticate”
headers indicate what authentication protocols are understood. If you configure
the HttpClientHandler with the correct username and password, however, this
message will be hidden from you because the runtime responds automatically by
choosing a compatible authentication protocol, and then resubmitting the original
request with an extra header. Here’s an example:

Authorization: Negotiate TlRMTVNTUAAABAAAt5II2gjACDArAAACAwACACgAAAAQ
ATmKAAAAD0lVDRdPUksHUq9VUA==

This mechanism provides transparency, but generates an extra round trip with each
request. You can avoid the extra round trips on subsequent requests to the same
URI by setting the PreAuthenticate property on the HttpClientHandler to true.

CredentialCache
You can force a particular authentication protocol with a CredentialCache object.
A credential cache contains one or more NetworkCredential objects, each keyed
to a particular protocol and URI prefix. For example, you might want to avoid
the Basic protocol when logging into an Exchange Server because it transmits
passwords in plain text:

CredentialCache cache = new CredentialCache();
Uri prefix = new Uri ("http://exchange.somedomain.com");
cache.Add (prefix, "Digest",  new NetworkCredential ("joe", "passwd"));
cache.Add (prefix, "Negotiate", new NetworkCredential ("joe", "passwd"));

var handler = new HttpClientHandler();
handler.Credentials = cache;
...

An authentication protocol is specified as a string. The valid values include:

Basic, Digest, NTLM, Kerberos, Negotiate
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In this particular situation it will choose Negotiate, because the server didn’t indi‐
cate that it supported Digest in its authentication headers. Negotiate is a Windows
protocol that currently boils down to either Kerberos or NTLM, depending on
the capabilities of the server, but ensures forward compatibility of your application
when future security standards are deployed.

The static CredentialCache.DefaultNetworkCredentials property allows you to
add the currently authenticated Windows user to the credential cache without
having to specify a password:

cache.Add (prefix, "Negotiate", CredentialCache.DefaultNetworkCredentials);

Authenticating via headers
Another way to authenticate is to set the authentication header directly:

var client = new HttpClient();
client.DefaultRequestHeaders.Authorization = 
  new AuthenticationHeaderValue ("Basic",
    Convert.ToBase64String (Encoding.UTF8.GetBytes ("username:password")));
...

This strategy also works with custom authentication systems such as OAuth. 

Headers
HttpClient lets you add custom HTTP headers to a request, as well as enumerate
the headers in a response. A header is simply a key/value pair containing metadata,
such as the message content type or server software. HttpClient exposes strongly
typed collections with properties for standard HTTP headers. The DefaultRequest
Headers property is for headers that apply to every request:

var client = new HttpClient (handler);

client.DefaultRequestHeaders.UserAgent.Add (
  new ProductInfoHeaderValue ("VisualStudio", "2022"));

client.DefaultRequestHeaders.Add ("CustomHeader", "VisualStudio/2022");

The Headers property on the HttpRequestMessage class, however, is for headers
specific to a request.

Query Strings
A query string is simply a string appended to a URI with a question mark, used to
send simple data to the server. You can specify multiple key/value pairs in a query
string with the following syntax:

?key1=value1&key2=value2&key3=value3...

Here’s a URI with a query string:

string requestURI = "http://www.google.com/search?q=HttpClient&hl=fr";
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If there’s a possibility of your query including symbols or spaces, you can use Uri’s
EscapeDataString method to create a legal URI:

string search = Uri.EscapeDataString ("(HttpClient or HttpRequestMessage)");
string language = Uri.EscapeDataString ("fr");
string requestURI = "http://www.google.com/search?q=" + search +
                    "&hl=" + language;

This resultant URI is:

http://www.google.com/search?q=(HttpClient%20OR%20HttpRequestMessage)&hl=fr

(EscapeDataString is similar to EscapeUriString except that it also encodes char‐
acters such as & and =, which would otherwise mess up the query string.)

Uploading Form Data
To upload HTML form data, create and populate the FormUrlEncodedContent
object. You can then either pass it into the PostAsync method or assign it to a
request’s Content property:

string uri = "http://www.albahari.com/EchoPost.aspx";
var client = new HttpClient();
var dict = new Dictionary<string,string> 
{
    { "Name", "Joe Albahari" },
    { "Company", "O'Reilly" }
};
var values = new FormUrlEncodedContent (dict);
var response = await client.PostAsync (uri, values);
response.EnsureSuccessStatusCode();
Console.WriteLine (await response.Content.ReadAsStringAsync());

Cookies
A cookie is a name/value string pair that an HTTP server sends to a client in a
response header. A web browser client typically remembers cookies and replays
them to the server in each subsequent request (to the same address) until their
expiry. A cookie allows a server to know whether it’s talking to the same client it was
a minute ago—or yesterday—without needing a messy query string in the URI.

By default, HttpClient ignores any cookies received from the server. To accept
cookies, create a CookieContainer object and assign it an HttpClientHandler:

var cc = new CookieContainer();
var handler = new HttpClientHandler();
handler.CookieContainer = cc;
var client = new HttpClient (handler);
...

To replay the received cookies in future requests, simply use the same CookieCon
tainer object again. Alternatively, you can start with a fresh CookieContainer and
then add cookies manually, as follows:
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Cookie c = new Cookie ("PREF",
                       "ID=6b10df1da493a9c4:TM=1179...",
                       "/",
                       ".google.com");
freshCookieContainer.Add (c);

The third and fourth arguments indicate the path and domain of the originator.
A CookieContainer on the client can house cookies from many different places;
HttpClient sends only those cookies whose path and domain match those of the
server.

Writing an HTTP Server
If you need to write an HTTP server, an alternative higher-
level approach (from .NET 6) is to use the ASP.NET minimal
API. Here’s all it takes to get started:

var app = WebApplication.CreateBuilder().Build();
app.MapGet ("/", () => "Hello, world!");
app.Run();

You can write your own .NET HTTP server with the HttpListener class. The
following is a simple server that listens on port 51111, waits for a single client
request, and then returns a one-line reply:

using var server = new SimpleHttpServer();

// Make a client request:
Console.WriteLine (await new HttpClient().GetStringAsync
  ("http://localhost:51111/MyApp/Request.txt"));

class SimpleHttpServer : IDisposable
{
  readonly HttpListener listener = new HttpListener();
  
  public SimpleHttpServer() => ListenAsync();  
  async void ListenAsync()
  {
    listener.Prefixes.Add ("http://localhost:51111/MyApp/");  // Listen on
    listener.Start();                                         // port 51111

    // Await a client request:
    HttpListenerContext context = await listener.GetContextAsync();

    // Respond to the request:
    string msg = "You asked for: " + context.Request.RawUrl;
    context.Response.ContentLength64 = Encoding.UTF8.GetByteCount (msg);
    context.Response.StatusCode = (int)HttpStatusCode.OK;

    using (Stream s = context.Response.OutputStream)
    using (StreamWriter writer = new StreamWriter (s))
      await writer.WriteAsync (msg);
  }

  public void Dispose() => listener.Close();
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}

OUTPUT: You asked for: /MyApp/Request.txt

On Windows, HttpListener does not internally use .NET Socket objects; it instead
calls the Windows HTTP Server API. This allows many applications on a computer
to listen on the same IP address and port—as long as each registers different address
prefixes. In our example, we registered the prefix http://localhost/myapp, so another
application would be free to listen on the same IP and port on another prefix
such as http://localhost/anotherapp. This is of value because opening new ports on
corporate firewalls can be politically arduous.

HttpListener waits for the next client request when you call GetContext, returning
an object with Request and Response properties. Each is analogous to client request
or response, but from the server’s perspective. You can read and write headers and
cookies, for instance, to the request and response objects, much as you would at the
client end.

You can choose how fully to support features of the HTTP protocol, based on your
anticipated client audience. At a bare minimum, you should set the content length
and status code on each request.

Here’s a very simple web page server, written asynchronously:

using System;
using System.IO;
using System.Net;
using System.Text;
using System.Threading.Tasks;

class WebServer
{
  HttpListener _listener;
  string _baseFolder;      // Your web page folder.

  public WebServer (string uriPrefix, string baseFolder)
  {
    _listener = new HttpListener();
    _listener.Prefixes.Add (uriPrefix);
    _baseFolder = baseFolder;
  }

  public async void Start()
  {
    _listener.Start();
    while (true)
      try 
      {
        var context = await _listener.GetContextAsync();
        Task.Run (() => ProcessRequestAsync (context));
      }
      catch (HttpListenerException)     { break; }   // Listener stopped.
      catch (InvalidOperationException) { break; }   // Listener stopped.
  }
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  public void Stop() => _listener.Stop();

  async void ProcessRequestAsync (HttpListenerContext context)
  {
    try
    {
      string filename = Path.GetFileName (context.Request.RawUrl);
      string path = Path.Combine (_baseFolder, filename);
      byte[] msg;
      if (!File.Exists (path))
      {
        Console.WriteLine ("Resource not found: " + path);
        context.Response.StatusCode = (int) HttpStatusCode.NotFound;
        msg = Encoding.UTF8.GetBytes ("Sorry, that page does not exist");
      }
      else
      {
        context.Response.StatusCode = (int) HttpStatusCode.OK;
        msg = File.ReadAllBytes (path);
      }
      context.Response.ContentLength64 = msg.Length;
      using (Stream s = context.Response.OutputStream)
        await s.WriteAsync (msg, 0, msg.Length);
    }
    catch (Exception ex) { Console.WriteLine ("Request error: " + ex); }
  }
}

The following code sets things in motion:

// Listen on port 51111, serving files in d:\webroot:
var server = new WebServer ("http://localhost:51111/", @"d:\webroot");
try
{
  server.Start();
  Console.WriteLine ("Server running... press Enter to stop");
  Console.ReadLine();
}
finally { server.Stop(); }

You can test this at the client end with any web browser; the URI in this case will be
http://localhost:51111/ plus the name of the web page.

HttpListener will not start if other software is competing for
the same port (unless that software also uses the Windows
HTTP Server API). Examples of applications that might listen
on the default port 80 include a web server or a peer-to-peer
program such as Skype.

Our use of asynchronous functions makes this server scalable and efficient. Starting
this from a user interface (UI) thread, however, would hinder scalability because
for each request, execution would bounce back to the UI thread after each await.
Incurring such overhead is particularly pointless given that we don’t have shared
state, so in a UI scenario we’d get off the UI thread, either like this:
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Task.Run (Start);

or by calling ConfigureAwait(false) after calling GetContextAsync.

Note that we used Task.Run to call ProcessRequestAsync even though the method
was already asynchronous. This allows the caller to process another request immedi‐
ately rather than having to first wait out the synchronous phase of the method (up
until the first await).

Using DNS
The static Dns class encapsulates the DNS, which converts between a raw IP address,
such as 66.135.192.87, and a human-friendly domain name, such as ebay.com.

The GetHostAddresses method converts from domain name to IP address (or
addresses):

foreach (IPAddress a in Dns.GetHostAddresses ("albahari.com"))
  Console.WriteLine (a.ToString());     // 205.210.42.167

The GetHostEntry method goes the other way around, converting from address to
domain name:

IPHostEntry entry = Dns.GetHostEntry ("205.210.42.167");
Console.WriteLine (entry.HostName);                    // albahari.com

GetHostEntry also accepts an IPAddress object, so you can specify an IP address as
a byte array:

IPAddress address = new IPAddress (new byte[] { 205, 210, 42, 167 });
IPHostEntry entry = Dns.GetHostEntry (address);
Console.WriteLine (entry.HostName);                    // albahari.com

Domain names are automatically resolved to IP addresses when you use a class such
as WebRequest or TcpClient. However, if you plan to make many network requests
to the same address over the life of an application, you can sometimes improve
performance by first using Dns to explicitly convert the domain name into an IP
address, and then communicating directly with the IP address from that point on.
This avoids repeated round-tripping to resolve the same domain name, and it can
be of benefit when dealing at the transport layer (via TcpClient, UdpClient, or
Socket).

The DNS class also provides awaitable task-based asynchronous methods:

foreach (IPAddress a in await Dns.GetHostAddressesAsync ("albahari.com"))
  Console.WriteLine (a.ToString());

Sending Mail with SmtpClient
The SmtpClient class in the System.Net.Mail namespace allows you to send mail
messages through the ubiquitous Simple Mail Transfer Protocol, or SMTP. To send
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a simple text message, instantiate SmtpClient, set its Host property to your SMTP
server address, and then call Send:

SmtpClient client = new SmtpClient();
client.Host = "mail.myserver.com";
client.Send ("from@adomain.com", "to@adomain.com", "subject", "body");

Constructing a MailMessage object exposes further options, including the ability to
add attachments:

SmtpClient client = new SmtpClient();
client.Host = "mail.myisp.net";
MailMessage mm = new MailMessage();

mm.Sender = new MailAddress ("kay@domain.com", "Kay");
mm.From   = new MailAddress ("kay@domain.com", "Kay");
mm.To.Add  (new MailAddress ("bob@domain.com", "Bob"));
mm.CC.Add  (new MailAddress ("dan@domain.com", "Dan"));
mm.Subject = "Hello!";
mm.Body = "Hi there. Here's the photo!";
mm.IsBodyHtml = false;
mm.Priority = MailPriority.High;

Attachment a = new Attachment ("photo.jpg",
                               System.Net.Mime.MediaTypeNames.Image.Jpeg);
mm.Attachments.Add (a);
client.Send (mm);

To frustrate spammers, most SMTP servers on the internet will accept connections
only from authenticated connections and require communication over SSL:

var client = new SmtpClient ("smtp.myisp.com", 587)
{
  Credentials = new NetworkCredential ("me@myisp.com", "MySecurePass"),
  EnableSsl = true
};
client.Send ("me@myisp.com", "someone@somewhere.com", "Subject", "Body");
Console.WriteLine ("Sent");

By changing the DeliveryMethod property, you can instruct the SmtpClient to
instead use IIS to send mail messages or simply to write each message to an .eml file
in a specified directory. This can be useful during development:

SmtpClient client = new SmtpClient();
client.DeliveryMethod = SmtpDeliveryMethod.SpecifiedPickupDirectory;
client.PickupDirectoryLocation = @"c:\mail";

Using TCP
TCP and UDP constitute the transport layer protocols on top of which most inter‐
net—and LAN—services are built. HTTP (version 2 and below), FTP, and SMTP
use TCP; DNS and HTTP version 3 use UDP. TCP is connection-oriented and
includes reliability mechanisms; UDP is connectionless, has a lower overhead, and
supports broadcasting. BitTorrent uses UDP, as does Voice over IP (VoIP).
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The transport layer offers greater flexibility—and potentially improved perfor‐
mance—over the higher layers, but it requires that you handle such tasks as authen‐
tication and encryption yourself.

With TCP in .NET, you have a choice of either the easier-to-use TcpClient and
TcpListener façade classes, or the feature-rich Socket class. (In fact, you can mix
and match, because TcpClient exposes the underlying Socket object through the
Client property.) The Socket class exposes more configuration options and allows
direct access to the network layer (IP) and non-internet-based protocols such as
Novell’s SPX/IPX.

As with other protocols, TCP differentiates a client and server: the client initiates
a request, while the server waits for a request. Here’s the basic structure for a
synchronous TCP client request:

using (TcpClient client = new TcpClient())
{
  client.Connect ("address", port);
  using (NetworkStream n = client.GetStream())
  {
    // Read and write to the network stream...
  }
}

TcpClient’s Connect method blocks until a connection is established (Connect
Async is the asynchronous equivalent). The NetworkStream then provides a means
of two-way communication, for both transmitting and receiving bytes of data from
a server.

A simple TCP server looks like this:

TcpListener listener = new TcpListener (<ip address>, port);
listener.Start();

while (keepProcessingRequests)
  using (TcpClient c = listener.AcceptTcpClient())
  using (NetworkStream n = c.GetStream())
  {
    // Read and write to the network stream...
  }

listener.Stop();

TcpListener requires the local IP address on which to listen (a computer with two
network cards, for instance, can have two addresses). You can use IPAddress.Any to
instruct it to listen on all (or the only) local IP addresses. AcceptTcpClient blocks
until a client request is received (again, there’s also an asynchronous version), at
which point we call GetStream, just as on the client side.

When working at the transport layer, you need to decide on a protocol for who talks
when and for how long—rather like with a walkie-talkie. If both parties talk or listen
at the same time, communication breaks down!
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Let’s invent a protocol in which the client speaks first, saying “Hello,” and then the
server responds by saying “Hello right back!” Here’s the code:

using System;
using System.IO;
using System.Net;
using System.Net.Sockets;
using System.Threading;

new Thread (Server).Start();       // Run server method concurrently.
Thread.Sleep (500);                // Give server time to start.
Client();

void Client()
{
  using (TcpClient client = new TcpClient ("localhost", 51111))
  using (NetworkStream n = client.GetStream())
  {
    BinaryWriter w = new BinaryWriter (n);
    w.Write ("Hello");
    w.Flush();
    Console.WriteLine (new BinaryReader (n).ReadString());
  }
}

void Server()     // Handles a single client request, then exits.
{
  TcpListener listener = new TcpListener (IPAddress.Any, 51111);
  listener.Start();
  using (TcpClient c = listener.AcceptTcpClient())
  using (NetworkStream n = c.GetStream())
  {
    string msg = new BinaryReader (n).ReadString();
    BinaryWriter w = new BinaryWriter (n);
    w.Write (msg + " right back!");
    w.Flush();                      // Must call Flush because we're not
  }                                 // disposing the writer.
  listener.Stop();
}

// OUTPUT: Hello right back!

In this example, we’re using the localhost loopback to run the client and server on
the same machine. We’ve arbitrarily chosen a port in the unallocated range (above
49152) and used a BinaryWriter and BinaryReader to encode the text messages.
We’ve avoided closing or disposing the readers and writers in order to keep the
underlying NetworkStream open until our conversation completes.

BinaryReader and BinaryWriter might seem like odd choices for reading and writ‐
ing strings. However, they have a major advantage over StreamReader and Stream
Writer: they prefix strings with an integer indicating the length, so a BinaryReader
always knows exactly how many bytes to read. If you call StreamReader.ReadToEnd,
you might block indefinitely—because a NetworkStream doesn’t have an end! As
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long as the connection is open, the network stream can never be sure that the client
isn’t going to send more data.

StreamReader is in fact completely out of bounds with
NetworkStream, even if you plan only to call ReadLine. This
is because StreamReader has a read-ahead buffer, which can
result in it reading more bytes than are currently available,
blocking indefinitely (or until the socket times out). Other
streams such as FileStream don’t suffer this incompatibility
with StreamReader because they have a definite end—at which
point Read returns immediately with a value of 0.

Concurrency with TCP
TcpClient and TcpListener offer task-based asynchronous methods for scalable
concurrency. Using these is simply a question of replacing blocking method calls
with their *Async versions and awaiting the task that’s returned.

In the following example, we write an asynchronous TCP server that accepts
requests of 5,000 bytes in length, reverses the bytes, and then sends them back
to the client:

async void RunServerAsync ()
{
  var listener = new TcpListener (IPAddress.Any, 51111);
  listener.Start ();
  try
  {
    while (true)
      Accept (await listener.AcceptTcpClientAsync ());
  }
  finally { listener.Stop(); }
}

async Task Accept (TcpClient client)
{
  await Task.Yield ();
  try
  {
    using (client)
    using (NetworkStream n = client.GetStream ())
    {
      byte[] data = new byte [5000];
      
      int bytesRead = 0; int chunkSize = 1;
      while (bytesRead < data.Length && chunkSize > 0)
        bytesRead += chunkSize =
          await n.ReadAsync (data, bytesRead, data.Length - bytesRead);
      
      Array.Reverse (data);   // Reverse the byte sequence
      await n.WriteAsync (data, 0, data.Length);
    }
  }
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  catch (Exception ex) { Console.WriteLine (ex.Message); }
}

Such a program is scalable in that it does not block a thread for the duration of a
request. So, if 1,000 clients were to connect at once over a slow network connection
(so that each request took several seconds from start to finish, for example), this
program would not require 1,000 threads for that time (unlike with a synchronous
solution). Instead, it leases threads only for the small periods of time required to
execute code before and after the await expressions.

Receiving POP3 Mail with TCP
.NET provides no application-layer support for POP3, so you need to write at the
TCP layer in order to receive mail from a POP3 server. Fortunately, this is a simple
protocol; a POP3 conversation goes like this:

Client Mail server Notes

Client connects... +OK Hello there. Welcome message

USER joe +OK Password required.

PASS password +OK Logged in.

LIST +OK

1 1876

2 5412

3 845

.

Lists the ID and file size of each message on the
server

RETR 1 +OK 1876 octets

Content of message #1...
.

Retrieves the message with the specified ID

DELE 1 +OK Deleted. Deletes a message from the server

QUIT +OK Bye-bye.

Each command and response is terminated by a new line (CR + LF) except for
the multiline LIST and RETR commands, which are terminated by a single dot on a
separate line. Because we can’t use StreamReader with NetworkStream, we can start
by writing a helper method to read a line of text in a nonbuffered fashion:

string ReadLine (Stream s)
{
  List<byte> lineBuffer = new List<byte>();
  while (true)
  {
    int b = s.ReadByte();
    if (b == 10 || b < 0) break;
    if (b != 13) lineBuffer.Add ((byte)b);
  }
  return Encoding.UTF8.GetString (lineBuffer.ToArray());
}
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We also need a helper method to send a command. Because we always expect to
receive a response starting with +OK, we can read and validate the response at the
same time:

void SendCommand (Stream stream, string line)
{
  byte[] data = Encoding.UTF8.GetBytes (line + "\r\n");
  stream.Write (data, 0, data.Length);
  string response = ReadLine (stream);
  if (!response.StartsWith ("+OK"))
    throw new Exception ("POP Error: " + response);
}

With these methods written, the job of retrieving mail is easy. We establish a TCP
connection on port 110 (the default POP3 port) and then start talking to the server.
In this example, we write each mail message to a randomly named file with an .eml
extension, before deleting the message off the server:

using (TcpClient client = new TcpClient ("mail.isp.com", 110))
using (NetworkStream n = client.GetStream())
{
  ReadLine (n);                             // Read the welcome message.
  SendCommand (n, "USER username");
  SendCommand (n, "PASS password");
  SendCommand (n, "LIST");                  // Retrieve message IDs
  List<int> messageIDs = new List<int>();
  while (true)
  {
    string line = ReadLine (n);             // e.g.,  "1 1876"
    if (line == ".") break;
    messageIDs.Add (int.Parse (line.Split (' ')[0] ));   // Message ID
  }

  foreach (int id in messageIDs)         // Retrieve each message.
  {
    SendCommand (n, "RETR " + id);
    string randomFile = Guid.NewGuid().ToString() + ".eml";
    using (StreamWriter writer = File.CreateText (randomFile))
      while (true)
      {
        string line = ReadLine (n);      // Read next line of message.
        if (line == ".") break;          // Single dot = end of message.
        if (line == "..") line = ".";    // "Escape out" double dot.
        writer.WriteLine (line);         // Write to output file.
      }
    SendCommand (n, "DELE " + id);       // Delete message off server.
  }
  SendCommand (n, "QUIT");
}

You can find open source POP3 libraries on NuGet that
provide support for protocol aspects such as authentication
TLS/SSL connections, MIME parsing, and more.
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17
Assemblies

An assembly is the basic unit of deployment in .NET and is also the container for all
types. An assembly contains compiled types with their Intermediate Language (IL)
code, runtime resources, and information to assist with versioning and referencing
other assemblies. An assembly also defines a boundary for type resolution. In .NET,
an assembly comprises a single file with a .dll extension.

When you build an executable application in .NET, you end
up with two files: an assembly (.dll) and an executable
launcher (.exe) appropriate to the platform you’re targeting.
This differs from what happens in .NET Framework, which
generates a portable executable (PE) assembly. A PE has an .exe
extension and acts both as an assembly and an application
launcher. A PE can simultaneously target 32- and 64-bit ver‐
sions of Windows.

Most of the types in this chapter come from the following namespaces:

System.Reflection
System.Resources
System.Globalization

What’s in an Assembly
An assembly contains four kinds of things:

An assembly manifest
Provides information to the CLR, such as the assembly’s name, version, and
other assemblies that it references

An application manifest
Provides information to the operating system, such as how the assembly should
be deployed and whether administrative elevation is required
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Compiled types
The compiled IL code and metadata of the types defined within the assembly

Resources
Other data embedded within the assembly, such as images and localizable text

Of these, only the assembly manifest is mandatory, although an assembly nearly
always contains compiled types (unless it’s a resource assembly. See “Resources and
Satellite Assemblies” on page 776).

The Assembly Manifest
The assembly manifest serves two purposes:

• It describes the assembly to the managed hosting environment.•
• It acts as a directory to the modules, types, and resources in the assembly.•

Assemblies are thus self-describing. A consumer can discover all of an assembly’s
data, types, and functions—without needing additional files.

An assembly manifest is not something you add explicitly to
an assembly—it’s automatically embedded into an assembly as
part of compilation.

Here’s a summary of the functionally significant data stored in the manifest:

• The simple name of the assembly•

• A version number (AssemblyVersion)•
• A public key and signed hash of the assembly, if strongly named•
• A list of referenced assemblies, including their version and public key•
• A list of types defined in the assembly•

• The culture it targets, if a satellite assembly (AssemblyCulture)•

The manifest can also store the following informational data:

• A full title and description (AssemblyTitle and AssemblyDescription)•

• Company and copyright information (AssemblyCompany and AssemblyCopy•
right)

• A display version (AssemblyInformationalVersion)•
• Additional attributes for custom data•

Some of this data is derived from arguments given to the compiler, such as the list
of referenced assemblies or the public key with which to sign the assembly. The rest
comes from assembly attributes, indicated in parentheses.
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You can view the contents of an assembly’s manifest with
the .NET tool ildasm.exe. In Chapter 18, we describe how to
use reflection to do the same programmatically.

Specifying assembly attributes
Commonly used assembly attributes can be specified in Visual Studio on the proj‐
ect’s Properties page, on the Package tab. The settings on that tab are added to the
project file (.csproj).

To specify attributes not supported by the Package tab, or if not working with
a .csproj file, you can specify assembly attributes in source code (this is often done in
a file called AssemblyInfo.cs).

A dedicated attributes file contains only using statements and assembly attribute
declarations. For example, to expose internally scoped types to a unit test project,
you would do this:

using System.Runtime.CompilerServices;

[assembly:InternalsVisibleTo("MyUnitTestProject")]

The Application Manifest (Windows)
An application manifest is an XML file that communicates information about
the assembly to the OS. An application manifest is embedded into the startup
executable as a Win32 resource during the build process. If present, the manifest
is read and processed before the CLR loads the assembly—and can influence how
Windows launches the application’s process.

A .NET application manifest has a root element called assembly in the XML name‐
space urn:schemas-microsoft-com:asm.v1:

<?xml version="1.0" encoding="utf-8"?>
<assembly manifestVersion="1.0" xmlns="urn:schemas-microsoft-com:asm.v1">
  <!-- contents of manifest -->
</assembly>

The following manifest instructs the OS to request administrative elevation:

<?xml version="1.0" encoding="utf-8"?>
<assembly manifestVersion="1.0" xmlns="urn:schemas-microsoft-com:asm.v1">
  <trustInfo xmlns="urn:schemas-microsoft-com:asm.v2">
    <security>
      <requestedPrivileges>
        <requestedExecutionLevel level="requireAdministrator" />
      </requestedPrivileges>
    </security>
  </trustInfo>
</assembly>

(UWP applications have a far more elaborate manifest, described in the Package
.appxmanifest file. This includes a declaration of the program’s capabilities, which
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determine permissions granted by the OS. The easiest way to edit this file is with
Visual Studio, which displays a dialog when you double-click the manifest file.)

Deploying an application manifest
You can add an application manifest to a .NET project in Visual Studio by right-
clicking your project in Solution Explorer, selecting Add, then New Item, and then
choosing Application Manifest File. Upon building, the manifest will be embedded
into the output assembly.

The .NET tool ildasm.exe is blind to the presence of an
embedded application manifest. Visual Studio, however, indi‐
cates whether an embedded application manifest is present if
you double-click the assembly in Solution Explorer.

Modules
The contents of an assembly are actually packaged within an intermediate container,
called a module. A module corresponds to a file containing the contents of an
assembly. The reason for this extra layer of containership is to allow an assembly
to span multiple files, a feature present in .NET Framework but absent in .NET 5+
and .NET Core. Figure 17-1 illustrates the relationship.

Figure 17-1. Single-file assembly

Although .NET does not support multifile assemblies, at times you need to be aware
of the extra level of containership that modules impose. The main scenario is with
reflection (see “Reflecting Assemblies” on page 827 and “Emitting Assemblies and
Types” on page 841).

The Assembly Class
The Assembly class in System.Reflection is a gateway to accessing assembly meta‐
data at runtime. There are a number of ways to obtain an assembly object: the
simplest is via a Type’s Assembly property:

Assembly a = typeof (Program).Assembly;

768 | Chapter 17: Assemblies



You can also obtain an Assembly object by calling one of Assembly’s static methods:

GetExecutingAssembly

Returns the assembly of the type that defines the currently executing function

GetCallingAssembly

Does the same as GetExecutingAssembly but for the function that called the
currently executing function

GetEntryAssembly

Returns the assembly defining the application’s original entry method

After you have an Assembly object, you can use its properties and methods to query
the assembly’s metadata and reflect upon its types. Table 17-1 shows a summary of
these functions.

Table 17-1. Assembly members

Functions Purpose See the section...

FullName, GetName Returns the fully qualified name or
an AssemblyName object

“Assembly Names” on page 771

CodeBase, Location Location of the assembly file “Loading, Resolving, and
Isolating Assemblies” on page
783

Load, LoadFrom, LoadFile Manually loads an assembly into
memory

“Loading, Resolving, and
Isolating Assemblies” on page
783

GetSatelliteAssembly Locates the satellite assembly of a
given culture

“Resources and Satellite
Assemblies” on page 776

GetType, GetTypes Returns a type, or all types, defined
in the assembly

“Reflecting and Activating Types”
on page 806

EntryPoint Returns the application’s entry
method, as a MethodInfo

“Reflecting and Invoking
Members” on page 813

GetModule, GetModules,
ManifestModule

Returns all modules, or the main
module, of an assembly

“Reflecting Assemblies” on page
827

GetCustomAttribute,
GetCustomAttributes

Returns the assembly’s attributes “Working with Attributes” on
page 828
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Strong Names and Assembly Signing
Strongly naming an assembly was important in .NET Frame‐
work for two reasons:

• It allowed the assembly to be loaded into the “Global•
assembly cache.”

• It allowed the assembly to by referenced by other•
strongly named assemblies.

Strong naming is much less important in .NET 5+ and .NET
Core, because these runtimes do not have a global assembly
cache, nor do they impose the second restriction.

A strongly named assembly has a unique identity. It works by adding two bits of
metadata to the manifest:

• A unique number that belongs to the authors of the assembly•
• A signed hash of the assembly, proving that the unique number holder pro‐•

duced the assembly

This requires a public/private key pair. The public key provides the unique identify‐
ing number, and the private key facilitates signing.

Strong-name-signing is not the same as Authenticode-signing.
We cover Authenticode later in this chapter.

The public key is valuable in guaranteeing the uniqueness of assembly references: a
strongly named assembly incorporates the public key into its identity.

In .NET Framework, the private key protects your assembly from tampering, in that
without your private key, no one can release a modified version of the assembly
without the signature breaking. In practice, this is of use when loading an assembly
into .NET Framework’s global assembly cache. In .NET 5+ and .NET Core, the
signature is of little use because it’s never checked.

Adding a strong name to a previously “weak” named assembly changes its identity.
For this reason, it pays to strong-name an assembly from the outset if you think the
assembly might need a strong name in the future.

How to Strongly Name an Assembly
To give an assembly a strong name, first generate a public/private key pair with the
sn.exe utility:

sn.exe -k MyKeyPair.snk
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Visual Studio installs a shortcut called Developer Command
Prompt for VS, which starts a command prompt whose PATH
contains development tools such as sn.exe.

This manufactures a new key pair and stores it to a file called MyKeyPair.snk. If you
subsequently lose this file, you will permanently lose the ability to recompile your
assembly with the same identity.

You can sign an assembly with this file by updating your project file. From Visual
Studio, go to the Project Properties window, and then, on the Signing tab, select the
“Sign the assembly” checkbox and select your .snk file.

The same key pair can sign multiple assemblies—they’ll still have distinct identities
if their simple names differ.

Assembly Names
An assembly’s “identity” comprises four pieces of metadata from its manifest:

• Its simple name•
• Its version (“0.0.0.0” if not present)•
• Its culture (“neutral” if not a satellite)•
• Its public key token (“null” if not strongly named)•

The simple name comes not from any attribute, but from the name of the file
to which it was originally compiled (less any extension). So, the simple name of
the System.Xml.dll assembly is “System.Xml.” Renaming a file doesn’t change the
assembly’s simple name.

The version number comes from the AssemblyVersion attribute. It’s a string divided
into four parts as follows:

major.minor.build.revision

You can specify a version number as follows:

[assembly: AssemblyVersion ("2.5.6.7")]

The culture comes from the AssemblyCulture attribute and applies to satellite
assemblies, described later in the section “Resources and Satellite Assemblies” on
page 776.

The public key token comes from the strong name supplied at compile time, as we
discussed in the preceding section.

Fully Qualified Names
A fully qualified assembly name is a string that includes all four identifying compo‐
nents, in this format:

simple-name, Version=version, Culture=culture, PublicKeyToken=public-key

Assembly Names | 771

A
ssem

b
lies



For example, the fully qualified name of System.Private.CoreLib.dll is System.Pri‐
vate.CoreLib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=7cec85d7bea7798e.

If the assembly has no AssemblyVersion attribute, the version appears as 0.0.0.0.
If it is unsigned, its public key token appears as null.

An Assembly object’s FullName property returns its fully qualified name. The com‐
piler always uses fully qualified names when recording assembly references in the
manifest.

A fully qualified assembly name does not include a directory
path to assist in locating it on disk. Locating an assembly
residing in another directory is an entirely separate matter
that we pick up in “Loading, Resolving, and Isolating Assem‐
blies” on page 783.

The AssemblyName Class
AssemblyName is a class with a typed property for each of the four components of a
fully qualified assembly name. AssemblyName has two purposes:

• It parses or builds a fully qualified assembly name.•
• It stores some extra data to assist in resolving (finding) the assembly.•

You can obtain an AssemblyName object in any of the following ways:

• Instantiate an AssemblyName, providing a fully qualified name.•

• Call GetName on an existing Assembly.•

• Call AssemblyName.GetAssemblyName, providing the path to an assembly file•
on disk.

You can also instantiate an AssemblyName object without any arguments and then
set each of its properties to build a fully qualified name. An AssemblyName is
mutable when constructed in this manner.

Here are its essential properties and methods:

string      FullName    { get; }            // Fully qualified name
string      Name        { get; set; }       // Simple name
Version     Version     { get; set; }       // Assembly version
CultureInfo CultureInfo { get; set; }       // For satellite assemblies
string      CodeBase    { get; set; }       // Location

byte[]      GetPublicKey();                 // 160 bytes
void        SetPublicKey (byte[] key);
byte[]      GetPublicKeyToken();            // 8-byte version
void        SetPublicKeyToken (byte[] publicKeyToken);
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Version is itself a strongly typed representation, with properties for Major, Minor,
Build, and Revision numbers. GetPublicKey returns the full cryptographic public
key; GetPublicKeyToken returns the last eight bytes used in establishing identity.

To use AssemblyName to obtain the simple name of an assembly:

Console.WriteLine (typeof (string).Assembly.GetName().Name);
// System.Private.CoreLib

To get an assembly version:

string v = myAssembly.GetName().Version.ToString();

Assembly Informational and File Versions
Two further assembly attributes are available for expressing version-related infor‐
mation. Unlike AssemblyVersion, the following two attributes do not affect an
assembly’s identity and so have no effect on what happens at compile-time or at
runtime:

AssemblyInformationalVersion

The version as displayed to the end user. This is visible in the Windows File
Properties dialog box as Product Version. Any string can go here, such as “5.1
Beta 2.” Typically, all of the assemblies in an application would be assigned the
same informational version number.

AssemblyFileVersion

This is intended to refer to the build number for that assembly. This is visible in
the Windows File Properties dialog box as File Version. As with AssemblyVer
sion, it must contain a string consisting of up to four numbers separated by
periods.

Authenticode Signing
Authenticode is a code-signing system whose purpose is to prove the identity of the
publisher. Authenticode and strong-name signing are independent: you can sign an
assembly with either or both systems.

Although strong-name signing can prove that assemblies A, B, and C came from the
same party (assuming the private key hasn’t been leaked), it can’t tell you who that
party was. To know that the party was Joe Albahari—or Microsoft Corporation—
you need Authenticode.

Authenticode is useful when downloading programs from the internet, because it
provides assurance that a program came from whoever was named by the Certif‐
icate Authority and was not modified in transit. It also prevents the “Unknown
Publisher” warning when running a downloaded application for the first time.
Authenticode signing is also a requirement when submitting apps to the Windows
Store.
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Authenticode works with not only .NET assemblies, but also unmanaged executa‐
bles and binaries such as .msi deployment files. Of course, Authenticode doesn’t
guarantee that a program is free from malware—although it does make it less likely.
A person or entity has been willing to put its name (backed by a passport or
company document) behind the executable or library.

The CLR does not treat an Authenticode signature as part
of an assembly’s identity. However, it can read and validate
Authenticode signatures on demand, as you’ll see soon.

Signing with Authenticode requires that you contact a Certificate Authority (CA)
with evidence of your personal identity or company’s identity (articles of incorpo‐
ration, etc.). After the CA has checked your documents, it will issue an X.509
code-signing certificate that is typically valid for one to five years. This enables you
to sign assemblies with the signtool utility. You can also make a certificate yourself
with the makecert utility; however, it will be recognized only on computers on
which the certificate is explicitly installed.

The fact that (non-self-signed) certificates can work on any computer relies on
public key infrastructure. Essentially, your certificate is signed with another certifi‐
cate belonging to a CA. The CA is trusted because all CAs are loaded into the
OS. (To see them, go to the Windows Control Panel and then, in the search box,
type certificate. In the Administrative Tools section, click “Manage computer
certificates.” This launches the Certificate Manager. Open the node Trusted Root
Certification Authorities and click Certificates.) A CA can revoke a publisher’s
certificate if leaked, so verifying an Authenticode signature requires periodically
asking the CA for an up-to-date list of certification revocations.

Because Authenticode uses cryptographic signing, an Authenticode signature is
invalid if someone subsequently tampers with the file. We discuss cryptography,
hashing, and signing in Chapter 20.

How to Sign with Authenticode

Obtaining and installing a certificate
The first step is to obtain a code-signing certificate from a CA (see the sidebar
that follows). You can then either work with the certificate as a password-protected
file or load the certificate into the computer’s certificate store. The benefit of doing
the latter is that you can sign without needing to specify a password. This is advan‐
tageous because it prevents having a password visible in automated build scripts or
batch files.
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Where to Get a Code-Signing Certificate
Just a handful of code-signing CAs are preloaded into Windows as root certification
authorities. These include Comodo, GoDaddy, GlobalSign, DigiCert, Thawte, and
Symantec.

There are also resellers such as K Software that offer discounted code-signing
certificates from the aforementioned authorities.

The Authenticode certificates issued by K Software, Comodo, GoDaddy, and Glob‐
alSign are advertised as less restrictive in that they will also sign non-Microsoft pro‐
grams. Aside from this, the products from all vendors are functionally equivalent.

Note that a certificate for SSL cannot generally be used for Authenticode signing
(despite using the same X.509 infrastructure). This is, in part, because a certificate
for SSL is about proving ownership of a domain; Authenticode is about proving
who you are.

To load a certificate into the computer’s certificate store, open the Certificate Man‐
ager as described earlier. Open the Personal folder, right-click its Certificates folder,
and then pick All Tasks/Import. An import wizard guides you through the process.
After the import is complete, click the View button on the certificate, go to the
Details tab, and copy the certificate’s thumbprint. This is the SHA-256 hash that
you’ll subsequently need to identify the certificate when signing.

If you also want to strong-name-sign your assembly, you must
do so before Authenticode signing. This is because the CLR
knows about Authenticode signing, but not vice versa. So, if
you strong-name-sign an assembly after Authenticode-signing
it, the latter will see the addition of the CLR’s strong name
as an unauthorized modification and consider the assembly
tampered.

Signing with signtool.exe
You can Authenticode-sign your programs with the signtool utility that comes with
Visual Studio (look in the Microsoft SDKs\ClickOnce\SignTool folder under Program
Files). The following signs a file called LINQPad.exe with the certificate located in
the computer’s My Store called “Joseph Albahari,” using the secure SHA256 hashing
algorithm:

signtool sign /n "Joseph Albahari" /fd sha256 LINQPad.exe

You can also specify a description and product URL with /d and /du:

 ... /d LINQPad /du http://www.linqpad.net

In most cases, you will also want to specify a time-stamping server.
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Time stamping
After your certificate expires, you’ll no longer be able to sign programs. However,
programs that you signed before its expiry will still be valid—if you specified a
time-stamping server with the /tr switch when signing. The CA will provide you
with a URI for this purpose: the following is for Comodo (or K Software):

 ... /tr http://timestamp.comodoca.com/authenticode /td SHA256

Verifying that a program has been signed
The easiest way to view an Authenticode signature on a file is to view the file’s
properties in Windows Explorer (look in the Digital Signatures tab). The signtool
utility also provides an option for this.

Resources and Satellite Assemblies
An application typically contains not only executable code, but also content such as
text, images, or XML files. Such content can be represented in an assembly through
a resource. There are two overlapping use cases for resources:

• Incorporating data that cannot go into source code, such as images•
• Storing data that might need translation in a multilingual application•

An assembly resource is ultimately a byte stream with a name. You can think of an
assembly as containing a dictionary of byte arrays keyed by string. You can see this
in ildasm if you disassemble an assembly that contains a resource called banner.jpg
and a resource called data.xml:

.mresource public banner.jpg
{
  // Offset: 0x00000F58 Length: 0x000004F6
}
.mresource public data.xml
{
  // Offset: 0x00001458 Length: 0x0000027E
}

In this case, banner.jpg and data.xml were included directly in the assembly—each
as its own embedded resource. This is the simplest way to work.

.NET also lets you add content through intermediate .resources containers. These
are designed for holding content that might require translation into different lan‐
guages. Localized .resources can be packaged as individual satellite assemblies that
are automatically picked up at runtime, based on the user’s OS language.

Figure 17-2 illustrates an assembly that contains two directly embedded resources,
plus a .resources container called welcome.resources, for which we’ve created two
localized satellites.
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Figure 17-2. Resources

Directly Embedding Resources
Embedding resources into assemblies is not supported
in Windows Store apps. Instead, add any extra files
to your deployment package, and access them by read‐
ing from your application StorageFolder (Package.Current
.InstalledLocation).

To directly embed a resource using Visual Studio:

• Add the file to your project.•
• Set its build action to Embedded Resource.•

Visual Studio always prefixes resource names with the project’s default namespace,
plus the names of any subfolders in which the file is contained. So, if your project’s
default namespace was Westwind.Reports and your file was called banner.jpg in the
folder pictures, the resource name would be Westwind.Reports.pictures.banner.jpg.

Resource names are case sensitive. This makes project sub‐
folder names in Visual Studio that contain resources effec‐
tively case sensitive.

To retrieve a resource, you call GetManifestResourceStream on the assembly con‐
taining the resource. This returns a stream, which you can then read as any other:

Assembly a = Assembly.GetEntryAssembly();

using (Stream s = a.GetManifestResourceStream ("TestProject.data.xml"))
using (XmlReader r = XmlReader.Create (s))
  ...
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System.Drawing.Image image;
using (Stream s = a.GetManifestResourceStream ("TestProject.banner.jpg"))
  image = System.Drawing.Image.FromStream (s);

The stream returned is seekable, so you can also do this:

byte[] data;
using (Stream s = a.GetManifestResourceStream ("TestProject.banner.jpg"))
  data = new BinaryReader (s).ReadBytes ((int) s.Length);

If you’ve used Visual Studio to embed the resource, you must remember to include
the namespace-based prefix. To help avoid error, you can specify the prefix in a
separate argument, using a type. The type’s namespace is used as the prefix:

using (Stream s = a.GetManifestResourceStream (typeof (X), "data.xml"))

X can be any type with the desired namespace of your resource (typically, a type in
the same project folder).

Setting a project item’s build action in Visual Studio to
Resource within a Windows Presentation Foundation (WPF)
application is not the same as setting its build action to
Embedded Resource. The former actually adds the item to
a .resources file called <AssemblyName>.g.resources, whose
content you access through WPF’s Application class, using
a URI as a key.
To add to the confusion, WPF further overloads the term
“resource.” Static resources and dynamic resources are both
unrelated to assembly resources!

GetManifestResourceNames returns the names of all resources in the assembly.

.resources Files

.resources files are containers for potentially localizable content. A .resources file
ends up as an embedded resource within an assembly—just like any other kind of
file. The difference is that you must do the following:

• Package your content into the .resources file to begin with•

• Access its content through a ResourceManager or pack URI rather than a Get•
ManifestResourceStream

.resources files are structured in binary and so are not human-editable; therefore,
you must rely on tools provided by .NET and Visual Studio to work with them.
The standard approach with strings or simple data types is to use the .resx format,
which can be converted to a .resources file either by Visual Studio or the resgen
tool. The .resx format is also suitable for images intended for a Windows Forms or
ASP.NET application.
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In a WPF application, you must use Visual Studio’s “Resource” build action for
images or similar content needing to be referenced by URI. This applies whether
localization is needed or not.

We describe how to do each of these in the following sections.

.resx Files
A .resx file is a design-time format for producing .resources files. A .resx file uses
XML and is structured with name/value pairs as follows:

<root>
  <data name="Greeting">
    <value>hello</value>
  </data>
  <data name="DefaultFontSize" type="System.Int32, mscorlib">
    <value>10</value>
  </data>
</root>

To create a .resx file in Visual Studio, add a project item of type Resources File. The
rest of the work is done automatically:

• The correct header is created.•
• A designer is provided for adding strings, images, files, and other kinds of data.•
• The .resx file is automatically converted to the .resources format and embedded•

into the assembly upon compilation.
• A class is written to help you access the data later on.•

The resource designer adds images as typed Image objects
(System.Drawing.dll) rather than as byte arrays, making them
unsuitable for WPF applications.

Reading .resources files
If you create a .resx file in Visual Studio, a class of the same
name is generated automatically with properties to retrieve
each of its items.

The ResourceManager class reads .resources files embedded within an assembly:

ResourceManager r = new ResourceManager ("welcome",
                                         Assembly.GetExecutingAssembly());

(The first argument must be namespace-prefixed if the resource was compiled in
Visual Studio.)

You can then access what’s inside by calling GetString or GetObject with a cast:
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string greeting = r.GetString ("Greeting");
int fontSize = (int) r.GetObject ("DefaultFontSize");
Image image = (Image) r.GetObject ("flag.png");      

To enumerate the contents of a .resources file:

ResourceManager r = new ResourceManager (...);
ResourceSet set = r.GetResourceSet (CultureInfo.CurrentUICulture,
                                    true, true);
foreach (System.Collections.DictionaryEntry entry in set)
  Console.WriteLine (entry.Key);

Creating a pack URI resource in Visual Studio
In a WPF application, XAML files need to be able to access resources by URI. For
instance:

<Button>
  <Image Height="50" Source="flag.png"/>
</Button>

Or, if the resource is in another assembly:

<Button>
  <Image Height="50" Source="UtilsAssembly;Component/flag.png"/>
</Button>

(Component is a literal keyword.)

To create resources that can be loaded in this manner, you cannot use .resx files.
Instead, you must add the files to your project and set their build action to Resource
(not Embedded Resource). Visual Studio then compiles them into a .resources file
called <AssemblyName>.g.resources—also the home of compiled XAML (.baml)
files.

To load a URI-keyed resource programmatically, call Application.GetResource
Stream:

Uri u = new Uri ("flag.png", UriKind.Relative);
using (Stream s = Application.GetResourceStream (u).Stream)

Notice we used a relative URI. You can also use an absolute URI in exactly the
following format (the three commas are not a typo):

Uri u = new Uri ("pack://application:,,,/flag.png");

If you’d rather specify an Assembly object, you can retrieve content instead with a
ResourceManager:

Assembly a = Assembly.GetExecutingAssembly();
ResourceManager r = new ResourceManager (a.GetName().Name + ".g", a);
using (Stream s = r.GetStream ("flag.png"))
  ...

A ResourceManager also lets you enumerate the content of a .g.resources container
within a given assembly.
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Satellite Assemblies
Data embedded in .resources is localizable.

Resource localization is relevant when your application runs on a version of Win‐
dows built to display everything in a different language. For consistency, your
application should use that same language, too.

A typical setup is as follows:

• The main assembly contains .resources for the default, or fallback, language.•
• Separate satellite assemblies contain localized .resources translated to different•

languages.

When your application runs, .NET examines the language of the current OS
(from CultureInfo.CurrentUICulture). Whenever you request a resource using
ResourceManager, the runtime looks for a localized satellite assembly. If one’s avail‐
able—and it contains the resource key you requested—it’s used in place of the main
assembly’s version.

This means that you can enhance language support simply by adding new satel‐
lites—without changing the main assembly.

A satellite assembly cannot contain executable code, only
resources.

Satellite assemblies are deployed in subdirectories of the assembly’s folder, as
follows:

programBaseFolder\MyProgram.exe
                 \MyLibrary.exe
                 \XX\MyProgram.resources.dll
                 \XX\MyLibrary.resources.dll

XX refers to the two-letter language code (such as “de” for German) or a language
and region code (such as “en-GB” for English in Great Britain). This naming system
allows the CLR to find and load the correct satellite assembly automatically.

Building satellite assemblies
Recall our previous .resx example, which included the following:

<root>
  ...
  <data name="Greeting"
    <value>hello</value>
  </data>
</root>

We then retrieved the greeting at runtime as follows:
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ResourceManager r = new ResourceManager ("welcome",
                                         Assembly.GetExecutingAssembly());
Console.Write (r.GetString ("Greeting"));

Suppose that we want this to instead write “hallo” if running on the German version
of Windows. The first step is to add another .resx file named welcome.de.resx that
substitutes hello for hallo:

<root>
  <data name="Greeting">
    <value>hallo<value>
  </data>
</root>

In Visual Studio, this is all you need to do—when you rebuild, a satellite assembly
called MyApp.resources.dll is automatically created in a subdirectory called de.

Testing satellite assemblies
To simulate running on an OS with a different language, you must change the
CurrentUICulture using the Thread class:

System.Threading.Thread.CurrentThread.CurrentUICulture
  = new System.Globalization.CultureInfo ("de");

CultureInfo.CurrentUICulture is a read-only version of the same property.

A useful testing strategy is to ℓѻ¢αℓïʐɘ into words that can
still be read as English but do not use the standard Roman
Unicode characters.

Visual Studio designer support
The designers in Visual Studio provide extended support for localizing components
and visual elements. The WPF designer has its own workflow for localization; other
Component-based designers use a design-time-only property to make it appear that
a component or Windows Forms control has a Language property. To customize for
another language, simply change the Language property and then start modifying
the component. All properties of controls that are attributed as Localizable will be
saved to a .resx file for that language. You can switch between languages at any time
just by changing the Language property.

Cultures and Subcultures
Cultures are split into cultures and subcultures. A culture represents a particular
language; a subculture represents a regional variation of that language. The .NET
runtime follows the RFC1766 standard, which represents cultures and subcultures
with two-letter codes. Here are the codes for English and German cultures:

En
de
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Here are the codes for the Australian English and Austrian German subcultures:

en-AU
de-AT

A culture is represented in .NET with the System.Globalization.CultureInfo
class. You can examine the current culture of your application, as follows:

Console.WriteLine (System.Threading.Thread.CurrentThread.CurrentCulture);
Console.WriteLine (System.Threading.Thread.CurrentThread.CurrentUICulture);

Running this on a computer localized for Australia illustrates the difference between
the two:

en-AU
en-US

CurrentCulture reflects the regional settings of the Windows Control Panel,
whereas CurrentUICulture reflects the language of the OS.

Regional settings include such things as time zone and the formatting of currency
and dates. CurrentCulture determines the default behavior of such functions as
DateTime.Parse. Regional settings can be customized to the point where they no
longer resemble any particular culture.

CurrentUICulture determines the language in which the computer communicates
with the user. Australia doesn’t need a separate version of English for this purpose,
so it just uses the US one. If I spent a couple of months working in Austria, I would
go to the Control Panel and change my CurrentCulture to Austrian-German.
However, given that I can’t speak German, my CurrentUICulture would remain US
English.

ResourceManager, by default, uses the current thread’s CurrentUICulture property
to determine the correct satellite assembly to load. ResourceManager uses a fallback
mechanism when loading resources. If a subculture assembly is defined, that one
is used; otherwise, it falls back to the generic culture. If the generic culture is not
present, it falls back to the default culture in the main assembly.

Loading, Resolving, and Isolating Assemblies
Loading an assembly from a known location is a relatively simple process. We refer
to this as assembly loading.

More commonly, however, you (or the CLR) will need to load an assembly knowing
only its full (or simple) name. This is called assembly resolution. Assembly resolu‐
tion differs from loading in that the assembly must first be located.

Assembly resolution is triggered in two scenarios:

• By the CLR, when it needs to resolve a dependency•

• Explicitly, when you call a method such as Assembly.Load(AssemblyName)•
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To illustrate the first scenario, consider an application comprising a main assembly
plus a set of statically referenced library assemblies (dependencies), as shown in this
example:

AdventureGame.dll    // Main assembly
Terrain.dll          // Referenced assembly
UIEngine.dll         // Referenced assembly

By “statically referenced,” we mean that AdventureGame.dll was compiled with ref‐
erences to Terrain.dll and UIEngine.dll. The compiler itself does not need to perform
assembly resolution, because it’s told (either explicitly or by MSBuild) where to
find Terrain.dll and UIEngine.dll. During compilation, it writes the full names of
the Terrain and UIEngine assemblies into the metadata of AdventureGame.dll but
no information on where to find them. So, at runtime, the Terrain and UIEngine
assemblies must be resolved.

Assembly loading and resolution is handled by an assembly load context
(ALC); specifically, an instance of the AssemblyLoadContext class in System.Run
time.Loader. Because AdventureGame.dll is the main assembly for the applica‐
tion, the CLR uses the default ALC (AssemblyLoadContext.Default) to resolve
its dependencies. The default ALC resolves dependencies first by looking for and
examining a file called AdventureGame.deps.json (which describes where to find
dependencies), or if not present, it looks in the application base folder, where it will
find Terrain.dll and UIEngine.dll. (The default ALC also resolves the .NET runtime
assemblies.)

As a developer, you can dynamically load additional assemblies during the execu‐
tion of your program. For example, you might want to package optional features
in assemblies that you deploy only when those features have been purchased. In
such a case, you could load the extra assemblies, when present, by calling Assembly
.Load(AssemblyName).

A more complex example would be implementing a plug-in system whereby the
user can provide third-party assemblies that your application detects and loads at
runtime to extend your application’s functionality. The complexity arises because
each plug-in assembly might have its own dependencies that must also be resolved.

By subclassing AssemblyLoadContext and overriding its assembly resolution
method (Load), you can control how a plug-in finds its dependencies. For example,
you might decide that each plug-in should reside in its own folder, and its depen‐
dencies should also reside in that folder.

ALCs have another purpose: by instantiating a separate AssemblyLoadContext for
each (plug-in + dependencies), you can keep each isolated, ensuring that their
dependencies load in parallel and do not interfere with one another (nor the host
application). Each, for instance, can have its own version of JSON.NET. Hence, in
addition to loading and resolution, ALCs also provide a mechanism for isolation.
Under certain conditions, ALCs can even be unloaded, freeing their memory.
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In this section, we elaborate on each of these principles and describe the following:

• How ALCs handle loading and resolution•
• The role of the default ALC•

• Assembly.Load and contextual ALCs•

• How to use AssemblyDependencyResolver•
• How to load and resolve unmanaged libraries•
• Unloading ALCs•
• The legacy assembly loading methods•

Then, we put the theory to work and demonstrate how to write a plug-in system
with ALC isolation.

The AssemblyLoadContext class is new to .NET 5+ and .NET
Core. In .NET Framework, ALCs were present but restricted
and hidden: the only way to create and interact with them was
indirectly via the LoadFile(string), LoadFrom(string), and
Load(byte[]) static methods on the Assembly class. Com‐
pared to the ALC API, these methods are inflexible, and their
use can lead to surprises (particularly when handling depen‐
dencies). For this reason, it’s best to favor explicit use of the
AssemblyLoadContext API in .NET 5+ and .NET Core.

Assembly Load Contexts
As we just discussed, the AssemblyLoadContext class is responsible for loading and
resolving assemblies as well as providing a mechanism for isolation.

Every .NET Assembly object belongs to exactly one AssemblyLoadContext. You can
obtain the ALC for an assembly, as follows:

Assembly assem = Assembly.GetExecutingAssembly();
AssemblyLoadContext context = AssemblyLoadContext.GetLoadContext (assem);
Console.WriteLine (context.Name);

Conversely, you can think of an ALC as “containing” or “owning” assemblies,
which you can obtain via its Assemblies property. Following on from the previous
example:

foreach (Assembly a in context.Assemblies)
  Console.WriteLine (a.FullName);

The AssemblyLoadContext class also has a static All property that enumerates all
ALCs.

You can create a new ALC just by instantiating AssemblyLoadContext and provid‐
ing a name (the name is helpful when debugging), although more commonly, you’d
first subclass AssemblyLoadContext so that you can implement logic to resolve
dependencies; in other words, load an assembly from its name.
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Loading assemblies
AssemblyLoadContext provides the following methods to explicitly load an assem‐
bly into its context:

public Assembly LoadFromAssemblyPath (string assemblyPath);
public Assembly LoadFromStream (Stream assembly, Stream assemblySymbols);

The first method loads an assembly from a file path, whereas the second method
loads it from a Stream (which can come directly from memory). The second param‐
eter is optional and corresponds to the contents of the project debug (.pdb) file,
which allows stack traces to include source code information when code executes
(useful in exception reporting).

With both of these methods, no resolution takes place.

The following loads the assembly c:\temp\foo.dll into its own ALC:

var alc = new AssemblyLoadContext ("Test");
Assembly assem = alc.LoadFromAssemblyPath (@"c:\temp\foo.dll");

If the assembly is valid, loading will always succeed, subject to one important rule:
an assembly’s simple name must be unique within its ALC. This means that you
cannot load multiple versions of the same-named assembly into a single ALC; to
do this, you must create additional ALCs. We could load another copy of foo.dll, as
follows:

var alc2 = new AssemblyLoadContext ("Test 2");
Assembly assem2 = alc2.LoadFromAssemblyPath (@"c:\temp\foo.dll");

Note that types that originate from different Assembly objects are incompatible even
if the assemblies are otherwise identical. In our example, the types in assem are
incompatible with the types in assem2.

After an assembly is loaded, it cannot be unloaded except by unloading its ALC
(see “Unloading ALCs” on page 797). The CLR maintains a lock of the file for the
duration that it’s loaded.
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You can avoid locking the file by loading the assembly via a
byte array:

bytes[] bytes = File.ReadAllBytes (@"c:\temp\foo.dll");
var ms = new MemoryStream (bytes);
var assem = alc.LoadFromStream (ms);

This has two drawbacks:

• The assembly’s Location property will end up blank.•
Sometimes, it’s useful to know where an assembly was
loaded from (and some APIs rely on it being populated).

• Private memory consumption must increase immedi‐•
ately to accommodate the full size of the assembly.
If you instead load from a filename, the CLR uses a
memory-mapped file, which enables lazy loading and
process sharing. Also, should memory run low, the OS
can release its memory and reload as required without
writing to a page file.

LoadFromAssemblyName
AssemblyLoadContext also provides the following method, which loads an assembly
by name:

public Assembly LoadFromAssemblyName (AssemblyName assemblyName);

Unlike the two methods just discussed, you don’t pass in any information to indicate
where the assembly is located; instead you’re instructing the ALC to resolve the
assembly.

Resolving assemblies
The preceding method triggers assembly resolution. The CLR also triggers assembly
resolution when loading dependencies. For example, suppose that assembly A stat‐
ically references assembly B. To resolve reference B, the CLR triggers assembly
resolution on whichever ALC assembly A was loaded into.

The CLR resolves dependencies by triggering assembly resolu‐
tion—whether the triggering assembly is in the default or a
custom ALC. The difference is that with the default ALC, the
resolution rules are hardcoded, whereas with a custom ALC,
you write the rules yourself.

Here’s what then happens:

1. The CLR first checks whether an identical resolution has already taken place in1.
that ALC (with a matching full assembly name); if so, it returns the Assembly it
returned before.

2. Otherwise, it calls the ALC’s (virtual protected) Load method, which does the2.
work of locating and loading the assembly. The default ALC’s Load method
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applies the rules we describe in “The Default ALC” on page 790. With a
custom ALC, it’s entirely up to you how you locate the assembly. For instance,
you might look in some folder and then call LoadFromAssemblyPath when you
find the assembly. It’s also perfectly legal to return an already-loaded assembly
from the same or another ALC (we demonstrate this in “Writing a Plug-In
System” on page 799).

3. If Step 2 returns null, the CLR then calls the Load method on the default ALC3.
(this serves as a useful “fallback” for resolving .NET runtime and common
application assemblies).

4. If Step 3 returns null, the CLR then fires the Resolving events on both ALCs—4.
first, on the default ALC and then on the original ALC.

5. (For compatibility with .NET Framework): If the assembly still hasn’t been5.
resolved, the AppDomain.CurrentDomain.AssemblyResolve event fires.

After this process completes, the CLR does a “sanity
check” to ensure that whatever assembly was loaded has
a name that’s compatible with what was requested. The
simple name must match; the public key token must
match if specified. The version need not match—it can be
higher or lower than what was requested.

From this, we can see that there are two ways to implement assembly resolution in a
custom ALC:

• Override the ALC’s Load method. This gives your ALC “first say” over what•
happens, which is usually desirable (and essential when you need isolation).

• Handle the ALC’s Resolving event. This fires only after the default ALC has•
failed to resolve assembly.

If you attach multiple event handlers to the Resolving event,
the first to return a non-null value wins.

To illustrate, let’s assume that we want to load an assembly that our main application
knew nothing about at compile time, called foo.dll, located in c:\temp (which is
different from our application folder). We’ll also assume that foo.dll has a private
dependency on bar.dll. We want to ensure that when we load c:\temp\foo.dll and
execute its code, c:\temp\bar.dll can correctly resolve. We also want to ensure that
foo and its private dependency, bar, do not interfere with the main application.

Let’s begin by writing a custom ALC that overrides Load:

using System.IO;
using System.Runtime.Loader;

class FolderBasedALC : AssemblyLoadContext
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{
  readonly string _folder;
  public FolderBasedALC (string folder) => _folder = folder;

  protected override Assembly Load (AssemblyName assemblyName)
  {
    // Attempt to find the assembly:
    string targetPath = Path.Combine (_folder, assemblyName.Name + ".dll");

    if (File.Exists (targetPath))
      return LoadFromAssemblyPath (targetPath);   // Load the assembly

    return null;    // We can’t find it: it could be a .NET runtime assembly
  }
}

Notice that in the Load method, we return null if the assembly file is not present.
This check is important because foo.dll will also have dependencies on the .NET
BCL assemblies; hence, the Load method will be called on assemblies such as
System.Runtime. By returning null, we allow the CLR to fall back to the default
ALC, which will correctly resolve these assemblies.

Notice that we didn’t attempt to load the .NET runtime BCL
assemblies into our own ALC. These system assemblies are
not designed to run outside the default ALC, and attempts
to load them into your own ALC can result in incorrect
behavior, performance degradation, and unexpected type
incompatibility.

Here’s how we could use our custom ALC to load the foo.dll assembly in c:\temp:

var alc = new FolderBasedALC (@"c:\temp");
Assembly foo = alc.LoadFromAssemblyPath (@"c:\temp\foo.dll");
...

When we subsequently begin calling code in the foo assembly, the CLR will at some
point need to resolve the dependency on bar.dll. This is when the custom ALC’s
Load method will fire and successfully locate the bar.dll assembly in c:\temp.

In this case, our Load method is also capable of resolving foo.dll, so we could
simplify our code to this:

var alc = new FolderBasedALC (@"c:\temp");
Assembly foo = alc.LoadFromAssemblyName (new AssemblyName ("foo"));
...

Now, let’s consider an alternative solution: instead of subclassing AssemblyLoad
Context and overriding Load, we could instantiate a plain AssemblyLoadContext
and handle its Resolving event:

var alc = new AssemblyLoadContext ("test");
alc.Resolving += (loadContext, assemblyName) =>
{
  string targetPath = Path.Combine (@"c:\temp", assemblyName.Name + ".dll");
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  return alc.LoadFromAssemblyPath (targetPath);   // Load the assembly
};
Assembly foo = alc.LoadFromAssemblyName (new AssemblyName ("foo"));

Notice now that we don’t need to check whether the assembly exists. Because the
Resolving event fires after the default ALC has had a chance to resolve the assembly
(and only when it fails), our handler won’t fire for the .NET BCL assemblies. This
makes this solution simpler, although there’s a disadvantage. Remember that in our
scenario, the main application knew nothing about foo.dll or bar.dll at compile time.
This means that it’s possible for the main application to itself depend on assemblies
called foo.dll or bar.dll. If this were to occur, the Resolving event would never fire,
and the application’s foo and bar assemblies would load instead. In other words, we
would fail to achieve isolation.

Our FolderBasedALC class is good for illustrating the concept
of assembly resolution, but it’s of less use in real life because
it cannot handle platform-specific and (for library projects)
development-time NuGet dependencies. In “AssemblyDepen‐
dencyResolver” on page 796, we describe the solution to this
problem, and in “Writing a Plug-In System” on page 799, we
give a detailed example.

The Default ALC
When an application starts, the CLR assigns a special ALC to the static Assembly
LoadContext.Default property. The default ALC is where your startup assembly
loads, along with its statically referenced dependencies and the .NET runtime BCL
assemblies.

The default ALC looks first in the default probing paths to automatically resolve
assemblies (see “Default probing” on page 791); this normally equates to the
locations indicated in the application’s .deps.json and .runtimeconfig.json files.

If the ALC cannot find an assembly in its default probing paths, its Resolving event
fires. Handling this event lets you load the assembly from other locations, which
means that you can deploy an application’s dependencies to additional locations,
such as subfolders, shared folders, or even as a binary resource inside the host
assembly:

AssemblyLoadContext.Default.Resolving += (loadContext, assemblyName) =>
{
  // Try to locate assemblyName, returning an Assembly object or null.
  // Typically you’d call LoadFromAssemblyPath after finding the file.
  // ...
};

The Resolving event in the default ALC also fires when a custom ALC fails to
resolve (in other words, when its Load method returns null) and the default ALC is
unable to resolve the assembly.
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You can also load assemblies into the default ALC from outside the Resolving
event. Before proceeding, however, you should first determine whether you can
solve the problem better by using a separate ALC or with the approaches we
describe in the following section (which use the executing and contextual ALCs).
Hardcoding to the default ALC makes your code brittle because it cannot as a whole
be isolated (for instance, by unit testing frameworks or by LINQPad).

If you still want to proceed, it’s preferable to call a resolution method (i.e., LoadFrom
AssemblyName) rather than a loading method (such as LoadFromAssemblyPath)—
especially if your assembly is statically referenced. This is because it’s possible that
the assembly might already be loaded, in which case LoadFromAssemblyName will
return the already-loaded assembly, whereas LoadFromAssemblyPath will throw an
exception.

(With LoadFromAssemblyPath, you can also run the risk of loading the assembly
from a place that’s inconsistent with where the ALC’s default resolution mechanism
would find it.)

If the assembly is in a place where the ALC won’t automatically find it, you can still
follow this procedure and additionally handle the ALC’s Resolving event.

Note that when calling LoadFromAssemblyName, you don’t need to provide the full
name; the simple name will do (and is valid even if the assembly is strongly named):

AssemblyLoadContext.Default.LoadFromAssemblyName ("System.Xml");

However, if you include the public key token in the name, it must match with what’s
loaded.

Default probing
The default probing paths normally comprise the following:

• Paths specified in AppName.deps.json (where AppName is the name of your•
application’s main assembly). If this file is not present, the application base
folder is used instead.

• Folders containing the .NET runtime system assemblies (if your application is•
Framework-dependent).

MSBuild automatically generates a file called AppName.deps.json, which describes
where to find all of its dependencies. These include platform-agnostic assemblies,
which are placed in the application base folder, and platform-specific assemblies,
which are placed in the runtimes\ subdirectory under a subfolder such as win or
unix.

The paths specified in the generated .deps.json file are relative to the application base
folder—or any additional folders that you specify in the additionalProbingPaths
section of the AppName.runtimeconfig.json and/or AppName.runtimeconfig.dev.json
configuration files (the latter is intended only for the development environment).
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The “Current” ALC
In the preceding section, we cautioned against explicitly loading assemblies into the
default ALC. What you usually want, instead, is to load/resolve into the “current”
ALC.

In most cases, the “current” ALC is the one containing the currently executing
assembly:

var executingAssem = Assembly.GetExecutingAssembly();
var alc = AssemblyLoadContext.GetLoadContext (executingAssem);

Assembly assem = alc.LoadFromAssemblyName (...);  // to resolve by name
        // OR: = alc.LoadFromAssemblyPath (...);  // to load by path

Here’s a more flexible and explicit way to obtain the ALC:

var myAssem = typeof (SomeTypeInMyAssembly).Assembly;
var alc = AssemblyLoadContext.GetLoadContext (myAssem);
...

Sometimes, it’s impossible to infer the “current” ALC. For example, suppose that
you were responsible for writing the .NET binary serializer (we describe serializa‐
tion in the online supplement at http://www.albahari.com/nutshell). A serializer such
as this writes the full names of the types that it serializes (including their assembly
names), which must be resolved during deserialization. The question is, which ALC
should you use? The problem with relying on the executing assembly is that it will
return whatever assembly contains the deserializer, not the assembly that’s calling
the deserializer.

The best solution is not to guess but to ask:

public object Deserialize (Stream stream, AssemblyLoadContext alc)
{
  ...
}

Being explicit maximizes flexibility and minimizes the chance of making mistakes.
The caller can now decide what should count as the “current” ALC:

var assem = typeof (SomeTypeThatIWillBeDeserializing).Assembly;
var alc = AssemblyLoadContext.GetLoadContext (assem);
var object = Deserialize (someStream, alc);

Assembly.Load and Contextual ALCs
To help with the common case of loading an assembly into the currently executing
ALC; that is:

var executingAssem = Assembly.GetExecutingAssembly();
var alc = AssemblyLoadContext.GetLoadContext (executingAssem);
Assembly assem = alc.LoadFromAssemblyName (...);

Microsoft has defined the following method in the Assembly class:

public static Assembly Load (string assemblyString);
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as well as a functionally identical version that accepts an AssemblyName object:

public static Assembly Load (AssemblyName assemblyRef);

(Don’t confuse these methods with the legacy Load(byte[]) method, which behaves
in a totally different manner—see “The Legacy Loading Methods” on page 798.)

As with LoadFromAssemblyName, you have a choice of specifying the assembly’s
simple, partial, or full name:

Assembly a = Assembly.Load ("System.Private.Xml");

This loads the System.Private.Xml assembly into whatever ALC the executing
code’s assembly is loaded in.

In this case, we specified a simple name. The following strings would also be valid,
and all would have the same result in .NET:

"System.Private.Xml, PublicKeyToken=cc7b13ffcd2ddd51"
"System.Private.Xml, Version=4.0.1.0"
"System.Private.Xml, Version=4.0.1.0, PublicKeyToken=cc7b13ffcd2ddd51"

If you choose to specify a public key token, it must match with what’s loaded.

The Microsoft Developer Network (MSDN) cautions against
loading an assembly from a partial name, recommending that
you specify the exact version and public key token. Their
rationale is based on factors relevant to .NET Framework,
such as the effects of the Global Assembly Cache and Code
Access Security. In .NET 5+ and .NET Core, these factors
aren’t present, and it’s generally safe to load from a simple
or partial name.

Both of these methods are strictly for resolution, so you cannot specify a file path. (If
you populate the CodeBase property in the AssemblyName object, it will be ignored.)

Don’t fall into the trap of using Assembly.Load to load a
statically referenced assembly. All you need do in this case is
refer to a type in the assembly and obtain the assembly from
that:

Assembly a = typeof (System.Xml.Formatting).Assembly;

Or, you could even do this:
Assembly a = System.Xml.Formatting.Indented.GetType().Assembly;

This prevents hardcoding the assembly name (which you
might change in the future) while triggering assembly reso‐
lution on the executing code’s ALC (as would happen with
Assembly.Load).

If you were to write the Assembly.Load method yourself, it would (almost) look like
this:

[MethodImpl(MethodImplOptions.NoInlining)]
Assembly Load (string name)
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{
  Assembly callingAssembly = Assembly.GetCallingAssembly();
  var callingAlc = AssemblyLoadContext.GetLoadContext (callingAssembly);
  return callingAlc.LoadFromAssemblyName (new AssemblyName (name));
}

EnterContextualReflection
Assembly.Load’s strategy of using the calling assembly’s ALC context fails when
Assembly.Load is called via an intermediary, such as a deserializer or unit test
runner. If the intermediary is defined in a different assembly, the intermediary’s load
context is used instead of the caller’s load context.

We described this scenario earlier, when we talked about how
you might write a deserializer. In such cases, the ideal solution
is to force the caller to specify an ALC rather than inferring it
with Assembly.Load(string).
But because .NET 5+ and .NET Core evolved from .NET
Framework—where isolation was accomplished with applica‐
tion domains rather than ALCs—the ideal solution is not
prevalent, and Assembly.Load(string) is sometimes used
inappropriately in scenarios in which the ALC cannot be relia‐
bly inferred. An example is the .NET binary serializer.

To allow Assembly.Load to still work in such scenarios, Microsoft has added
a method to AssemblyLoadContext called EnterContextualReflection. This
assigns an ALC to AssemblyLoadContext.CurrentContextualReflectionContext.
Although this is a static property, its value is stored in an AsyncLocal variable, so
it can hold separate values on different threads (but still be preserved throughout
asynchronous operations).

If this property is non-null, Assembly.Load automatically uses it in preference to the
calling ALC:

Method1();

var myALC = new AssemblyLoadContext ("test");
using (myALC.EnterContextualReflection())
{
   Console.WriteLine (
     AssemblyLoadContext.CurrentContextualReflectionContext.Name);  // test

   Method2();
}

// Once disposed, EnterContextualReflection() no longer has an effect.
Method3();

void Method1() => Assembly.Load ("...");    // Will use calling ALC
void Method2() => Assembly.Load ("...");    // Will use myALC
void Method3() => Assembly.Load ("...");    // Will use calling ALC
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We previously demonstrated how you could write a method that’s functionally
similar to Assembly.Load. Here’s a more accurate version that takes the contextual
reflection context into account:

[MethodImpl(MethodImplOptions.NoInlining)]
Assembly Load (string name)
{
  var alc = AssemblyLoadContext.CurrentContextualReflectionContext
     ?? AssemblyLoadContext.GetLoadContext (Assembly.GetCallingAssembly());

  return alc.LoadFromAssemblyName (new AssemblyName (name));
}

Even though the contextual reflection context can be useful in allowing legacy code
to run, a more robust solution (as we described earlier) is to modify the code that
calls Assembly.Load so that it instead calls LoadFromAssemblyName on an ALC that’s
passed in by the caller.

.NET Framework has no equivalent of EnterContextualRe
flection—and does not need it—despite having the same
Assembly.Load methods. This is because with .NET Frame‐
work, isolation is accomplished primarily with application
domains rather than ALCs. Application domains provide a
stronger isolation model whereby each application domain
has its own default load context, so isolation can still work
even when only the default load context is used.

Loading and Resolving Unmanaged Libraries
ALCs can also load and resolve native libraries. Native resolution is triggered when
you call an external method that’s marked with the [DllImport] attribute:

[DllImport ("SomeNativeLibrary.dll")]
static extern int SomeNativeMethod (string text);

Because we didn’t specify a full path in the [DllImport] attribute, calling Some
NativeMethod triggers a resolution in whatever ALC contains the assembly in which
SomeNativeMethod is defined.

The virtual resolving method in the ALC is called LoadUnmanagedDll, and the
loading method is called LoadUnmanagedDllFromPath:

protected override IntPtr LoadUnmanagedDll (string unmanagedDllName)
{
  // Locate the full path of unmanagedDllName...
  string fullPath = ...
  return LoadUnmanagedDllFromPath (fullPath);    // Load the DLL
}

If you’re unable to locate the file, you can return IntPtr.Zero. The CLR will then
fire the ALC’s ResolvingUnmanagedDll event.
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Interestingly, the LoadUnmanagedDllFromPath method is protected, so you won’t
usually be able to call it from a ResolvingUnmanagedDll event handler. However,
you can achieve the same result by calling the static NativeLibrary.Load:

someALC.ResolvingUnmanagedDll += (requestingAssembly, unmanagedDllName) =>
{
  return NativeLibrary.Load ("(full path to unmanaged DLL)");
};

Although native libraries are typically resolved and loaded by ALCs, they don’t
“belong” to an ALC. After it’s loaded, a native library stands on its own and
takes responsibility for resolving any transitive dependencies that it might have.
Furthermore, native libraries are global to the process, so it’s not possible to load
two different versions of a native library if they have the same filename.

AssemblyDependencyResolver
In “Default probing” on page 791, we said that the default ALC reads the .deps.json
and .runtimeconfig.json files, if present, in determining where to look to resolve
platform-specific and development-time NuGet dependencies.

If you want to load an assembly into a custom ALC that has platform-specific
or NuGet dependencies, you’ll need to somehow reproduce this logic. You could
accomplish this by parsing the configuration files and carefully following the rules
on platform-specific monikers, but doing so is not only difficult, but the code that
you write will break if the rules change in a later version of .NET.

The AssemblyDependencyResolver class solves this problem. To use it, you instanti‐
ate it with the path of the assembly whose dependencies you want to probe:

var resolver = new AssemblyDependencyResolver (@"c:\temp\foo.dll");

Then, to find the path of a dependency, you call the ResolveAssemblyToPath
method:

string path = resolver.ResolveAssemblyToPath (new AssemblyName ("bar"));

In the absence of a .deps.json file (or if the .deps.json doesn’t contain anything
relevant to bar.dll), this will evaluate to c:\temp\bar.dll.

You can similarly resolve unmanaged dependencies by calling ResolveUnmanaged
DllToPath.

A great way to illustrate a more complex scenario is to create a new Console project
called ClientApp and then add a NuGet reference to Microsoft.Data.SqlClient. Add
the following class:

using Microsoft.Data.SqlClient;

namespace ClientApp
{
  public class Program
  {
    public static SqlConnection GetConnection() => new SqlConnection();
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    static void Main() => GetConnection();   // Test that it resolves
  }
}

Now build the application and look in the output folder: you’ll see a file called
Microsoft.Data.SqlClient.dll. However, this file never loads when run, and attempting
to explicitly load it throws an exception. The assembly that actually loads is located
in the runtimes\win (or runtimes/unix) subfolder; the default ALC knows to load it
because it parses the ClientApp.deps.json file.

If you were to try to load the ClientApp.dll assembly from another application, you’d
need to write an ALC that can resolve its dependency, Microsoft.Data.SqlClient.dll.
In doing so, it would be insufficient to merely look in the folder where ClientApp.dll
is located (as we did in “Resolving assemblies” on page 787). Instead, you’d need
to use AssemblyDependencyResolver to determine where that file is located for the
platform in use:

string path = @"C:\source\ClientApp\bin\Debug\netcoreapp3.0\ClientApp.dll";
var resolver = new AssemblyDependencyResolver (path);
var sqlClient = new AssemblyName ("Microsoft.Data.SqlClient");
Console.WriteLine (resolver.ResolveAssemblyToPath (sqlClient));

On a Windows machine, this outputs the following:

C:\source\ClientApp\bin\Debug\netcoreapp3.0\runtimes\win\lib\netcoreapp2.1
\Microsoft.Data.SqlClient.dll

We give a complete example in “Writing a Plug-In System” on page 799.

Unloading ALCs
In simple cases, it’s possible to unload a nondefault AssemblyLoadContext, freeing
memory and releasing file locks on the assemblies it loaded. For this to work, the
ALC must have been instantiated with the isCollectible parameter true:

var alc = new AssemblyLoadContext ("test", isCollectible:true);

You can then call the Unload method on the ALC to initiate the unload process.

The unload model is cooperative rather than preemptive. If any methods in any of
the ALC’s assemblies are executing, the unload will be deferred until those methods
finish.

The actual unload takes place during garbage collection; it will not take place if
anything from outside the ALC has any (nonweak) reference to anything inside
the ALC (including objects, types, and assemblies). It’s not uncommon for APIs
(including those in the .NET BCL) to cache objects in static fields or dictionaries—
or subscribe to events—and this makes it easy to create references that will prevent
an unload, especially if code in the ALC uses APIs outside its ALC in a nontrivial
way. Determining the cause of a failed unload is difficult and requires the use of
tools such as WinDbg.
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The Legacy Loading Methods
If you’re still using .NET Framework (or writing a library that targets .NET
Standard and want to support .NET Framework), you won’t be able to use the
AssemblyLoadContext class. Loading is accomplished instead by using the following
methods:

public static Assembly LoadFrom (string assemblyFile);
public static Assembly LoadFile (string path);
public static Assembly Load (byte[] rawAssembly);

LoadFile and Load(byte[]) provide isolation, whereas LoadFrom does not.

Resolution is accomplished by handling the application domain’s AssemblyResolve
event, which works like the default ALC’s Resolving event.

The Assembly.Load(string) method is also available to trigger resolution and
works in a similar way.

LoadFrom
LoadFrom loads an assembly from a given path into the default ALC. It’s a bit
like calling AssemblyLoadContext.Default.LoadFromAssemblyPath except for the
following:

• If an assembly with the same simple name is already present in the default•
ALC, LoadFrom returns that assembly rather than throwing an exception.

• If an assembly with the same simple name is not already present in the default•
ALC and a load takes place, the assembly is given a special “LoadFrom” status.
This status affects the default ALC’s resolution logic, in that should that assem‐
bly have any dependencies in the same folder, those dependencies will resolve
automatically.

.NET Framework has a Global Assembly Cache (GAC). If the
assembly is present in the GAC, the CLR will always load from
there instead. This applies to all three loading methods.

LoadFrom’s ability to automatically resolve transitive same-folder dependencies can
be convenient—until it loads an assembly that it shouldn’t. Because such scenarios
can be difficult to debug, it can be better to use Load(string) or LoadFile and
resolve transitive dependencies by handling the application domain’s AssemblyRe
solve event. This gives you the power to decide how to resolve each assembly and
allows for debugging (by creating a breakpoint inside the event handler).

LoadFile and Load(byte[])
LoadFile and Load(byte[]) load an assembly from a given file path or byte array
into a new ALC. Unlike LoadFrom, these methods provide isolation and let you load
multiple versions of the same assembly. However, there are two caveats:
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• Calling LoadFile again with the identical path will return the previously loaded•
assembly.

• In .NET Framework, both methods first check the GAC and load from there•
instead if the assembly is present.

With LoadFile and Load(byte[]), you end up with a separate ALC per assembly
(caveats aside). This enables isolation, although it can make it more awkward to
manage.

To resolve dependencies, you handle the AppDomain’s Resolving event, which fires
on all ALCs:

AppDomain.CurrentDomain.AssemblyResolve += (sender, args) =>
{
  string fullAssemblyName = args.Name;
  // return an Assembly object or null
  ...
};

The args variable also includes a property called RequestingAssembly, which tells
you which assembly triggered the resolution.

After locating the assembly, you can then call Assembly.LoadFile to load it.

You can enumerate all of the assemblies that have been loaded
into the current application domain with AppDomain.Current
Domain.GetAssemblies(). This works in .NET 5+, too, where
it’s equivalent to the following:

AssemblyLoadContext.All.SelectMany (a => a.Assemblies)

Writing a Plug-In System
To fully demonstrate the concepts that we’ve covered in this section, let’s write a
plug-in system that uses unloadable ALCs to isolate each plug-in.

Our demo system will initially comprise three .NET projects:

Plugin.Common (library)
Defines an interface that plug-ins will implement

Capitalizer (library)
A plug-in that capitalizes text

Plugin.Host (console application)
Locates and invokes plug-ins

Let’s assume that the projects reside in the following directories:

c:\source\PluginDemo\Plugin.Common
c:\source\PluginDemo\Capitalizer
c:\source\PluginDemo\Plugin.Host
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All projects will reference the Plugin.Common library, and there will be no other
interproject references.

If Plugin.Host were to reference Capitalizer, we wouldn’t be
writing a plug-in system; the central idea is that the plug-ins
are written by third parties after Plugin.Host and Plugin.Com‐
mon have been published.
If you’re using Visual Studio, it can be convenient to put
all three projects into a single solution for the sake of this
demo. If you do so, right-click the Plugin.Host project, choose
Build Dependencies > Project Dependencies, and then tick the
Capitalizer project. This forces Capitalizer to build when you
run the Plugin.Host project, without adding a reference.

Plugin.Common
Let’s begin with Plugin.Common. Our plug-ins will perform a very simple task,
which is to transform a string. Here’s how we’ll define the interface:

namespace Plugin.Common
{
  public interface ITextPlugin
  {
    string TransformText (string input);
  }
}

That’s all there is to Plugin.Common.

Capitalizer (plug-in)
Our Capitalizer plug-in will reference Plugin.Common and contain a single class.
For now, we’ll keep the logic simple so that the plug-in has no extra dependencies:

public class CapitalizerPlugin : Plugin.Common.ITextPlugin
{
  public string TransformText (string input) => input.ToUpper();
}

If you build both projects and look in Capitalizer’s output folder, you’ll see the
following two assemblies:

Capitalizer.dll      // Our plug-in assembly
Plugin.Common.dll    // Referenced assembly

Plugin.Host
Plugin.Host is a console application with two classes. The first class is a custom ALC
to load the plug-ins:

class PluginLoadContext : AssemblyLoadContext
{
  AssemblyDependencyResolver _resolver;
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  public PluginLoadContext (string pluginPath, bool collectible)
    // Give it a friendly name to help with debugging:
    : base (name: Path.GetFileName (pluginPath), collectible)
  {
    // Create a resolver to help us find dependencies.
    _resolver = new AssemblyDependencyResolver (pluginPath);
  }

  protected override Assembly Load (AssemblyName assemblyName)
  {
    // See below
    if (assemblyName.Name == typeof (ITextPlugin).Assembly.GetName().Name)
      return null;

    string target = _resolver.ResolveAssemblyToPath (assemblyName);

    if (target != null)
      return LoadFromAssemblyPath (target);

    // Could be a BCL assembly. Allow the default context to resolve.
    return null;   
  }

  protected override IntPtr LoadUnmanagedDll (string unmanagedDllName)
  {
    string path = _resolver.ResolveUnmanagedDllToPath (unmanagedDllName);

    return path == null
      ? IntPtr.Zero
      : LoadUnmanagedDllFromPath (path);
  }
}

In the constructor, we pass in the path to the main plug-in assembly as well as a flag
to indicate whether we’d like the ALC to be collectible (so that it can be unloaded).

The Load method is where we handle dependency resolution. All plug-ins must
reference Plugin.Common so that they can implement ITextPlugin. This means
that the Load method will fire at some point to resolve Plugin.Common. We need
to be careful because the plug-in’s output folder is likely to contain not only Capital‐
izer.dll but also its own copy of Plugin.Common.dll. If we were to load this copy
of Plugin.Common.dll into the PluginLoadContext, we’d end up with two copies of
the assembly: one in the host’s default context and one in the plug-in’s PluginLoad
Context. The assemblies would be incompatible, and the host would complain that
the plug-in does not implement ITextPlugin!

To solve this, we check explicitly for this condition:

    if (assemblyName.Name == typeof (ITextPlugin).Assembly.GetName().Name)
      return null;

Returning null allows the host’s default ALC to instead resolve the assembly.
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Instead of returning null, we could return typeof(ITextPlu
gin).Assembly, and it would also work correctly. How can
we be certain that ITextPlugin will resolve on the host’s
ALC and not on our PluginLoadContext? Remember that
our PluginLoadContext class is defined in the Plugin.Host
assembly. Therefore, any types that you statically reference
from this class will trigger an assembly resolution on the ALC
into which its assembly, Plugin.Host, was loaded.

After checking for the common assembly, we use AssemblyDependencyResolver to
locate any private dependencies that the plug-in might have. (Right now, there will
be none.)

Notice that we also override the LoadUnamangedDll method. This ensures that if the
plug-in has any unmanaged dependencies, these will load correctly, too.

The second class to write in Plugin.Host is the main program itself. For simplicity,
let’s hardcode the path to our Capitalizer plug-in (in real life, you might discover
the paths of plug-ins by looking for DLLs in known locations or reading from a
configuration file):

class Program
{
  const bool UseCollectibleContexts = true;

  static void Main()
  {
    const string capitalizer = @"C:\source\PluginDemo\"
      + @"Capitalizer\bin\Debug\netcoreapp3.0\Capitalizer.dll";

    Console.WriteLine (TransformText ("big apple", capitalizer));
  }

  static string TransformText (string text, string pluginPath)
  {
    var alc = new PluginLoadContext (pluginPath, UseCollectibleContexts);
    try
    {
      Assembly assem = alc.LoadFromAssemblyPath (pluginPath);

      // Locate the type in the assembly that implements ITextPlugin:
      Type pluginType = assem.ExportedTypes.Single (t => 
                        typeof (ITextPlugin).IsAssignableFrom (t));

      // Instantiate the ITextPlugin implementation:
      var plugin = (ITextPlugin)Activator.CreateInstance (pluginType);

      // Call the TransformText method
      return plugin.TransformText (text);
    }
    finally
    {
      if (UseCollectibleContexts) alc.Unload();    // unload the ALC
    }  
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  }
}

Let’s look at the TransformText method. We first instantiate a new ALC for our
plug-in and then ask it to load the main plug-in assembly. Next, we use Reflection to
locate the type that implements ITextPlugin (we cover this in detail in Chapter 18).
Then, we instantiate the plug-in, call the TransformText method, and unload the
ALC.

If you needed to call the TransformText method repeatedly,
a better approach would be to cache the ALC rather than
unloading it after each call.

Here’s the output:

BIG APPLE

Adding dependencies
Our code is fully capable of resolving and isolating dependencies. To illustrate, let’s
first add a NuGet reference to Humanizer.Core, version 2.6.2. You can do this via the
Visual Studio UI or by adding the following element to the Capitalizer.csproj file:

  <ItemGroup>
    <PackageReference Include="Humanizer.Core" Version="2.6.2" />
  </ItemGroup>

Now, modify CapitalizerPlugin, as follows:

using Humanizer;
namespace Capitalizer
{
  public class CapitalizerPlugin : Plugin.Common.ITextPlugin
  {
    public string TransformText (string input) => input.Pascalize();
  }
}

If you rerun the program, the output will now be this:

BigApple

Next, we create another plug-in called Pluralizer. Create a new .NET library project
and add a NuGet reference to Humanizer.Core, version 2.7.9:

  <ItemGroup>
    <PackageReference Include="Humanizer.Core" Version="2.7.9" />
  </ItemGroup>

Now, add a class called PluralizerPlugin. This will be similar to Capitalizer
PlugIn, but we call the Pluralize method instead:

using Humanizer;
namespace Pluralizer
{
  public class PluralizerPlugin : Plugin.Common.ITextPlugin
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  {
    public string TransformText (string input) => input.Pluralize();
  }
}

Finally, we need to add code to the Plugin.Host’s Main method to load and run the
Pluralizer plug-in:

  static void Main()
  {
    const string capitalizer = @"C:\source\PluginDemo\"
      + @"Capitalizer\bin\Debug\netcoreapp3.0\Capitalizer.dll";

    Console.WriteLine (TransformText ("big apple", capitalizer));

    const string pluralizer = @"C:\source\PluginDemo\"
      + @"Pluralizer\bin\Debug\netcoreapp3.0\Pluralizer.dll";

    Console.WriteLine (TransformText ("big apple", pluralizer));
  }

The output will now be like this:

BigApple
big apples

To fully see what’s going on, change the UseCollectibleContexts constant to false
and add the following code to the Main method to enumerate the ALCs and their
assemblies:

foreach (var context in AssemblyLoadContext.All)
{
  Console.WriteLine ($"Context: {context.GetType().Name} {context.Name}");

  foreach (var assembly in context.Assemblies)
      Console.WriteLine ($"  Assembly: {assembly.FullName}");
}

In the output, you can see two different versions of Humanizer, each loaded into its
own ALC:

Context: PluginLoadContext Capitalizer.dll
  Assembly: Capitalizer, Version=1.0.0.0, Culture=neutral, PublicKeyToken=...
  Assembly: Humanizer, Version=2.6.0.0, Culture=neutral, PublicKeyToken=...
Context: PluginLoadContext Pluralizer.dll
  Assembly: Pluralizer, Version=1.0.0.0, Culture=neutral, PublicKeyToken=...
  Assembly: Humanizer, Version=2.7.0.0, Culture=neutral, PublicKeyToken=...
Context: DefaultAssemblyLoadContext Default
  Assembly: System.Private.CoreLib, Version=4.0.0.0, Culture=neutral,...
  Assembly: Host, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null
  ...

Even if both plug-ins were to use the same version of Human‐
izer, the isolation of separate assemblies can still be beneficial
because each will have its own static variables.
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18
Reflection and Metadata

As we saw in Chapter 17, a C# program compiles into an assembly that includes
metadata, compiled code, and resources. Inspecting the metadata and compiled
code at runtime is called reflection.

The compiled code in an assembly contains almost all of the content of the original
source code. Some information is lost, such as local variable names, comments, and
preprocessor directives. However, reflection can access pretty much everything else,
even making it possible to write a decompiler.

Many of the services available in .NET and exposed via C# (such as dynamic
binding, serialization, and data binding) depend on the presence of metadata. Your
own programs can also take advantage of this metadata and even extend it with new
information using custom attributes. The System.Reflection namespace houses
the reflection API. It is also possible at runtime to dynamically create new metadata
and executable instructions in Intermediate Language (IL) via the classes in the
System.Reflection.Emit namespace.

The examples in this chapter assume that you import the System and System.
Reflection as well as System.Reflection.Emit namespaces.

When we use the term “dynamically” in this chapter, we
mean using reflection to perform some task whose type safety
is enforced only at runtime. This is similar in principle to
dynamic binding via C#’s dynamic keyword, although the
mechanism and functionality is different.
Dynamic binding is much easier to use and employs the
Dynamic Language Runtime (DLR) for dynamic language
interoperability. Reflection is relatively clumsy to use, but it
is more flexible in terms of what you can do with the CLR. For
instance, reflection lets you obtain lists of types and members,
instantiate an object whose name comes from a string, and
build assemblies on the fly.
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Reflecting and Activating Types
In this section, we examine how to obtain a Type, inspect its metadata, and use it to
dynamically instantiate an object.

Obtaining a Type
An instance of System.Type represents the metadata for a type. Because Type is
widely used, it lives in the System namespace rather than the System.Reflection
namespace.

You can get an instance of a System.Type by calling GetType on any object or with
C#’s typeof operator:

Type t1 = DateTime.Now.GetType();     // Type obtained at runtime
Type t2 = typeof (DateTime);          // Type obtained at compile time

You can use typeof to obtain array types and generic types, as follows:

Type t3 = typeof (DateTime[]);          // 1-d Array type
Type t4 = typeof (DateTime[,]);         // 2-d Array type
Type t5 = typeof (Dictionary<int,int>); // Closed generic type
Type t6 = typeof (Dictionary<,>);       // Unbound generic type

You can also retrieve a Type by name. If you have a reference to its Assembly, call
Assembly.GetType (we describe this further in the section “Reflecting Assemblies”
on page 827):

Type t = Assembly.GetExecutingAssembly().GetType ("Demos.TestProgram");

If you don’t have an Assembly object, you can obtain a type through its assem‐
bly qualified name (the type’s full name followed by the assembly’s fully or
partially qualified name). The assembly implicitly loads as if you called Assem
bly.Load(string):

Type t = Type.GetType ("System.Int32, System.Private.CoreLib");

After you have a System.Type object, you can use its properties to access the type’s
name, assembly, base type, visibility, and so on:

Type stringType = typeof (string);
string name     = stringType.Name;          // String
Type baseType   = stringType.BaseType;      // typeof(Object)
Assembly assem  = stringType.Assembly;      // System.Private.CoreLib
bool isPublic   = stringType.IsPublic;      // true

A System.Type instance is a window into the entire metadata for the type—and the
assembly in which it’s defined.

System.Type is abstract, so the typeof operator must actually
give you a subclass of Type. The subclass that the CLR uses is
internal to .NET and is called RuntimeType.
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TypeInfo
Should you target .NET Core 1.x (or an older Windows Store profile), you’ll find
most of Type’s members are missing. These missing members are exposed instead
on a class called TypeInfo, which you obtain by calling GetTypeInfo. So, to get our
previous example to run, you would do this:

Type stringType = typeof(string);
string name = stringType.Name;
Type baseType = stringType.GetTypeInfo().BaseType;
Assembly assem = stringType.GetTypeInfo().Assembly;
bool isPublic = stringType.GetTypeInfo().IsPublic;

TypeInfo also exists in .NET Core 2 and 3 and .NET 5+ (and .NET Framework 4.5+
and all .NET Standard versions), so the preceding code works almost universally.
TypeInfo also includes additional properties and methods for reflecting over mem‐
bers.

Obtaining array types
As we just saw, typeof and GetType work with array types. You can also obtain an
array type by calling MakeArrayType on the element type:

Type simpleArrayType = typeof (int).MakeArrayType();
Console.WriteLine (simpleArrayType == typeof (int[]));     // True

You can create multidimensional arrays by passing an integer argument to MakeAr
rayType:

Type cubeType = typeof (int).MakeArrayType (3);       // cube shaped
Console.WriteLine (cubeType == typeof (int[,,]));     // True

GetElementType does the reverse: it retrieves an array type’s element type:

Type e = typeof (int[]).GetElementType();     // e == typeof (int)

GetArrayRank returns the number of dimensions of a rectangular array:

int rank = typeof (int[,,]).GetArrayRank();   // 3

Obtaining nested types
To retrieve nested types, call GetNestedTypes on the containing type:

foreach (Type t in typeof (System.Environment).GetNestedTypes())
  Console.WriteLine (t.FullName);

OUTPUT: System.Environment+SpecialFolder

Or:

foreach (TypeInfo t in typeof (System.Environment).GetTypeInfo()
                                                  .DeclaredNestedTypes)
  Debug.WriteLine (t.FullName);
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The one caveat with nested types is that the CLR treats a nested type as having
special “nested” accessibility levels:

Type t = typeof (System.Environment.SpecialFolder);
Console.WriteLine (t.IsPublic);                      // False
Console.WriteLine (t.IsNestedPublic);                // True

Type Names
A type has Namespace, Name, and FullName properties. In most cases, FullName is a
composition of the former two:

Type t = typeof (System.Text.StringBuilder);

Console.WriteLine (t.Namespace);      // System.Text
Console.WriteLine (t.Name);           // StringBuilder
Console.WriteLine (t.FullName);       // System.Text.StringBuilder

There are two exceptions to this rule: nested types and closed generic types.

Type also has a property called AssemblyQualifiedName,
which returns FullName followed by a comma and then the
full name of its assembly. This is the same string that you can
pass to Type.GetType, and it uniquely identifies a type within
the default loading context.

Nested type names
With nested types, the containing type appears only in FullName:

Type t = typeof (System.Environment.SpecialFolder);

Console.WriteLine (t.Namespace);      // System
Console.WriteLine (t.Name);           // SpecialFolder
Console.WriteLine (t.FullName);       // System.Environment+SpecialFolder

The + symbol differentiates the containing type from a nested namespace.

Generic type names
Generic type names are suffixed with the ' symbol, followed by the number of
type parameters. If the generic type is unbound, this rule applies to both Name and
FullName:

Type t = typeof (Dictionary<,>); // Unbound
Console.WriteLine (t.Name);      // Dictionary'2
Console.WriteLine (t.FullName);  // System.Collections.Generic.Dictionary'2

If the generic type is closed, however, FullName (only) acquires a substantial extra
appendage. Each type parameter’s full assembly qualified name is enumerated:

Console.WriteLine (typeof (Dictionary<int,string>).FullName);

// OUTPUT:
System.Collections.Generic.Dictionary`2[[System.Int32, 
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System.Private.CoreLib, Version=4.0.0.0, Culture=neutral,
PublicKeyToken=7cec85d7bea7798e],[System.String, System.Private.CoreLib,
Version=4.0.0.0, Culture=neutral, PublicKeyToken=7cec85d7bea7798e]]

This ensures that AssemblyQualifiedName (a combination of the type’s full name
and assembly name) contains enough information to fully identify both the generic
type and its type parameters.

Array and pointer type names
Arrays present with the same suffix that you use in a typeof expression:

Console.WriteLine (typeof ( int[]  ).Name);      // Int32[]
Console.WriteLine (typeof ( int[,] ).Name);      // Int32[,]
Console.WriteLine (typeof ( int[,] ).FullName);  // System.Int32[,]

Pointer types are similar:

Console.WriteLine (typeof (byte*).Name);     // Byte*

ref and out parameter type names
A Type describing a ref or out parameter has an & suffix:

public void RefMethod (ref int p)
{
  Type t = MethodInfo.GetCurrentMethod().GetParameters()[0].ParameterType;
  Console.WriteLine (t.Name);    // Int32&
}

More on this later, in the section “Reflecting and Invoking Members” on page 813.

Base Types and Interfaces
Type exposes a BaseType property:

Type base1 = typeof (System.String).BaseType;
Type base2 = typeof (System.IO.FileStream).BaseType;

Console.WriteLine (base1.Name);     // Object
Console.WriteLine (base2.Name);     // Stream

The GetInterfaces method returns the interfaces that a type implements:

foreach (Type iType in typeof (Guid).GetInterfaces())
  Console.WriteLine (iType.Name);

IFormattable
IComparable
IComparable'1
IEquatable'1

(The GetInterfaceMap method returns a struct that shows how each member of an
interface is implemented in a class or struct—we illustrate a use for this advanced
feature in “Calling Static Virtual/Abstract Interface Members” on page 826.)
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Reflection provides three dynamic equivalents to C#’s static is operator:

IsInstanceOfType

Accepts a type and instance

IsAssignableFrom and (from .NET 5) IsAssignableTo
Accepts two types

Here’s an example of the first:

object obj  = Guid.NewGuid();
Type target = typeof (IFormattable);

bool isTrue   = obj is IFormattable;             // Static C# operator
bool alsoTrue = target.IsInstanceOfType (obj);   // Dynamic equivalent

IsAssignableFrom is more versatile:

Type target = typeof (IComparable), source = typeof (string);
Console.WriteLine (target.IsAssignableFrom (source));         // True

The IsSubclassOf method works on the same principle as IsAssignableFrom but
excludes interfaces.

Instantiating Types
There are two ways to dynamically instantiate an object from its type:

• Call the static Activator.CreateInstance method•

• Call Invoke on a ConstructorInfo object obtained from calling GetConstruc•
tor on a Type (advanced scenarios)

Activator.CreateInstance accepts a Type and optional arguments that it passes to
the constructor:

int i = (int) Activator.CreateInstance (typeof (int));

DateTime dt = (DateTime) Activator.CreateInstance (typeof (DateTime),
                                                   2000, 1, 1);

CreateInstance lets you specify many other options such as the assembly from
which to load the type and whether to bind to a nonpublic constructor. A Missing
MethodException is thrown if the runtime can’t find a suitable constructor.

Calling Invoke on a ConstructorInfo is necessary when your argument values can’t
disambiguate between overloaded constructors. For example, suppose that class
X has two constructors: one accepting a parameter of type string and another
accepting a parameter of type StringBuilder. The target is ambiguous should you
pass a null argument into Activator.CreateInstance. This is when you need to
use a ConstructorInfo, instead:

// Fetch the constructor that accepts a single parameter of type string:
ConstructorInfo ci = typeof (X).GetConstructor (new[] { typeof (string) });
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// Construct the object using that overload, passing in null:
object foo = ci.Invoke (new object[] { null });

Or, if you’re targeting .NET Core 1, an older Windows Store profile:

ConstructorInfo ci = typeof (X).GetTypeInfo().DeclaredConstructors
  .FirstOrDefault (c =>
     c.GetParameters().Length == 1 && 
     c.GetParameters()[0].ParameterType == typeof (string));

To obtain a nonpublic constructor, you need to specify BindingFlags—see “Access‐
ing Nonpublic Members” on page 822 in the later section “Reflecting and Invoking
Members” on page 813.

Dynamic instantiation adds a few microseconds onto the time
taken to construct the object. This is quite a lot in relative
terms because the CLR is ordinarily very fast in instantiating
objects (a simple new on a small class takes in the region of
tens of nanoseconds).

To dynamically instantiate arrays based on just element type, first call MakeArray
Type. You can also instantiate generic types: we describe this in the next section.

To dynamically instantiate a delegate, call Delegate.CreateDelegate. The follow‐
ing example demonstrates instantiating both an instance delegate and a static dele‐
gate:

class Program
{
  delegate int IntFunc (int x);

  static int Square (int x) => x * x;        // Static method
  int        Cube   (int x) => x * x * x;    // Instance method

  static void Main()
  {
    Delegate staticD = Delegate.CreateDelegate
      (typeof (IntFunc), typeof (Program), "Square");

    Delegate instanceD = Delegate.CreateDelegate
      (typeof (IntFunc), new Program(), "Cube");

    Console.WriteLine (staticD.DynamicInvoke (3));      // 9
    Console.WriteLine (instanceD.DynamicInvoke (3));    // 27
  }
}

You can invoke the Delegate object that’s returned by calling DynamicInvoke, as we
did in this example, or by casting to the typed delegate:

IntFunc f = (IntFunc) staticD;
Console.WriteLine (f(3));         // 9 (but much faster!)
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You can pass a MethodInfo into CreateDelegate instead of a method name. We
describe MethodInfo shortly, in “Reflecting and Invoking Members” on page 813,
along with the rationale for casting a dynamically created delegate back to the static
delegate type.

Generic Types
A Type can represent a closed or unbound generic type. Just as at compile time, a
closed generic type can be instantiated, whereas an unbound type cannot:

Type closed = typeof (List<int>);
List<int> list = (List<int>) Activator.CreateInstance (closed);  // OK

Type unbound   = typeof (List<>);
object anError = Activator.CreateInstance (unbound);    // Runtime error

The MakeGenericType method converts an unbound into a closed generic type.
Simply pass in the desired type arguments:

Type unbound = typeof (List<>);
Type closed = unbound.MakeGenericType (typeof (int));

The GetGenericTypeDefinition method does the opposite:

Type unbound2 = closed.GetGenericTypeDefinition();  // unbound == unbound2

The IsGenericType property returns true if a Type is generic, and the IsGenericTy
peDefinition property returns true if the generic type is unbound. The following
tests whether a type is a nullable value type:

Type nullable = typeof (bool?);
Console.WriteLine (
  nullable.IsGenericType &&
  nullable.GetGenericTypeDefinition() == typeof (Nullable<>));   // True

GetGenericArguments returns the type arguments for closed generic types:

Console.WriteLine (closed.GetGenericArguments()[0]);     // System.Int32
Console.WriteLine (nullable.GetGenericArguments()[0]);   // System.Boolean

For unbound generic types, GetGenericArguments returns pseudotypes that repre‐
sent the placeholder types specified in the generic type definition:

Console.WriteLine (unbound.GetGenericArguments()[0]);      // T

At runtime, all generic types are either unbound or closed.
They’re unbound in the (relatively unusual) case of an expres‐
sion such as typeof(Foo<>); otherwise, they’re closed. There’s
no such thing as an open generic type at runtime: all open
types are closed by the compiler. The method in the following
class always prints False:

class Foo<T>
{
  public void Test()
    => Console.Write (GetType().IsGenericTypeDefinition);  
}
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Reflecting and Invoking Members
The GetMembers method returns the members of a type. Consider the following
class:

class Walnut
{
  private bool cracked;
  public void Crack() { cracked = true; }
}

We can reflect on its public members, as follows:

MemberInfo[] members = typeof (Walnut).GetMembers();
foreach (MemberInfo m in members)
  Console.WriteLine (m);

This is the result:

Void Crack()
System.Type GetType()
System.String ToString()
Boolean Equals(System.Object)
Int32 GetHashCode()
Void .ctor()

Reflecting Members with TypeInfo
TypeInfo exposes a different (and somewhat simpler) protocol for reflecting over
members. Using this API is optional (except in .NET Core 1 and older Windows
Store apps given that there’s no exact equivalent to the GetMembers method).

Instead of exposing methods like GetMembers that return arrays, TypeInfo exposes
properties that return IEnumerable<T>, upon which you typically run LINQ queries.
The broadest is DeclaredMembers:

IEnumerable<MemberInfo> members =
  typeof(Walnut).GetTypeInfo().DeclaredMembers;

Unlike with GetMembers(), the result excludes inherited members:

Void Crack()
Void .ctor()
Boolean cracked

There are also properties for returning specific kinds of members (DeclaredProper
ties, DeclaredMethods, DeclaredEvents, and so on) and methods for returning a
specific member by name (e.g., GetDeclaredMethod). The latter cannot be used on
overloaded methods (because there’s no way to specify parameter types). Instead,
you run a LINQ query over DeclaredMethods:

MethodInfo method = typeof (int).GetTypeInfo().DeclaredMethods
  .FirstOrDefault (m => m.Name == "ToString" &&
                        m.GetParameters().Length == 0);
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When called with no arguments, GetMembers returns all the public members for a
type (and its base types). GetMember retrieves a specific member by name—although
it still returns an array because members can be overloaded:

MemberInfo[] m = typeof (Walnut).GetMember ("Crack");
Console.WriteLine (m[0]);                              // Void Crack()

MemberInfo also has a property called MemberType of type MemberTypes. This is a
flags enum with these values:

All           Custom        Field        NestedType     TypeInfo
Constructor   Event         Method       Property

When calling GetMembers, you can pass in a MemberTypes instance to restrict the
kinds of members that it returns. Alternatively, you can restrict the result set by
calling GetMethods, GetFields, GetProperties, GetEvents, GetConstructors, or
GetNestedTypes. There are also singular versions of each of these to home in on a
specific member.

It pays to be as specific as possible when retrieving a type
member so that your code doesn’t break if additional members
are added later. If you’re retrieving a method by name, specify‐
ing all parameter types ensures that your code will still work if
the method is later overloaded (we provide examples shortly,
in “Method Parameters” on page 820).

A MemberInfo object has a Name property and two Type properties:

DeclaringType

Returns the Type that defines the member

ReflectedType

Returns the Type upon which GetMembers was called

The two differ when called on a member that’s defined in a base type: Declaring
Type returns the base type, whereas ReflectedType returns the subtype. The follow‐
ing example highlights this:

// MethodInfo is a subclass of MemberInfo; see Figure 18-1.

MethodInfo test = typeof (Program).GetMethod ("ToString");
MethodInfo obj  = typeof (object) .GetMethod ("ToString");

Console.WriteLine (test.DeclaringType);      // System.Object
Console.WriteLine (obj.DeclaringType);       // System.Object

Console.WriteLine (test.ReflectedType);      // Program
Console.WriteLine (obj.ReflectedType);       // System.Object

Console.WriteLine (test == obj);             // False
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Because they have different ReflectedTypes, the test and obj objects are not equal.
Their difference, however, is purely a fabrication of the reflection API; our Program
type has no distinct ToString method in the underlying type system. We can verify
that the two MethodInfo objects refer to the same method in either of two ways:

Console.WriteLine (test.MethodHandle == obj.MethodHandle);    // True

Console.WriteLine (test.MetadataToken == obj.MetadataToken    // True
                   && test.Module == obj.Module);

A MethodHandle is unique to each (genuinely distinct) method within a process; a
MetadataToken is unique across all types and members within an assembly module.

MemberInfo also defines methods to return custom attributes (see “Retrieving
Attributes at Runtime” on page 832).

You can obtain the MethodBase of the currently executing
method by calling MethodBase.GetCurrentMethod.

Member Types
MemberInfo itself is light on members because it’s an abstract base for the types
shown in Figure 18-1.

Figure 18-1. Member types

You can cast a MemberInfo to its subtype, based on its MemberType property. If you
obtained a member via GetMethod, GetField, GetProperty, GetEvent, GetConstruc
tor, or GetNestedType (or their plural versions), a cast isn’t necessary. Table 18-1
summarizes what methods to use for each kind of C# construct.
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Table 18-1. Retrieving member metadata

C# construct Method to use Name to use Result

Method GetMethod (method name) MethodInfo

Property GetProperty (property name) PropertyInfo

Indexer GetDefaultMembers MemberInfo[] (containing
PropertyInfo objects if compiled
in C#)

Field GetField (field name) FieldInfo

Enum member GetField (member name) FieldInfo

Event GetEvent (event name) EventInfo

Constructor GetConstructor ConstructorInfo

Finalizer GetMethod "Finalize" MethodInfo

Operator GetMethod "op_" + operator name MethodInfo

Nested type GetNestedType (type name) Type

Each MemberInfo subclass has a wealth of properties and methods, exposing all
aspects of the member’s metadata. This includes such things as visibility, modifiers,
generic type arguments, parameters, return type, and custom attributes.

Here is an example of using GetMethod:

MethodInfo m = typeof (Walnut).GetMethod ("Crack");
Console.WriteLine (m);                             // Void Crack()
Console.WriteLine (m.ReturnType);                  // System.Void

All *Info instances are cached by the reflection API on first use:

MethodInfo method = typeof (Walnut).GetMethod ("Crack");
MemberInfo member = typeof (Walnut).GetMember ("Crack") [0];

Console.Write (method == member);       // True

As well as preserving object identity, caching improves the performance of what is
otherwise a fairly slow API.

C# Members Versus CLR Members
The preceding table illustrates that some of C#’s functional constructs don’t have a
1:1 mapping with CLR constructs. This makes sense because the CLR and reflection
API were designed with all .NET languages in mind—you can use reflection even
from Visual Basic.

Some C# constructs—namely indexers, enums, operators, and finalizers—are con‐
trivances as far as the CLR is concerned. Specifically:

• A C# indexer translates to a property accepting one or more arguments,•
marked as the type’s [DefaultMember].
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• A C# enum translates to a subtype of System.Enum with a static field for each•
member.

• A C# operator translates to a specially named static method, starting in “op_”;•
for example, "op_Addition".

• A C# finalizer translates to a method that overrides Finalize.•

Another complication is that properties and events actually comprise two things:

• Metadata describing the property or event (encapsulated by PropertyInfo or•
EventInfo)

• One or two backing methods•

In a C# program, the backing methods are encapsulated within the property or
event definition. But when compiled to IL, the backing methods present as ordinary
methods that you can call like any other. This means that GetMethods returns
property and event backing methods alongside ordinary methods:

class Test { public int X { get { return 0; } set {} } }

void Demo()
{
  foreach (MethodInfo mi in typeof (Test).GetMethods())
    Console.Write (mi.Name + "  ");
}

// OUTPUT:
get_X  set_X  GetType  ToString  Equals  GetHashCode

You can identify these methods through the IsSpecialName property in Method
Info. IsSpecialName returns true for property, indexer, and event accessors, as well
as operators. It returns false only for conventional C# methods—and the Finalize
method if a finalizer is defined.

Here are the backing methods that C# generates:

C# construct Member type Methods in IL

Property Property get_XXX and set_XXX

Indexer Property get_Item and set_Item

Event Event add_XXX and remove_XXX

Each backing method has its own associated MethodInfo object. You can access
these as follows:

PropertyInfo pi = typeof (Console).GetProperty ("Title");
MethodInfo getter = pi.GetGetMethod();                   // get_Title
MethodInfo setter = pi.GetSetMethod();                   // set_Title
MethodInfo[] both = pi.GetAccessors();                   // Length==2
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GetAddMethod and GetRemoveMethod perform a similar job for EventInfo.

To go in the reverse direction—from a MethodInfo to its associated PropertyInfo
or EventInfo—you need to perform a query. LINQ is ideal for this job:

PropertyInfo p = mi.DeclaringType.GetProperties()
                   .First (x => x.GetAccessors (true).Contains (mi));

Init-only properties
Init-only properties, introduced in C# 9, can be set via an object initializer but are
subsequently treated as read-only by the compiler. From the CLR’s perspective, an
init accessor is just like an ordinary set accessor, but with a special flag applied to
the set method’s return type (which means something to the compiler).

Curiously, this flag is not encoded as a convention attribute. Instead, it uses a
relatively obscure mechanism called a modreq, which ensures that previous versions
of the C# compiler (which don’t recognize the new modreq) ignore the accessor
rather than treat the property as writable.

The modreq for init-only accessors is called IsExternalInit, and you can query for
it as follows:

bool IsInitOnly (PropertyInfo pi) => pi
  .GetSetMethod().ReturnParameter.GetRequiredCustomModifiers()
  .Any (t => t.Name == "IsExternalInit");

NullabilityInfoContext
From .NET 6, you can use the NullabilityInfoContext class to obtain information
about the nullability annotations for a field, property, event or parameter:

void PrintPropertyNullability (PropertyInfo pi)
{
  var info = new NullabilityInfoContext().Create (pi);
  Console.WriteLine (pi.Name + " read " + info.ReadState);
  Console.WriteLine (pi.Name + " write " + info.WriteState);
  // Use info.Element to get nullability info for array elements
}

Generic Type Members
You can obtain member metadata for both unbound and closed generic types:

PropertyInfo unbound = typeof (IEnumerator<>)  .GetProperty ("Current");
PropertyInfo closed = typeof (IEnumerator<int>).GetProperty ("Current");

Console.WriteLine (unbound);   // T Current
Console.WriteLine (closed);    // Int32 Current

Console.WriteLine (unbound.PropertyType.IsGenericParameter);  // True
Console.WriteLine (closed.PropertyType.IsGenericParameter);   // False
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The MemberInfo objects returned from unbound and closed generic types are
always distinct, even for members whose signatures don’t feature generic type
parameters:

PropertyInfo unbound = typeof (List<>)  .GetProperty ("Count");
PropertyInfo closed = typeof (List<int>).GetProperty ("Count");

Console.WriteLine (unbound);   // Int32 Count
Console.WriteLine (closed);    // Int32 Count

Console.WriteLine (unbound == closed);   // False

Console.WriteLine (unbound.DeclaringType.IsGenericTypeDefinition); // True
Console.WriteLine (closed.DeclaringType.IsGenericTypeDefinition); // False

Members of unbound generic types cannot be dynamically invoked.

Dynamically Invoking a Member
Dynamically invoking a member can be accomplished more
easily using the Uncapsulator open-source library (available
on NuGet and GitHub). Uncapsulator was written by the
author, and provides a fluent API for invoking public and
non-public members via reflection, using a custom dynamic
binder.

After you have a MethodInfo, PropertyInfo, or FieldInfo object, you can dynami‐
cally call it or get/set its value. This is called late binding because you choose which
member to invoke at runtime rather than compile time.

To illustrate, the following uses ordinary static binding:

string s = "Hello";
int length = s.Length;

Here’s the same thing performed dynamically with late binding:

object s = "Hello";
PropertyInfo prop = s.GetType().GetProperty ("Length");
int length = (int) prop.GetValue (s, null);               // 5

GetValue and SetValue get and set the value of a PropertyInfo or FieldInfo. The
first argument is the instance, which can be null for a static member. Accessing
an indexer is just like accessing a property called “Item,” except that you provide
indexer values as the second argument when calling GetValue or SetValue.

To dynamically call a method, call Invoke on a MethodInfo, providing an array of
arguments to pass to that method. If you get any of the argument types wrong,
an exception is thrown at runtime. With dynamic invocation, you lose compile-
time type safety, but you still have runtime type safety (just as with the dynamic
keyword).
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Method Parameters
Suppose that we want to dynamically call string’s Substring method. Statically, we
would do this, as follows:

Console.WriteLine ("stamp".Substring(2));                  // "amp"

Here’s the dynamic equivalent with reflection and late binding:

Type type = typeof (string);
Type[] parameterTypes = { typeof (int) };
MethodInfo method = type.GetMethod ("Substring", parameterTypes);

object[] arguments = { 2 };
object returnValue = method.Invoke ("stamp", arguments);
Console.WriteLine (returnValue);                           // "amp"

Because the Substring method is overloaded, we had to pass an array of parameter
types to GetMethod to indicate which version we wanted. Without the parameter
types, GetMethod would throw an AmbiguousMatchException.

The GetParameters method, defined on MethodBase (the base class for MethodInfo
and ConstructorInfo), returns parameter metadata. We can continue our previous
example, as follows:

ParameterInfo[] paramList = method.GetParameters();
foreach (ParameterInfo x in paramList)
{
  Console.WriteLine (x.Name);                 // startIndex
  Console.WriteLine (x.ParameterType);        // System.Int32
}

Dealing with ref and out parameters
To pass ref or out parameters, call MakeByRefType on the type before obtaining the
method. For instance, you can dynamically execute this code:

int x;
bool successfulParse = int.TryParse ("23", out x);

as follows:

object[] args = { "23", 0 };
Type[] argTypes = { typeof (string), typeof (int).MakeByRefType() };
MethodInfo tryParse = typeof (int).GetMethod ("TryParse", argTypes);
bool successfulParse = (bool) tryParse.Invoke (null, args);

Console.WriteLine (successfulParse + " " + args[1]);       // True 23

This same approach works for both ref and out parameter types.

Retrieving and invoking generic methods
Explicitly specifying parameter types when calling GetMethod can be essential in
disambiguating overloaded methods. However, it’s impossible to specify generic

820 | Chapter 18: Reflection and Metadata



parameter types. For instance, consider the System.Linq.Enumerable class, which
overloads the Where method, as follows:

public static IEnumerable<TSource> Where<TSource>
 (this IEnumerable<TSource> source, Func<TSource, bool> predicate);

public static IEnumerable<TSource> Where<TSource>
 (this IEnumerable<TSource> source, Func<TSource, int, bool> predicate);

To retrieve a specific overload, we must retrieve all methods and then manually find
the desired overload. The following query retrieves the former overload of Where:

from m in typeof (Enumerable).GetMethods()
where m.Name == "Where" && m.IsGenericMethod 
let parameters = m.GetParameters()
where parameters.Length == 2
let genArg = m.GetGenericArguments().First()
let enumerableOfT = typeof (IEnumerable<>).MakeGenericType (genArg)
let funcOfTBool = typeof (Func<,>).MakeGenericType (genArg, typeof (bool))
where parameters[0].ParameterType == enumerableOfT
   && parameters[1].ParameterType == funcOfTBool
select m

Calling .Single() on this query gives the correct MethodInfo object with unbound
type parameters. The next step is to close the type parameters by calling MakeGener
icMethod:

var closedMethod = unboundMethod.MakeGenericMethod (typeof (int));

In this case, we’ve closed TSource with int, allowing us to call Enumerable.Where
with a source of type IEnumerable<int> and a predicate of type Func<int,bool>:

int[] source = { 3, 4, 5, 6, 7, 8 };
Func<int, bool> predicate = n => n % 2 == 1;   // Odd numbers only

We can now invoke the closed generic method:

var query = (IEnumerable<int>) closedMethod.Invoke 
  (null, new object[] { source, predicate });

foreach (int element in query) Console.Write (element + "|");  // 3|5|7|

If you’re using the System.Linq.Expressions API to dynam‐
ically build expressions (Chapter 8), you don’t need to go
to this trouble to specify a generic method. The Expres
sion.Call method is overloaded to let you specify the closed
type arguments of the method that you want to call:

int[] source = { 3, 4, 5, 6, 7, 8 };
Func<int, bool> predicate = n => n % 2 == 1;

var sourceExpr = Expression.Constant (source);
var predicateExpr = Expression.Constant (predicate);

var callExpression = Expression.Call (
  typeof (Enumerable), "Where",
  new[] { typeof (int) },  // Closed generic arg type.
  sourceExpr, predicateExpr);
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Using Delegates for Performance
Dynamic invocations are relatively inefficient, with an overhead typically in the few-
microseconds region. If you’re calling a method repeatedly in a loop, you can shift
the per-call overhead into the nanoseconds region by instead calling a dynamically
instantiated delegate that targets your dynamic method. In the following example,
we dynamically call string’s Trim method a million times without significant over‐
head:

MethodInfo trimMethod = typeof (string).GetMethod ("Trim", new Type[0]);
var trim = (StringToString) Delegate.CreateDelegate
                                    (typeof (StringToString), trimMethod);
for (int i = 0; i < 1000000; i++)
  trim ("test");

delegate string StringToString (string s);

This is faster because the costly late binding (shown in bold) happens just once.

Accessing Nonpublic Members
All of the methods on types used to probe metadata (e.g., GetProperty, GetField,
etc.) have overloads that take a BindingFlags enum. This enum serves as a meta‐
data filter and allows you to change the default selection criteria. The most common
use for this is to retrieve nonpublic members (this works only in desktop apps).

For instance, consider the following class:

class Walnut
{
  private bool cracked;
  public void Crack() { cracked = true; }

  public override string ToString() { return cracked.ToString(); }
}

We can uncrack the walnut, as follows:

Type t = typeof (Walnut);
Walnut w = new Walnut();
w.Crack();
FieldInfo f = t.GetField ("cracked", BindingFlags.NonPublic |
                                     BindingFlags.Instance);
f.SetValue (w, false);
Console.WriteLine (w);         // False

Using reflection to access nonpublic members is powerful, but it is also dangerous
because you can bypass encapsulation, creating an unmanageable dependency on
the internal implementation of a type.

The BindingFlags enum
BindingFlags is intended to be bitwise-combined. To get any matches at all, you
need to start with one of the following four combinations:

822 | Chapter 18: Reflection and Metadata



BindingFlags.Public    | BindingFlags.Instance
BindingFlags.Public    | BindingFlags.Static
BindingFlags.NonPublic | BindingFlags.Instance
BindingFlags.NonPublic | BindingFlags.Static

NonPublic includes internal, protected, protected internal, and private.

The following example retrieves all the public static members of type object:

BindingFlags publicStatic = BindingFlags.Public | BindingFlags.Static;
MemberInfo[] members = typeof (object).GetMembers (publicStatic);

The following example retrieves all the nonpublic members of type object, both
static and instance:

BindingFlags nonPublicBinding =
  BindingFlags.NonPublic | BindingFlags.Static | BindingFlags.Instance;

MemberInfo[] members = typeof (object).GetMembers (nonPublicBinding);

The DeclaredOnly flag excludes functions inherited from base types, unless they are
overridden.

The DeclaredOnly flag is somewhat confusing in that it
restricts the result set (whereas all the other binding flags
expand the result set).

Generic Methods
You cannot directly invoke generic methods; the following throws an exception:

class Program
{
  public static T Echo<T> (T x) { return x; }

  static void Main()
  {
    MethodInfo echo = typeof (Program).GetMethod ("Echo");
    Console.WriteLine (echo.IsGenericMethodDefinition);    // True
    echo.Invoke (null, new object[] { 123 } );             // Exception
  }
}

An extra step is required, which is to call MakeGenericMethod on the MethodInfo,
specifying concrete generic type arguments. This returns another MethodInfo,
which you can then invoke, as follows:

MethodInfo echo = typeof (Program).GetMethod ("Echo");
MethodInfo intEcho = echo.MakeGenericMethod (typeof (int));
Console.WriteLine (intEcho.IsGenericMethodDefinition);            // False
Console.WriteLine (intEcho.Invoke (null, new object[] { 3 } ));   // 3
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Anonymously Calling Members of a Generic Interface
Reflection is useful when you need to invoke a member of a generic interface and
you don’t know the type parameters until runtime. In theory, the need for this
arises rarely if types are perfectly designed; of course, types are not always perfectly
designed.

For instance, suppose that we want to write a more powerful version of ToString
that could expand the result of LINQ queries. We could start out as follows:

public static string ToStringEx <T> (IEnumerable<T> sequence)
{
  ...
}

This is already quite limiting. What if sequence contained nested collections that we
also want to enumerate? We’d need to overload the method to cope:

public static string ToStringEx <T> (IEnumerable<IEnumerable<T>> sequence)

And then what if sequence contained groupings, or projections of nested sequen‐
ces? The static solution of method overloading becomes impractical—we need an
approach that can scale to handle an arbitrary object graph, such as the following:

public static string ToStringEx (object value)
{
  if (value == null) return "<null>";
  StringBuilder sb = new StringBuilder();

  if (value is List<>)                                            // Error
    sb.Append ("List of " + ((List<>) value).Count + " items");   // Error

  if (value is IGrouping<,>)                                      // Error
    sb.Append ("Group with key=" + ((IGrouping<,>) value).Key);   // Error

  // Enumerate collection elements if this is a collection,
  // recursively calling ToStringEx()
  // ...

  return sb.ToString();
}

Unfortunately, this won’t compile: you cannot invoke members of an unbound
generic type such as List<> or IGrouping<>. In the case of List<>, we can solve the
problem by using the nongeneric IList interface, instead:

  if (value is IList)
    sb.AppendLine ("A list with " + ((IList) value).Count + " items");

We can do this because the designers of List<> had the fore‐
sight to implement IList classic (as well as IList generic).
The same principle is worthy of consideration when writing
your own generic types: having a nongeneric interface or base
class upon which consumers can fall back can be extremely
valuable.

824 | Chapter 18: Reflection and Metadata



The solution is not as simple for IGrouping<,>. Here’s how the interface is defined:

public interface IGrouping <TKey,TElement> : IEnumerable <TElement>,
                                             IEnumerable
{
  TKey Key { get; }
}

There’s no nongeneric type we can use to access the Key property, so here we must
use reflection. The solution is not to invoke members of an unbound generic type
(which is impossible) but to invoke members of a closed generic type, whose type
arguments we establish at runtime.

In the following chapter, we solve this more simply with C#’s
dynamic keyword. A good indication for dynamic binding is
when you would otherwise need to perform type gymnastics—
as we are doing right now.

The first step is to determine whether value implements IGrouping<,>, and if so,
obtain its closed generic interface. We can do this most easily by executing a LINQ
query. Then, we retrieve and invoke the Key property:

public static string ToStringEx (object value)
{
  if (value == null) return "<null>";
  if (value.GetType().IsPrimitive) return value.ToString();

  StringBuilder sb = new StringBuilder();

  if (value is IList)
    sb.Append ("List of " + ((IList)value).Count + " items: ");

  Type closedIGrouping = value.GetType().GetInterfaces()
    .Where (t => t.IsGenericType &&
                 t.GetGenericTypeDefinition() == typeof (IGrouping<,>))
    .FirstOrDefault();

  if (closedIGrouping != null)   // Call the Key property on IGrouping<,>
  {
    PropertyInfo pi = closedIGrouping.GetProperty ("Key");
    object key = pi.GetValue (value, null);
    sb.Append ("Group with key=" + key + ": ");
  }

  if (value is IEnumerable)
    foreach (object element in ((IEnumerable)value))
      sb.Append (ToStringEx (element) + " ");

  if (sb.Length == 0) sb.Append (value.ToString());

  return "\r\n" + sb.ToString();
}
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This approach is robust: it works whether IGrouping<,> is implemented implicitly
or explicitly. The following demonstrates this method:

Console.WriteLine (ToStringEx (new List<int> { 5, 6, 7 } ));
Console.WriteLine (ToStringEx ("xyyzzz".GroupBy (c => c) ));

List of 3 items: 5 6 7

Group with key=x: x
Group with key=y: y y
Group with key=z: z z z

Calling Static Virtual/Abstract Interface Members
From .NET 7 and C# 11, interfaces can define static virtual and abstract mem‐
bers (see “Static virtual/abstract interface members” on page 153). An example is
the .NET IParsable<TSelf> interface:

public interface IParsable<TSelf> where TSelf : IParsable<TSelf>
{
  static abstract TSelf Parse (string s, IFormatProvider provider);
  ...
}

With a constrained type parameter, static abstract interface members can be called
polymorphically:

T ParseAny<T> (string s) where T : IParsable<T> => T.Parse (s, null);

To call a static abstract interface member via reflection, you must obtain a Method
Info from the concrete type that implements the interface—not from the interface
itself. The obvious solution is to retrieve the concrete member by signature:

MethodInfo GetParseMethod (Type concreteType) =>
  concreteType.GetMethod ("Parse",
    new[] { typeof (string), typeof (IFormatProvider) });

However, this will fail if the member has been implemented explicitly. To solve this
in a general fashion, we will start by writing a function that retrieves the MethodInfo
on a concrete type that implements a specified interface method:

MethodInfo GetImplementedInterfaceMethod (Type concreteType,
  Type interfaceType, string methodName, Type[] paramTypes)
{
  var map = concreteType.GetInterfaceMap (interfaceType);

  return map.InterfaceMethods
    .Zip (map.TargetMethods)
    .Single (m => m.First.Name == methodName &&
             m.First.GetParameters().Select (p => p.ParameterType)
                                    .SequenceEqual (paramTypes))
    .Second;
}
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The key to making this work is the call to GetInterfaceMap. This method returns
the following struct:

public struct InterfaceMapping
{   
   public MethodInfo[] InterfaceMethods;    // These arrays each
   public MethodInfo[] TargetMethods;       // have the same length.
   ...
}

This struct tells us how the members of the implemented interface (Interface
Methods) map to the concrete type’s members (TargetMethods).

GetInterfaceMap works with ordinary (instance) methods as
well; it just happens to be particularly useful when working
with static abstract interface members.

We then used LINQ’s Zip method to align the elements in the two arrays, allowing
us to easily obtain the target method corresponding to the interface method with
the desired signature.

We can now use this to write a reflection-based ParseAny method:

object ParseAny (Type type, string value)
{
  MethodInfo parseMethod = GetImplementedInterfaceMethod (type,
    type.GetInterface ("IParsable`1"),
    "Parse",
    new[] { typeof (string), typeof (IFormatProvider) });

  return parseMethod.Invoke (null, new[] { value, null });
}

Console.WriteLine (ParseAny (typeof (float), ".2"));   // 0.2

When calling GetImplementedInterfaceMethod, we needed to provide the (closed)
interface type, which we obtained by calling GetInterface("IParsable`1") on the
concrete type. Given that (in this scenario) we knew the desired interface at compile
time, we could have used the following expression instead:

typeof (IParsable<>).MakeGenericType (type)

Reflecting Assemblies
You can dynamically reflect an assembly by calling GetType or GetTypes on an
Assembly object. The following retrieves from the current assembly, the type called
TestProgram in the Demos namespace:

Type t = Assembly.GetExecutingAssembly().GetType ("Demos.TestProgram");

You can also obtain an assembly from an existing type:

typeof (Foo).Assembly.GetType ("Demos.TestProgram");
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The next example lists all the types in the assembly mylib.dll in e:\demo:

Assembly a = Assembly.LoadFile (@"e:\demo\mylib.dll");

foreach (Type t in a.GetTypes())
  Console.WriteLine (t);

Or:

Assembly a = typeof (Foo).GetTypeInfo().Assembly;

foreach (Type t in a.ExportedTypes)
  Console.WriteLine (t);

GetTypes and ExportedTypes return only top-level and not nested types.

Modules
Calling GetTypes on a multimodule assembly returns all types in all modules. As
a result, you can ignore the existence of modules and treat an assembly as a type’s
container. There is one case, though, for which modules are relevant—and that’s
when dealing with metadata tokens.

A metadata token is an integer that uniquely refers to a type, member, string, or
resource within the scope of a module. IL uses metadata tokens, so if you’re parsing
IL, you’ll need to be able to resolve them. The methods for doing this are defined in
the Module type and are called ResolveType, ResolveMember, ResolveString, and
ResolveSignature. We revisit this in the final section of this chapter, on writing a
disassembler.

You can obtain a list of all the modules in an assembly by calling GetModules. You
can also access an assembly’s main module directly via its ManifestModule property.

Working with Attributes
The CLR allows additional metadata to be attached to types, members, and assem‐
blies through attributes. This is the mechanism by which some important CLR
functions (such as assembly identification or the marshaling of types for native
interoperability) are directed, making attributes an indivisible part of an applica‐
tion.

A key characteristic of attributes is that you can write your own and then use
them just as you would any other attribute to “decorate” a code element with
additional information. This additional information is compiled into the underlying
assembly and can be retrieved at runtime using reflection to build services that work
declaratively, such as automated unit testing.
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Attribute Basics
There are three kinds of attributes:

• Bit-mapped attributes•
• Custom attributes•
• Pseudocustom attributes•

Of these, only custom attributes are extensible.

The term “attribute” by itself can refer to any of the three,
although in the C# world, it most often refers to custom
attributes or pseudocustom attributes.

Bit-mapped attributes (our terminology) map to dedicated bits in a type’s metadata.
Most of C#’s modifier keywords, such as public, abstract, and sealed, compile
to bit-mapped attributes. These attributes are very efficient because they consume
minimal space in the metadata (usually just one bit), and the CLR can locate them
with little or no indirection. The reflection API exposes them via dedicated proper‐
ties on Type (and other MemberInfo subclasses), such as IsPublic, IsAbstract, and
IsSealed. The Attributes property returns a flags enum that describes most of
them in one hit:

static void Main()
{
  TypeAttributes ta = typeof (Console).Attributes;
  MethodAttributes ma = MethodInfo.GetCurrentMethod().Attributes;
  Console.WriteLine (ta + "\r\n" + ma);
}

Here’s the result:

AutoLayout, AnsiClass, Class, Public, Abstract, Sealed, BeforeFieldInit
PrivateScope, Private, Static, HideBySig

In contrast, custom attributes compile to a blob that hangs off the type’s main meta‐
data table. All custom attributes are represented by a subclass of System.Attribute
and, unlike bit-mapped attributes, are extensible. The blob in the metadata iden‐
tifies the attribute class, and also stores the values of any positional or named
argument that was specified when the attribute was applied. Custom attributes
that you define yourself are architecturally identical to those defined in the .NET
libraries.

Chapter 4 describes how to attach custom attributes to a type or member in C#.
Here, we attach the predefined Obsolete attribute to the Foo class:

[Obsolete] public class Foo {...}

This instructs the compiler to incorporate an instance of ObsoleteAttribute into
the metadata for Foo, which then can be reflected at runtime by calling GetCustom
Attributes on a Type or MemberInfo object.
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Pseudocustom attributes look and feel just like standard custom attributes. They are
represented by a subclass of System.Attribute and are attached in the standard
manner:

[System.Runtime.InteropServices.StructLayout(LayoutKind.Sequential)]
class SystemTime { ... }

The difference is that the compiler or CLR internally optimizes pseudocustom
attributes by converting them to bit-mapped attributes. Examples include Struct
Layout, In, and Out (Chapter 24). Reflection exposes pseudocustom attributes
through dedicated properties such as IsLayoutSequential, and in many cases
they are also returned as System.Attribute objects when you call GetCustomAttri
butes. This means that you can (almost) ignore the difference between pseudo- and
non-pseudocustom attributes (a notable exception is when using Reflection.Emit
to generate types dynamically at runtime; see “Emitting Assemblies and Types” on
page 841).

The AttributeUsage Attribute
AttributeUsage is an attribute applied to attribute classes. It instructs the compiler
how the target attribute should be used:

public sealed class AttributeUsageAttribute : Attribute
{
  public AttributeUsageAttribute (AttributeTargets validOn);

  public bool AllowMultiple        { get; set; }
  public bool Inherited            { get; set; }
  public AttributeTargets ValidOn  { get; }
}

AllowMultiple controls whether the attribute being defined can be applied more
than once to the same target; Inherited controls whether an attribute applied to
a base class also applies to derived classes (or in the case of methods, whether an
attribute applied to a virtual method also applies to overriding methods). ValidOn
determines the set of targets (classes, interfaces, properties, methods, parameters,
etc.) to which the attribute can be attached. It accepts any combination of values
from the AttributeTargets enum, which has the following members:

All Delegate GenericParameter Parameter

Assembly Enum Interface Property

Class Event Method ReturnValue

Constructor Field Module Struct
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To illustrate, here’s how the authors of .NET have applied AttributeUsage to the
Serializable attribute:

[AttributeUsage (AttributeTargets.Delegate |
                 AttributeTargets.Enum     |
                 AttributeTargets.Struct   |
                 AttributeTargets.Class,     Inherited = false)
]
public sealed class SerializableAttribute : Attribute { }

This is, in fact, almost the complete definition of the Serializable attribute. Writ‐
ing an attribute class that has no properties or special constructors is this simple.

Defining Your Own Attribute
Here’s how to write your own attribute:

1. Derive a class from System.Attribute or a descendent of System.Attribute.1.
By convention, the class name should end with the word “Attribute,” although
this isn’t required.

2. Apply the AttributeUsage attribute, described in the preceding section.2.
If the attribute requires no properties or arguments in its constructor, the job is
done.

3. Write one or more public constructors. The parameters to the constructor3.
define the positional parameters of the attribute and will become mandatory
when using the attribute.

4. Declare a public field or property for each named parameter you wish to4.
support. Named parameters are optional when using the attribute.

Attribute properties and constructor parameters must be of
the following types:

• A sealed primitive type: in other words, bool, byte, char,•
double, float, int, long, short, or string

• The Type type•

• An enum type•

• A one-dimensional array of any of these•

When an attribute is applied, it must also be possible for
the compiler to statically evaluate each of the properties or
constructor arguments.

The following class defines an attribute for assisting an automated unit-testing
system. It indicates that a method should be tested, the number of test repetitions,
and a message in case of failure:
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[AttributeUsage (AttributeTargets.Method)]
public sealed class TestAttribute : Attribute
{
  public int     Repetitions;
  public string  FailureMessage;

  public TestAttribute () : this (1)     { }
  public TestAttribute (int repetitions) { Repetitions = repetitions; }
}

Here’s a Foo class with methods decorated in various ways with the Test attribute:

class Foo
{
  [Test]
  public void Method1() { ... }

  [Test(20)]
  public void Method2() { ... }

  [Test(20, FailureMessage="Debugging Time!")]
  public void Method3() { ... }
}

Retrieving Attributes at Runtime
There are two standard ways to retrieve attributes at runtime:

• Call GetCustomAttributes on any Type or MemberInfo object•

• Call Attribute.GetCustomAttribute or Attribute.GetCustomAttributes•

These latter two methods are overloaded to accept any reflection object that corre‐
sponds to a valid attribute target (Type, Assembly, Module, MemberInfo, or Parame
terInfo).

You can also call GetCustomAttributesData() on a type
or member to obtain attribute information. The difference
between this and GetCustomAttributes() is that the former
lets you know you how the attribute was instantiated: it
reports the constructor overload that was used, and the value
of each constructor argument and named parameter. This is
useful when you want to emit code or IL to reconstruct the
attribute to the same state (see “Emitting Type Members” on
page 844).

Here’s how we can enumerate each method in the preceding Foo class that has a
TestAttribute:

foreach (MethodInfo mi in typeof (Foo).GetMethods())
{
  TestAttribute att = (TestAttribute) Attribute.GetCustomAttribute
    (mi, typeof (TestAttribute));
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  if (att != null)
    Console.WriteLine ("Method {0} will be tested; reps={1}; msg={2}",
                        mi.Name, att.Repetitions, att.FailureMessage);
}

Or:

foreach (MethodInfo mi in typeof (Foo).GetTypeInfo().DeclaredMethods)
...

Here’s the output:

Method Method1 will be tested; reps=1; msg=
Method Method2 will be tested; reps=20; msg=
Method Method3 will be tested; reps=20; msg=Debugging Time!

To complete the illustration on how we could use this to write a unit-testing system,
here’s the same example expanded so that it actually calls the methods decorated
with the Test attribute:

foreach (MethodInfo mi in typeof (Foo).GetMethods())
{
  TestAttribute att = (TestAttribute) Attribute.GetCustomAttribute
    (mi, typeof (TestAttribute));

  if (att != null)
    for (int i = 0; i < att.Repetitions; i++)
      try
      {
        mi.Invoke (new Foo(), null);    // Call method with no arguments
      }
      catch (Exception ex)       // Wrap exception in att.FailureMessage
      {
        throw new Exception ("Error: " + att.FailureMessage, ex);
      }
}

Returning to attribute reflection, here’s an example that lists the attributes present
on a specific type:

object[] atts = Attribute.GetCustomAttributes (typeof (Test));
foreach (object att in atts) Console.WriteLine (att);

[Serializable, Obsolete]
class Test
{
}

And, here’s the output:

System.ObsoleteAttribute
System.SerializableAttribute
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Dynamic Code Generation
The System.Reflection.Emit namespace contains classes for creating metadata
and IL at runtime. Generating code dynamically is useful for certain kinds of
programming tasks. An example is the regular expressions API, which emits per‐
formant types tuned to specific regular expressions. Another example is Entity
Framework Core, which uses Reflection.Emit to generate proxy classes to enable
lazy loading.

Generating IL with DynamicMethod
The DynamicMethod class is a lightweight tool in the System.Reflection.Emit
namespace for generating methods on the fly. Unlike TypeBuilder, it doesn’t
require that you first set up a dynamic assembly, module, and type in which to
contain the method. This makes it suitable for simple tasks—as well as serving as a
good introduction to Reflection.Emit.

A DynamicMethod and the associated IL are garbage-collected
when no longer referenced. This means you can repeatedly
generate dynamic methods without filling up memory. (To
do the same with dynamic assemblies, you must apply the
AssemblyBuilderAccess.RunAndCollect flag when creating
the assembly.)

Here is a simple use of DynamicMethod to create a method that writes Hello world
to the console:

public class Test
{
  static void Main()
  {
    var dynMeth = new DynamicMethod ("Foo", null, null, typeof (Test));
    ILGenerator gen = dynMeth.GetILGenerator();
    gen.EmitWriteLine ("Hello world");
    gen.Emit (OpCodes.Ret);
    dynMeth.Invoke (null, null);                    // Hello world
  }
}

OpCodes has a static read-only field for every IL opcode. Most of the functionality
is exposed through various opcodes, although ILGenerator also has specialized
methods for generating labels and local variables and for exception handling.
A method always ends in Opcodes.Ret, which means “return,” or some kind of
branching/throwing instruction. The EmitWriteLine method on ILGenerator is a
shortcut for Emitting a number of lower-level opcodes. We would get the same
result if we replaced the call to EmitWriteLine with this:

MethodInfo writeLineStr = typeof (Console).GetMethod ("WriteLine",
                           new Type[] { typeof (string) });
gen.Emit (OpCodes.Ldstr, "Hello world");     // Load a string
gen.Emit (OpCodes.Call, writeLineStr);       // Call a method
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Note that we passed typeof(Test) into DynamicMethod’s constructor. This gives the
dynamic method access to the nonpublic methods of that type, allowing us to do
this:

public class Test
{
  static void Main()
  {
    var dynMeth = new DynamicMethod ("Foo", null, null, typeof (Test));
    ILGenerator gen = dynMeth.GetILGenerator();

    MethodInfo privateMethod = typeof(Test).GetMethod ("HelloWorld",
      BindingFlags.Static | BindingFlags.NonPublic);

    gen.Emit (OpCodes.Call, privateMethod);     // Call HelloWorld
    gen.Emit (OpCodes.Ret);

    dynMeth.Invoke (null, null);                // Hello world
  }

  static void HelloWorld()       // private method, yet we can call it
  {
    Console.WriteLine ("Hello world");
  }
}

Understanding IL requires a considerable investment of time. Rather than under‐
stand all the opcodes, it’s much easier to compile a C# program and then examine,
copy, and tweak the IL. LINQPad displays the IL for any method or code snippet
that you type, and assembly viewing tools such ILSpy are useful for examining
existing assemblies.

The Evaluation Stack
Central to IL is the concept of the evaluation stack. To call a method with argu‐
ments, you first push (“load”) the arguments onto the evaluation stack and then
call the method. The method then pops the arguments it needs from the evaluation
stack. We demonstrated this previously, in calling Console.WriteLine. Here’s a
similar example with an integer:

var dynMeth = new DynamicMethod ("Foo", null, null, typeof(void));
ILGenerator gen = dynMeth.GetILGenerator();
MethodInfo writeLineInt = typeof (Console).GetMethod ("WriteLine",
                                        new Type[] { typeof (int) });

// The Ldc* op-codes load numeric literals of various types and sizes.

gen.Emit (OpCodes.Ldc_I4, 123);        // Push a 4-byte integer onto stack
gen.Emit (OpCodes.Call, writeLineInt);

gen.Emit (OpCodes.Ret);
dynMeth.Invoke (null, null);           // 123
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To add two numbers together, you first load each number onto the evaluation stack,
and then call Add. The Add opcode pops two values from the evaluation stack and
pushes the result back on. The following adds 2 and 2, and then writes the result
using the writeLine method obtained previously:

gen.Emit (OpCodes.Ldc_I4, 2);           // Push a 4-byte integer, value=2
gen.Emit (OpCodes.Ldc_I4, 2);           // Push a 4-byte integer, value=2
gen.Emit (OpCodes.Add);                 // Add the result together
gen.Emit (OpCodes.Call, writeLineInt);

To calculate 10 / 2 + 1, you can do either this:

gen.Emit (OpCodes.Ldc_I4, 10);
gen.Emit (OpCodes.Ldc_I4, 2);
gen.Emit (OpCodes.Div);
gen.Emit (OpCodes.Ldc_I4, 1);
gen.Emit (OpCodes.Add);
gen.Emit (OpCodes.Call, writeLineInt);

or this:

gen.Emit (OpCodes.Ldc_I4, 1);
gen.Emit (OpCodes.Ldc_I4, 10);
gen.Emit (OpCodes.Ldc_I4, 2);
gen.Emit (OpCodes.Div);
gen.Emit (OpCodes.Add);
gen.Emit (OpCodes.Call, writeLineInt);

Passing Arguments to a Dynamic Method
The Ldarg and Ldarg_XXX opcodes load an argument passed into a method onto
the stack. To return a value, leave exactly one value on the stack upon finishing.
For this to work, you must specify the return type and argument types when calling
DynamicMethod’s constructor. The following creates a dynamic method that returns
the sum of two integers:

DynamicMethod dynMeth = new DynamicMethod ("Foo",
  typeof (int),                              // Return type = int
  new[] { typeof (int), typeof (int) },      // Parameter types = int, int
  typeof (void));

ILGenerator gen = dynMeth.GetILGenerator();

gen.Emit (OpCodes.Ldarg_0);      // Push first arg onto eval stack
gen.Emit (OpCodes.Ldarg_1);      // Push second arg onto eval stack
gen.Emit (OpCodes.Add);          // Add them together (result on stack)
gen.Emit (OpCodes.Ret);          // Return with stack having 1 value

int result = (int) dynMeth.Invoke (null, new object[] { 3, 4 } );   // 7

When you exit, the evaluation stack must have exactly 0 or 1
item (depending on whether your method returns a value). If
you violate this, the CLR will refuse to execute your method.
You can remove an item from the stack without processing it
by emitting OpCodes.Pop.
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Rather than calling Invoke, it can be more convenient to work with a dynamic
method as a typed delegate. The CreateDelegate method achieves just this. In our
case, the delegate that we need has two integer parameters and an integer return
type. We can use the Func<int, int, int> delegate for this purpose. The last line
of our preceding example then becomes the following:

var func = (Func<int,int,int>) dynMeth.CreateDelegate
                                 (typeof (Func<int,int,int>));
int result = func (3, 4);  // 7

A delegate also eliminates the overhead of dynamic method
invocation—saving a few microseconds per call.

We demonstrate how to pass by reference in “Emitting Type Members” on page
844.

Generating Local Variables
You can declare a local variable by calling DeclareLocal on an ILGenerator. This
returns a LocalBuilder object, which you can use in conjunction with opcodes
such as Ldloc (load a local variable) or Stloc (store a local variable). Ldloc pushes
the evaluation stack; Stloc pops it. For example, consider the following C# code:

int x = 6;
int y = 7;
x *= y;
Console.WriteLine (x);

The following generates the preceding code dynamically:

var dynMeth = new DynamicMethod ("Test", null, null, typeof (void));
ILGenerator gen = dynMeth.GetILGenerator();

LocalBuilder localX = gen.DeclareLocal (typeof (int));    // Declare x
LocalBuilder localY = gen.DeclareLocal (typeof (int));    // Declare y

gen.Emit (OpCodes.Ldc_I4, 6);        // Push literal 6 onto eval stack
gen.Emit (OpCodes.Stloc, localX);    // Store in localX
gen.Emit (OpCodes.Ldc_I4, 7);        // Push literal 7 onto eval stack
gen.Emit (OpCodes.Stloc, localY);    // Store in localY

gen.Emit (OpCodes.Ldloc, localX);    // Push localX onto eval stack
gen.Emit (OpCodes.Ldloc, localY);    // Push localY onto eval stack
gen.Emit (OpCodes.Mul);              // Multiply values together
gen.Emit (OpCodes.Stloc, localX);    // Store the result to localX

gen.EmitWriteLine (localX);          // Write the value of localX
gen.Emit (OpCodes.Ret);

dynMeth.Invoke (null, null);         // 42
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Branching
In IL, there are no while, do, and for loops; it’s all done with labels and the equiv‐
alent of goto and conditional goto statements. These are the branching opcodes,
such as Br (branch unconditionally), Brtrue (branch if the value on the evaluation
stack is true), and Blt (branch if the first value is less than the second value).

To set a branch target, first call DefineLabel (this returns a Label object), and
then call MarkLabel at the place where you want to anchor the label. For example,
consider the following C# code:

int x = 5;
while (x <= 10) Console.WriteLine (x++);

We can emit this as follows:

ILGenerator gen = ...

Label startLoop = gen.DefineLabel();                  // Declare labels
Label endLoop = gen.DefineLabel();

LocalBuilder x = gen.DeclareLocal (typeof (int));     // int x
gen.Emit (OpCodes.Ldc_I4, 5);                         //
gen.Emit (OpCodes.Stloc, x);                          // x = 5
gen.MarkLabel (startLoop);
  gen.Emit (OpCodes.Ldc_I4, 10);              // Load 10 onto eval stack
  gen.Emit (OpCodes.Ldloc, x);                // Load x onto eval stack

  gen.Emit (OpCodes.Blt, endLoop);            // if (x > 10) goto endLoop

  gen.EmitWriteLine (x);                      // Console.WriteLine (x)

  gen.Emit (OpCodes.Ldloc, x);                // Load x onto eval stack
  gen.Emit (OpCodes.Ldc_I4, 1);               // Load 1 onto the stack
  gen.Emit (OpCodes.Add);                     // Add them together
  gen.Emit (OpCodes.Stloc, x);                // Save result back to x

  gen.Emit (OpCodes.Br, startLoop);           // return to start of loop
gen.MarkLabel (endLoop);

gen.Emit (OpCodes.Ret);

Instantiating Objects and Calling Instance Methods
The IL equivalent of new is the Newobj opcode. This takes a constructor and loads
the constructed object onto the evaluation stack. For instance, the following con‐
structs a StringBuilder:

var dynMeth = new DynamicMethod ("Test", null, null, typeof (void));
ILGenerator gen = dynMeth.GetILGenerator();

ConstructorInfo ci = typeof (StringBuilder).GetConstructor (new Type[0]);
gen.Emit (OpCodes.Newobj, ci);
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After loading an object onto the evaluation stack, you can use the Call or Callvirt
opcode to invoke the object’s instance methods. Extending this example, we’ll query
the StringBuilder’s MaxCapacity property by calling the property’s get accessor
and then write out the result:

gen.Emit (OpCodes.Callvirt, typeof (StringBuilder)
                            .GetProperty ("MaxCapacity").GetGetMethod());

gen.Emit (OpCodes.Call, typeof (Console).GetMethod ("WriteLine",
                                         new[] { typeof (int) } ));
gen.Emit (OpCodes.Ret);
dynMeth.Invoke (null, null);              // 2147483647

To emulate C# calling semantics:

• Use Call to invoke static methods and value type instance methods.•

• Use Callvirt to invoke reference type instance methods (whether or not•
they’re declared virtual).

In our example, we used Callvirt on the StringBuilder instance—even though
MaxProperty is not virtual. This doesn’t cause an error: it simply performs a nonvir‐
tual call, instead. Always invoking reference type instance methods with Callvirt
avoids risking the opposite condition: invoking a virtual method with Call. (The
risk is real. The author of the target method may later change its declaration.)
Callvirt also has the benefit of checking that the receiver is non-null.

Invoking a virtual method with Call bypasses virtual calling
semantics and calls that method directly. This is rarely desira‐
ble and, in effect, violates type safety.

In the following example, we construct a StringBuilder passing in two arguments,
append ", world!" to the StringBuilder, and then call ToString on it:

// We will call:   new StringBuilder ("Hello", 1000)

ConstructorInfo ci = typeof (StringBuilder).GetConstructor (
                     new[] { typeof (string), typeof (int) } );

gen.Emit (OpCodes.Ldstr, "Hello");   // Load a string onto the eval stack
gen.Emit (OpCodes.Ldc_I4, 1000);     // Load an int onto the eval stack
gen.Emit (OpCodes.Newobj, ci);       // Construct the StringBuilder

Type[] strT = { typeof (string) };
gen.Emit (OpCodes.Ldstr, ", world!");
gen.Emit (OpCodes.Call, typeof (StringBuilder).GetMethod ("Append", strT));
gen.Emit (OpCodes.Callvirt, typeof (object).GetMethod ("ToString"));
gen.Emit (OpCodes.Call, typeof (Console).GetMethod ("WriteLine", strT));
gen.Emit (OpCodes.Ret);
dynMeth.Invoke (null, null);        // Hello, world!
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For fun, we called GetMethod on typeof(object) and then used Callvirt to
perform a virtual method call on ToString. We could have gotten the same result by
calling ToString on the StringBuilder type itself:

gen.Emit (OpCodes.Callvirt, typeof (StringBuilder).GetMethod ("ToString",
                                                          new Type[0] ));

(The empty type array is required in calling GetMethod because StringBuilder
overloads ToString with another signature.)

Had we called object’s ToString method nonvirtually:
gen.Emit (OpCodes.Call,
          typeof (object).GetMethod ("ToString"));

the result would have been System.Text.StringBuilder. In
other words, we would have circumvented StringBuilder’s
ToString override and called object’s version directly.

Exception Handling
ILGenerator provides dedicated methods for exception handling. Thus, the transla‐
tion for this C# code:

try                               { throw new NotSupportedException(); }
catch (NotSupportedException ex)  { Console.WriteLine (ex.Message);    }
finally                           { Console.WriteLine ("Finally");     }

is this:

MethodInfo getMessageProp = typeof (NotSupportedException)
                            .GetProperty ("Message").GetGetMethod();

MethodInfo writeLineString = typeof (Console).GetMethod ("WriteLine",
                                             new[] { typeof (object) } );
gen.BeginExceptionBlock();
  ConstructorInfo ci = typeof (NotSupportedException).GetConstructor (
                                                        new Type[0] );
  gen.Emit (OpCodes.Newobj, ci);
  gen.Emit (OpCodes.Throw);
gen.BeginCatchBlock (typeof (NotSupportedException));
  gen.Emit (OpCodes.Callvirt, getMessageProp);
  gen.Emit (OpCodes.Call, writeLineString);
gen.BeginFinallyBlock();
  gen.EmitWriteLine ("Finally");
gen.EndExceptionBlock();

Just as in C#, you can include multiple catch blocks. To rethrow the same excep‐
tion, emit the Rethrow opcode.

ILGenerator provides a helper method called ThrowExcep
tion. This contains a bug, however, preventing it from being
used with a DynamicMethod. It works only with a Method
Builder (see the next section).
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Emitting Assemblies and Types
Although DynamicMethod is convenient, it can generate only methods. If you
need to emit any other construct—or a complete type—you need to use the full
“heavyweight” API. This means dynamically building an assembly and module.
The assembly need not have a disk presence (in fact, it cannot, because .NET 5+
and .NET Core do not let you save generated assemblies to disk).

Let’s assume that we want to dynamically build a type. Because a type must reside in
a module within an assembly, we first must create the assembly and module before
we can create the type. This is the job of the AssemblyBuilder and ModuleBuilder
types:

AssemblyName aname = new AssemblyName ("MyDynamicAssembly");

AssemblyBuilder assemBuilder =
  AssemblyBuilder.DefineDynamicAssembly (aname, AssemblyBuilderAccess.Run);

ModuleBuilder modBuilder = assemBuilder.DefineDynamicModule ("DynModule");

You can’t add a type to an existing assembly, because an
assembly is immutable after it’s created.
Dynamic assemblies are not garbage-collected and remain in
memory until the process ends, unless you specify Assembly
BuilderAccess.RunAndCollect when defining the assembly.
Various restrictions apply to collectible assemblies (see http://
albahari.com/dynamiccollect).

After we have a module in which the type can reside, we can use TypeBuilder to
create the type. The following defines a class called Widget:

TypeBuilder tb = modBuilder.DefineType ("Widget", TypeAttributes.Public);

The TypeAttributes flags enum supports the CLR type modifiers you see when
disassembling a type with ildasm. As well as member visibility flags, this includes
type modifiers such as Abstract and Sealed—and Interface for defining a .NET
interface. It also includes Serializable, which is equivalent to applying the
[Serializable] attribute in C#, and Explicit, which is equivalent to applying
[StructLayout(LayoutKind.Explicit)]. We describe how to apply other kinds of
attributes later in this chapter, in “Attaching Attributes” on page 849.
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The DefineType method also accepts an optional base type:

• To define a struct, specify a base type of System.Value•
Type.

• To define a delegate, specify a base type of System.Multi•
castDelegate.

• To implement an interface, use the constructor that•
accepts an array of interface types.

• To define an interface, specify TypeAttributes.Inter•
face | TypeAttributes.Abstract.

Defining a delegate type requires a number of extra steps. In
his weblog, Joel Pobar demonstrates how this is done in his
article titled “Creating delegate types via Reflection.Emit”.

We can now create members within the type:

MethodBuilder methBuilder = tb.DefineMethod ("SayHello",
                                             MethodAttributes.Public,
                                             null, null);
ILGenerator gen = methBuilder.GetILGenerator();
gen.EmitWriteLine ("Hello world");
gen.Emit (OpCodes.Ret);

We’re now ready to create the type, which finalizes its definition:

Type t = tb.CreateType();

After the type is created, we can use ordinary reflection to inspect and perform late
binding:

object o = Activator.CreateInstance (t);
t.GetMethod ("SayHello").Invoke (o, null);        // Hello world

The Reflection.Emit Object Model
Figure 18-2 illustrates the essential types in System.Reflection.Emit. Each type
describes a CLR construct and is based on a counterpart in the System.Reflection
namespace. This allows you to use emitted constructs in place of normal constructs
when building a type. For example, we previously called Console.WriteLine, as
follows:

MethodInfo writeLine = typeof(Console).GetMethod ("WriteLine",
                                       new Type[] { typeof (string) });
gen.Emit (OpCodes.Call, writeLine);

We could just as easily call a dynamically generated method by calling gen.Emit
with a MethodBuilder instead of a MethodInfo. This is essential—otherwise, you
couldn’t write one dynamic method that called another in the same type.
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Figure 18-2. System.Reflection.Emit

Recall that you must call CreateType on a TypeBuilder when you’ve finished
populating it. Calling CreateType seals the TypeBuilder and all its members—so
nothing more can be added or changed—and gives you back a real Type that you
can instantiate.

Before you call CreateType, the TypeBuilder and its members are in an “uncre‐
ated” state. There are significant restrictions on what you can do with uncreated
constructs. In particular, you cannot call any of the members that return Member
Info objects, such as GetMembers, GetMethod, or GetProperty—these all throw an
exception. If you want to refer to members of an uncreated type, you must use the
original emissions:

TypeBuilder tb = ...

MethodBuilder method1 = tb.DefineMethod ("Method1", ...);
MethodBuilder method2 = tb.DefineMethod ("Method2", ...);

ILGenerator gen1 = method1.GetILGenerator();

// Suppose we want method1 to call method2:

gen1.Emit (OpCodes.Call, method2);                    // Right
gen1.Emit (OpCodes.Call, tb.GetMethod ("Method2"));   // Wrong

After calling CreateType, you can reflect on and activate not only the Type returned
but also the original TypeBuilder object. The TypeBuilder, in fact, morphs into
a proxy for the real Type. You’ll see why this feature is important in “Awkward
Emission Targets” on page 851.
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Emitting Type Members
All the examples in this section assume a TypeBuilder, tb, has been instantiated, as
follows:

AssemblyName aname = new AssemblyName ("MyEmissions");

AssemblyBuilder assemBuilder = AssemblyBuilder.DefineDynamicAssembly (
  aname, AssemblyBuilderAccess.Run);

ModuleBuilder modBuilder = assemBuilder.DefineDynamicModule ("MainModule");

TypeBuilder tb = modBuilder.DefineType ("Widget", TypeAttributes.Public);

Emitting Methods
You can specify a return type and parameter types when calling DefineMethod,
in the same manner as when instantiating a DynamicMethod. For instance, the
following method:

public static double SquareRoot (double value) => Math.Sqrt (value);

can be generated like this:

MethodBuilder mb = tb.DefineMethod ("SquareRoot",
  MethodAttributes.Static | MethodAttributes.Public,
  CallingConventions.Standard,
  typeof (double),                     // Return type
  new[]  { typeof (double) } );        // Parameter types

mb.DefineParameter (1, ParameterAttributes.None, "value");  // Assign name

ILGenerator gen = mb.GetILGenerator();
gen.Emit (OpCodes.Ldarg_0);                                // Load 1st arg
gen.Emit (OpCodes.Call, typeof(Math).GetMethod ("Sqrt"));
gen.Emit (OpCodes.Ret);

Type realType = tb.CreateType();
double x = (double) tb.GetMethod ("SquareRoot").Invoke (null,
                                                new object[] { 10.0 });
Console.WriteLine (x);   // 3.16227766016838

Calling DefineParameter is optional and is typically done to assign the parameter
a name. The number 1 refers to the first parameter (0 refers to the return value). If
you call DefineParameter, the parameter is implicitly named __p1, __p2, and so on.
Assigning names makes sense if you will write the assembly to disk; it makes your
methods friendly to consumers.

DefineParameter returns a ParameterBuilder object upon
which you can call SetCustomAttribute to attach attributes
(see “Attaching Attributes” on page 849).

To emit pass-by-reference parameters, such as in the following C# method:
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public static void SquareRoot (ref double value)
  => value = Math.Sqrt (value);

call MakeByRefType on the parameter type(s):

MethodBuilder mb = tb.DefineMethod ("SquareRoot",
  MethodAttributes.Static | MethodAttributes.Public,
  CallingConventions.Standard,
  null,
  new Type[] { typeof (double).MakeByRefType() } );

mb.DefineParameter (1, ParameterAttributes.None, "value");

ILGenerator gen = mb.GetILGenerator();
gen.Emit (OpCodes.Ldarg_0);
gen.Emit (OpCodes.Ldarg_0);
gen.Emit (OpCodes.Ldind_R8);
gen.Emit (OpCodes.Call, typeof (Math).GetMethod ("Sqrt"));
gen.Emit (OpCodes.Stind_R8);
gen.Emit (OpCodes.Ret);

Type realType = tb.CreateType();
object[] args = { 10.0 };
tb.GetMethod ("SquareRoot").Invoke (null, args);
Console.WriteLine (args[0]);                     // 3.16227766016838

The opcodes here were copied from a disassembled C# method. Notice the differ‐
ence in semantics for accessing parameters passed by reference: Ldind and Stind
mean “load indirectly” and “store indirectly,” respectively. The R8 suffix means an
eight-byte floating-point number.

The process for emitting out parameters is identical, except that you call Define
Parameter, as follows:

mb.DefineParameter (1, ParameterAttributes.Out, "value");

Generating instance methods
To generate an instance method, specify MethodAttributes.Instance when calling
DefineMethod:

MethodBuilder mb = tb.DefineMethod ("SquareRoot",
  MethodAttributes.Instance | MethodAttributes.Public
  ...

With instance methods, argument zero is implicitly this; the remaining arguments
start at 1. So, Ldarg_0 loads this onto the evaluation stack; Ldarg_1 loads the first
real method argument.

Overriding methods
Overriding a virtual method in a base class is easy: simply define a method with an
identical name, signature, and return type, specifying MethodAttributes.Virtual
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when calling DefineMethod. The same applies when implementing interface meth‐
ods.

TypeBuilder also exposes a method called DefineMethodOverride that overrides
a method with a different name. This makes sense only with explicit interface
implementation; in other scenarios, use DefineMethod.

HideBySig
If you’re subclassing another type, it’s nearly always worth specifying MethodAttrib
utes.HideBySig when defining methods. HideBySig ensures that C#-style method-
hiding semantics are applied, which is that a base method is hidden only if a subtype
defines a method with an identical signature. Without HideBySig, method hiding
considers only the name, so Foo(string) in the subtype will hide Foo() in the base
type, which is generally undesirable.

Emitting Fields and Properties
To create a field, you call DefineField on a TypeBuilder, specifying the desired
field name, type, and visibility. The following creates a private integer field called
“length”:

FieldBuilder field = tb.DefineField ("length", typeof (int),
                                      FieldAttributes.Private);

Creating a property or indexer requires a few more steps. First, call DefineProperty
on a TypeBuilder, providing it with the name and type of the property:

PropertyBuilder prop = tb.DefineProperty (
                         "Text",                      // Name of property
                         PropertyAttributes.None,
                         typeof (string),             // Property type
                         new Type[0]                  // Indexer types
                       );

(If you’re writing an indexer, the final argument is an array of indexer types.) Note
that we haven’t specified the property visibility: this is done individually on the
accessor methods.

The next step is to write the get and set methods. By convention, their names
are prefixed with “get_” or “set_”. You then attach them to the property by calling
SetGetMethod and SetSetMethod on the PropertyBuilder.

To give a complete example, let’s take the following field and property declaration

string _text;
public string Text
{
  get          => _text;
  internal set => _text = value;
}
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and generate it dynamically:

FieldBuilder field = tb.DefineField ("_text", typeof (string),
                                      FieldAttributes.Private);
PropertyBuilder prop = tb.DefineProperty (
                         "Text",                      // Name of property
                         PropertyAttributes.None,
                         typeof (string),             // Property type
                         new Type[0]);                // Indexer types

MethodBuilder getter = tb.DefineMethod (
  "get_Text",                                         // Method name
  MethodAttributes.Public | MethodAttributes.SpecialName,
  typeof (string),                                    // Return type
  new Type[0]);                                       // Parameter types

ILGenerator getGen = getter.GetILGenerator();
getGen.Emit (OpCodes.Ldarg_0);        // Load "this" onto eval stack
getGen.Emit (OpCodes.Ldfld, field);   // Load field value onto eval stack
getGen.Emit (OpCodes.Ret);            // Return

MethodBuilder setter = tb.DefineMethod (
  "set_Text",
  MethodAttributes.Assembly | MethodAttributes.SpecialName,
  null,                                                 // Return type
  new Type[] { typeof (string) } );                     // Parameter types

ILGenerator setGen = setter.GetILGenerator();
setGen.Emit (OpCodes.Ldarg_0);        // Load "this" onto eval stack
setGen.Emit (OpCodes.Ldarg_1);        // Load 2nd arg, i.e., value
setGen.Emit (OpCodes.Stfld, field);   // Store value into field
setGen.Emit (OpCodes.Ret);            // return

prop.SetGetMethod (getter);           // Link the get method and property
prop.SetSetMethod (setter);           // Link the set method and property

We can test the property as follows:

Type t = tb.CreateType();
object o = Activator.CreateInstance (t);
t.GetProperty ("Text").SetValue (o, "Good emissions!", new object[0]);
string text = (string) t.GetProperty ("Text").GetValue (o, null);

Console.WriteLine (text);             // Good emissions!

Notice that in defining the accessor MethodAttributes, we included SpecialName.
This instructs compilers to disallow direct binding to these methods when statically
referencing the assembly. It also ensures that the accessors are handled appropri‐
ately by reflection tools and Visual Studio’s IntelliSense.

You can emit events in a similar manner, by calling Define
Event on a TypeBuilder. You then write explicit event acces‐
sor methods and attach them to the EventBuilder by calling
SetAddOnMethod and SetRemoveOnMethod.
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Emitting Constructors
You can define your own constructors by calling DefineConstructor on a type
builder. You’re not obliged to do so—a default parameterless constructor is auto‐
matically provided if you don’t. The default constructor calls the base class con‐
structor if subtyping, just like in C#. Defining one or more constructors displaces
this default constructor.

If you need to initialize fields, the constructor’s a good spot. In fact, it’s the only
spot: C#’s field initializers don’t have special CLR support—they are simply a syntac‐
tic shortcut for assigning values to fields in the constructor.

So, to reproduce this:

class Widget
{
  int _capacity = 4000;
}

you would define a constructor, as follows:

FieldBuilder field = tb.DefineField ("_capacity", typeof (int),
                                      FieldAttributes.Private);
ConstructorBuilder c = tb.DefineConstructor (
  MethodAttributes.Public,
  CallingConventions.Standard,
  new Type[0]);                  // Constructor parameters

ILGenerator gen = c.GetILGenerator();

gen.Emit (OpCodes.Ldarg_0);             // Load "this" onto eval stack
gen.Emit (OpCodes.Ldc_I4, 4000);        // Load 4000 onto eval stack
gen.Emit (OpCodes.Stfld, field);        // Store it to our field
gen.Emit (OpCodes.Ret);

Calling base constructors
If subclassing another type, the constructor we just wrote would circumvent the base
class constructor. This is unlike C#, in which the base class constructor is always
called, whether directly or indirectly. For instance, given the following code:

class A     { public A() { Console.Write ("A"); } }
class B : A { public B() {} }

the compiler, in effect, will translate the second line into this:

class B : A { public B() : base() {} }

This is not the case when generating IL: you must explicitly call the base constructor
if you want it to execute (which nearly always, you do). Assuming the base class is
called A, here’s how to do it:

gen.Emit (OpCodes.Ldarg_0);
ConstructorInfo baseConstr = typeof (A).GetConstructor (new Type[0]);
gen.Emit (OpCodes.Call, baseConstr);
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Calling constructors with arguments is just the same as with methods.

Attaching Attributes
You can attach custom attributes to a dynamic construct by calling SetCustomAttri
bute with a CustomAttributeBuilder. For example, suppose that we want to attach
the following attribute declaration to a field or property:

[XmlElement ("FirstName", Namespace="http://test/", Order=3)]

This relies on the XmlElementAttribute constructor that accepts a single string. To
use CustomAttributeBuilder, we must retrieve this constructor as well as the two
additional properties that we want to set (Namespace and Order):

Type attType = typeof (XmlElementAttribute);

ConstructorInfo attConstructor = attType.GetConstructor (
  new Type[] { typeof (string) } );

var att = new CustomAttributeBuilder (
  attConstructor,                        // Constructor
  new object[] { "FirstName" },          // Constructor arguments
  new PropertyInfo[] 
  {
    attType.GetProperty ("Namespace"),   // Properties
    attType.GetProperty ("Order")
  },
  new object[] { "http://test/", 3 }     // Property values
);

myFieldBuilder.SetCustomAttribute (att);
// or propBuilder.SetCustomAttribute (att);
// or typeBuilder.SetCustomAttribute (att);  etc

Emitting Generic Methods and Types
All the examples in this section assume that modBuilder has been instantiated as
follows:

AssemblyName aname = new AssemblyName ("MyEmissions");

AssemblyBuilder assemBuilder = AssemblyBuilder.DefineDynamicAssembly (
  aname, AssemblyBuilderAccess.Run);

ModuleBuilder modBuilder = assemBuilder.DefineDynamicModule ("MainModule");

Defining Generic Methods
To emit a generic method:

1. Call DefineGenericParameters on a MethodBuilder to obtain an array of1.
GenericTypeParameterBuilder objects.
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2. Call SetSignature on a MethodBuilder using these generic type parameters.2.
3. Optionally, name the parameters as you would otherwise.3.

For example, the following generic method:

public static T Echo<T> (T value)
{
  return value;
}

can be emitted like this:

TypeBuilder tb = modBuilder.DefineType ("Widget", TypeAttributes.Public);

MethodBuilder mb = tb.DefineMethod ("Echo", MethodAttributes.Public |
                                            MethodAttributes.Static);
GenericTypeParameterBuilder[] genericParams
  = mb.DefineGenericParameters ("T");

mb.SetSignature (genericParams[0],     // Return type
                 null, null,
                 genericParams,        // Parameter types
                 null, null);

mb.DefineParameter (1, ParameterAttributes.None, "value");   // Optional

ILGenerator gen = mb.GetILGenerator();
gen.Emit (OpCodes.Ldarg_0);
gen.Emit (OpCodes.Ret);

The DefineGenericParameters method accepts any number of string arguments—
these correspond to the desired generic type names. In this example, we needed just
one generic type called T. GenericTypeParameterBuilder is based on System.Type,
so you can use it in place of a TypeBuilder when emitting opcodes.

GenericTypeParameterBuilder also lets you specify a base type constraint:

genericParams[0].SetBaseTypeConstraint (typeof (Foo));

and interface constraints:

genericParams[0].SetInterfaceConstraints (typeof (IComparable));

To replicate this:

public static T Echo<T> (T value) where T : IComparable<T>

you would write:

genericParams[0].SetInterfaceConstraints (
  typeof (IComparable<>).MakeGenericType (genericParams[0]) );

For other kinds of constraints, call SetGenericParameterAttributes. This accepts
a member of the GenericParameterAttributes enum, which includes the following
values:
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DefaultConstructorConstraint
NotNullableValueTypeConstraint
ReferenceTypeConstraint
Covariant
Contravariant

The last two are equivalent to applying the out and in modifiers to the type
parameters.

Defining Generic Types
You can define generic types in a similar fashion. The difference is that you call
DefineGenericParameters on the TypeBuilder rather than the MethodBuilder. So,
to reproduce this:

public class Widget<T>
{
  public T Value;
}

you would do the following:

TypeBuilder tb = modBuilder.DefineType ("Widget", TypeAttributes.Public);

GenericTypeParameterBuilder[] genericParams
  = tb.DefineGenericParameters ("T");

tb.DefineField ("Value", genericParams[0], FieldAttributes.Public);

Generic constraints can be added, just as with a method.

Awkward Emission Targets
All of the examples in this section assume that a modBuilder has been instantiated
as in previous sections.

Uncreated Closed Generics
Suppose that you want to emit a method that uses a closed generic type:

public class Widget
{
  public static void Test() { var list = new List<int>(); }
}

The process is fairly straightforward:

TypeBuilder tb = modBuilder.DefineType ("Widget", TypeAttributes.Public);

MethodBuilder mb = tb.DefineMethod ("Test", MethodAttributes.Public |
                                            MethodAttributes.Static);
ILGenerator gen = mb.GetILGenerator();

Type variableType = typeof (List<int>);
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ConstructorInfo ci = variableType.GetConstructor (new Type[0]);

LocalBuilder listVar = gen.DeclareLocal (variableType);
gen.Emit (OpCodes.Newobj, ci);
gen.Emit (OpCodes.Stloc, listVar);
gen.Emit (OpCodes.Ret);

Now suppose that instead of a list of integers, we want a list of widgets:

public class Widget
{
  public static void Test() { var list = new List<Widget>(); }
}

In theory, this is a simple modification; all we do is replace this line:

Type variableType = typeof (List<int>);

with this one:

Type variableType = typeof (List<>).MakeGenericType (tb);

Unfortunately, this causes a NotSupportedException to be thrown when we then
call GetConstructor. The problem is that you cannot call GetConstructor on a
generic type closed with an uncreated type builder. The same goes for GetField and
GetMethod.

The solution is unintuitive. TypeBuilder provides three static methods:

public static ConstructorInfo GetConstructor (Type, ConstructorInfo);
public static FieldInfo       GetField       (Type, FieldInfo);
public static MethodInfo      GetMethod      (Type, MethodInfo);

Although it doesn’t appear so, these methods exist specifically to obtain members of
generic types closed with uncreated type builders! The first parameter is the closed
generic type; the second parameter is the member that you want on the unbound
generic type. Here’s the corrected version of our example:

MethodBuilder mb = tb.DefineMethod ("Test", MethodAttributes.Public |
                                            MethodAttributes.Static);
ILGenerator gen = mb.GetILGenerator();

Type variableType = typeof (List<>).MakeGenericType (tb);

ConstructorInfo unbound = typeof (List<>).GetConstructor (new Type[0]);
ConstructorInfo ci = TypeBuilder.GetConstructor (variableType, unbound);

LocalBuilder listVar = gen.DeclareLocal (variableType);
gen.Emit (OpCodes.Newobj, ci);
gen.Emit (OpCodes.Stloc, listVar);
gen.Emit (OpCodes.Ret);

852 | Chapter 18: Reflection and Metadata



Circular Dependencies
Suppose that you want to build two types that reference each other, such as these:

class A { public B Bee; }
class B { public A Aye; }

You can generate this dynamically, as follows:

var publicAtt = FieldAttributes.Public;

TypeBuilder aBuilder = modBuilder.DefineType ("A");
TypeBuilder bBuilder = modBuilder.DefineType ("B");

FieldBuilder bee = aBuilder.DefineField ("Bee", bBuilder, publicAtt);
FieldBuilder aye = bBuilder.DefineField ("Aye", aBuilder, publicAtt);

Type realA = aBuilder.CreateType();
Type realB = bBuilder.CreateType();

Notice that we didn’t call CreateType on aBuilder or bBuilder until we populated
both objects. The principle is this: first hook everything up, and then call Create
Type on each type builder.

Interestingly, the realA type is valid but dysfunctional until you call CreateType
on bBuilder. (If you started using aBuilder prior to this, an exception would be
thrown when you tried to access field Bee.)

You might wonder how bBuilder knows to “fix up” realA after creating realB.
The answer is that it doesn’t: realA can fix itself the next time it’s used. This is
possible because after calling CreateType, a TypeBuilder morphs into a proxy for
the real runtime type. So, realA, with its references to bBuilder, can easily obtain
the metadata it needs for the upgrade.

This system works when the type builder demands simple information of the
unconstructed type—information that can be predetermined—such as type, mem‐
ber, and object references. In creating realA, the type builder doesn’t need to know,
for instance, how many bytes realB will eventually occupy in memory. This is just
as well because realB has not yet been created! But now imagine that realB was a
struct. The final size of realB is now critical information in creating realA.

If the relationship is noncyclical; for instance:

struct A { public B Bee; }
struct B {               }

you can solve this by first creating struct B and then struct A. But consider this:

struct A { public B Bee; }
struct B { public A Aye; }

We won’t try to emit this because it’s nonsensical to have two structs contain each
other (C# generates a compile-time error if you try). But the following variation is
both legal and useful:
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public struct S<T> { ... }    // S can be empty and this demo will work.

class A { S<B> Bee; }
class B { S<A> Aye; }

In creating A, a TypeBuilder now needs to know the memory footprint of B, and
vice versa. To illustrate, let’s assume that struct S is defined statically. Here’s the code
to emit classes A and B:

var pub = FieldAttributes.Public;

TypeBuilder aBuilder = modBuilder.DefineType ("A");
TypeBuilder bBuilder = modBuilder.DefineType ("B");

aBuilder.DefineField ("Bee", typeof(S<>).MakeGenericType (bBuilder), pub);
bBuilder.DefineField ("Aye", typeof(S<>).MakeGenericType (aBuilder), pub);

Type realA = aBuilder.CreateType();    // Error: cannot load type B
Type realB = bBuilder.CreateType();

CreateType now throws a TypeLoadException no matter in which order you go:

• Call aBuilder.CreateType first, and it says “cannot load type B”.•

• Call bBuilder.CreateType first, and it says “cannot load type A”!•

To solve this, you must allow the type builder to create realB partway through
creating realA. You do this by handling the TypeResolve event on the AppDomain
class just before calling CreateType. So, in our example, we replace the last two lines
with this:

TypeBuilder[] uncreatedTypes = { aBuilder, bBuilder };

ResolveEventHandler handler = delegate (object o, ResolveEventArgs args)
{
  var type = uncreatedTypes.FirstOrDefault (t => t.FullName == args.Name);
  return type == null ? null : type.CreateType().Assembly;
};

AppDomain.CurrentDomain.TypeResolve += handler;

Type realA = aBuilder.CreateType();
Type realB = bBuilder.CreateType();

AppDomain.CurrentDomain.TypeResolve -= handler;

The TypeResolve event fires during the call to aBuilder.CreateType, at the point
when it needs you to call CreateType on bBuilder.

Handling the TypeResolve event as in this example is also
necessary when defining a nested type, when the nested and
parent types refer to each other.
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Parsing IL
You can obtain information about the content of an existing method by calling
GetMethodBody on a MethodBase object. This returns a MethodBody object that has
properties for inspecting a method’s local variables, exception handling clauses, and
stack size, as well as the raw IL. Rather like the reverse of Reflection.Emit!

Inspecting a method’s raw IL can be useful in profiling code. A simple use would
be to determine which methods in an assembly have changed when an assembly is
updated.

To illustrate parsing IL, we’ll write an application that disassembles IL in the style
of ildasm. This could be used as the starting point for a code analysis tool or a
higher-level language disassembler.

Remember that in the reflection API, all of C#’s functional
constructs are either represented by a MethodBase subtype or
(in the case of properties, events, and indexers) have Method
Base objects attached to them.

Writing a Disassembler
Here is a sample of the output that our disassembler will produce:

IL_00EB:  ldfld        Disassembler._pos
IL_00F0:  ldloc.2
IL_00F1:  add
IL_00F2:  ldelema      System.Byte
IL_00F7:  ldstr        "Hello world"
IL_00FC:  call         System.Byte.ToString
IL_0101:  ldstr        " "
IL_0106:  call         System.String.Concat

To obtain this output, we must parse the binary tokens that make up the IL. The
first step is to call the GetILAsByteArray method on MethodBody to obtain the IL
as a byte array. To make the rest of the job easier, we will write this into a class as
follows:

public class Disassembler
{
  public static string Disassemble (MethodBase method)
    => new Disassembler (method).Dis();

  StringBuilder _output;    // The result to which we'll keep appending
  Module _module;           // This will come in handy later
  byte[] _il;               // The raw byte code
  int _pos;                 // The position we're up to in the byte code

  Disassembler (MethodBase method)
  {
    _module = method.DeclaringType.Module;
    _il = method.GetMethodBody().GetILAsByteArray();
  }
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  string Dis()
  {
    _output = new StringBuilder();
    while (_pos < _il.Length) DisassembleNextInstruction();
    return _output.ToString();
  }
}

The static Disassemble method will be the only public member of this class. All
other members will be private to the disassembly process. The Dis method contains
the “main” loop where we process each instruction.

With this skeleton in place, all that remains is to write DisassembleNextInstruc
tion. But before doing so, it will help to load all the opcodes into a static dictionary
so that we can access them by their 8- or 16-bit value. The easiest way to accomplish
this is to use reflection to retrieve all the static fields whose type is OpCode in the
OpCodes class:

static Dictionary<short,OpCode> _opcodes = new Dictionary<short,OpCode>();

static Disassembler()
{
  Dictionary<short, OpCode> opcodes = new Dictionary<short, OpCode>();
    foreach (FieldInfo fi in typeof (OpCodes).GetFields
                             (BindingFlags.Public | BindingFlags.Static))
      if (typeof (OpCode).IsAssignableFrom (fi.FieldType))
      {
        OpCode code = (OpCode) fi.GetValue (null);   // Get field's value
        if (code.OpCodeType != OpCodeType.Nternal)
          _opcodes.Add (code.Value, code);
      }
}

We’ve written it in a static constructor so that it executes just once.

Now we can write DisassembleNextInstruction. Each IL instruction consists of a
one- or two-byte opcode, followed by an operand of zero, one, two, four, or eight
bytes. (An exception is inline switch opcodes, which are followed by a variable
number of operands.) So, we read the opcode, then the operand, and then write out
the result:

void DisassembleNextInstruction()
{
  int opStart = _pos;

  OpCode code = ReadOpCode();
  string operand = ReadOperand (code);

  _output.AppendFormat ("IL_{0:X4}:  {1,-12} {2}",
                        opStart, code.Name, operand);
  _output.AppendLine();
}
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To read an opcode, we advance one byte and see whether we have a valid instruc‐
tion. If not, we advance another byte and look for a two-byte instruction:

OpCode ReadOpCode()
{
  byte byteCode = _il [_pos++];
  if (_opcodes.ContainsKey (byteCode)) return _opcodes [byteCode];

  if (_pos == _il.Length)  throw new Exception ("Unexpected end of IL");

  short shortCode = (short) (byteCode * 256 + _il [_pos++]);

  if (!_opcodes.ContainsKey (shortCode))
    throw new Exception ("Cannot find opcode " + shortCode);

  return _opcodes [shortCode];
}

To read an operand, we first must establish its length. We can do this based on the
operand type. Because most are four bytes long, we can filter out the exceptions
fairly easily in a conditional clause.

The next step is to call FormatOperand, which attempts to format the operand:

string ReadOperand (OpCode c)
{
  int operandLength =
    c.OperandType == OperandType.InlineNone
      ? 0 :
    c.OperandType == OperandType.ShortInlineBrTarget ||
    c.OperandType == OperandType.ShortInlineI ||
    c.OperandType == OperandType.ShortInlineVar
      ? 1 :
    c.OperandType == OperandType.InlineVar
      ? 2 :
    c.OperandType == OperandType.InlineI8 ||
    c.OperandType == OperandType.InlineR
      ? 8 :
    c.OperandType == OperandType.InlineSwitch
      ? 4 * (BitConverter.ToInt32 (_il, _pos) + 1) :
      4;  // All others are 4 bytes

  if (_pos + operandLength > _il.Length)
    throw new Exception ("Unexpected end of IL");

  string result = FormatOperand (c, operandLength);
  if (result == null)
  {                        // Write out operand bytes in hex
    result = "";
    for (int i = 0; i < operandLength; i++)
      result += _il [_pos + i].ToString ("X2") + " ";
  }
  _pos += operandLength;
  return result;
}
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If the result of calling FormatOperand is null, it means the operand needs no
special formatting, so we simply write it out in hexadecimal. We could test the
disassembler at this point by writing a FormatOperand method that always returns
null. Here’s what the output would look like:

IL_00A8:  ldfld        98 00 00 04
IL_00AD:  ldloc.2
IL_00AE:  add
IL_00AF:  ldelema      64 00 00 01
IL_00B4:  ldstr        26 04 00 70
IL_00B9:  call         B6 00 00 0A
IL_00BE:  ldstr        11 01 00 70
IL_00C3:  call         91 00 00 0A
...

Although the opcodes are correct, the operands are not much use. Instead of
hexadecimal numbers, we want member names and strings. The FormatOperand
method, when it’s written, will address this—identifying the special cases that bene‐
fit from such formatting. These comprise most four-byte operands and the short
branch instructions:

string FormatOperand (OpCode c, int operandLength)
{
  if (operandLength == 0) return "";

  if (operandLength == 4)
    return Get4ByteOperand (c);
  else if (c.OperandType == OperandType.ShortInlineBrTarget)
    return GetShortRelativeTarget();
  else if (c.OperandType == OperandType.InlineSwitch)
    return GetSwitchTarget (operandLength);
  else
    return null;
}

There are three kinds of four-byte operands that we treat specially. The first
is references to members or types—with these, we extract the member or type
name by calling the defining module’s ResolveMember method. The second case is
strings—these are stored in the assembly module’s metadata and can be retrieved by
calling ResolveString. The final case is branch targets, where the operand refers to
a byte offset in the IL. We format these by working out the absolute address after the
current instruction (+ four bytes):

string Get4ByteOperand (OpCode c)
{
  int intOp = BitConverter.ToInt32 (_il, _pos);

  switch (c.OperandType)
  {
    case OperandType.InlineTok:
    case OperandType.InlineMethod:
    case OperandType.InlineField:
    case OperandType.InlineType:
      MemberInfo mi;
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      try   { mi = _module.ResolveMember (intOp); }
      catch { return null; }
      if (mi == null) return null;

      if (mi.ReflectedType != null)
        return mi.ReflectedType.FullName + "." + mi.Name;
      else if (mi is Type)
        return ((Type)mi).FullName;
      else
        return mi.Name;

    case OperandType.InlineString:
      string s = _module.ResolveString (intOp);
      if (s != null) s = "'" + s + "'";
      return s;

    case OperandType.InlineBrTarget:
      return "IL_" + (_pos + intOp + 4).ToString ("X4");

    default:
      return null;
  }
}

The point where we call ResolveMember is a good window for
a code analysis tool that reports on method dependencies.

For any other four-byte opcode, we return null (this will cause ReadOperand to
format the operand as hex digits).

The final kinds of operand that need special attention are short branch targets and
inline switches. A short branch target describes the destination offset as a single
signed byte, as at the end of the current instruction (i.e., + one byte). A switch target
is followed by a variable number of four-byte branch destinations:

string GetShortRelativeTarget()
{
  int absoluteTarget = _pos + (sbyte) _il [_pos] + 1;
  return "IL_" + absoluteTarget.ToString ("X4");
}

string GetSwitchTarget (int operandLength)
{
  int targetCount = BitConverter.ToInt32 (_il, _pos);
  string [] targets = new string [targetCount];
  for (int i = 0; i < targetCount; i++)
  {
    int ilTarget = BitConverter.ToInt32 (_il, _pos + (i + 1) * 4);
    targets [i] = "IL_" + (_pos + ilTarget + operandLength).ToString ("X4");
  }
  return "(" + string.Join (", ", targets) + ")";
}
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This completes the disassembler. We can test it by disassembling one of its own
methods:

MethodInfo mi = typeof (Disassembler).GetMethod (
  "ReadOperand", BindingFlags.Instance | BindingFlags.NonPublic);

Console.WriteLine (Disassembler.Disassemble (mi));

860 | Chapter 18: Reflection and Metadata



19
Dynamic Programming

Chapter 4 explained how dynamic binding works in the C# language. In this
chapter, we look briefly at the Dynamic Language Runtime (DLR) and then explore
the following dynamic programming patterns:

• Dynamic member overload resolution•
• Custom binding (implementing dynamic objects)•
• Dynamic language interoperability•

In Chapter 24, we describe how dynamic can improve COM
interoperability.

The types in this chapter reside in the System.Dynamic namespace, except for
CallSite<>, which resides in System.Runtime.CompilerServices.

The Dynamic Language Runtime
C# relies on the DLR to perform dynamic binding.

Contrary to its name, the DLR is not a dynamic version of the CLR. Rather, it’s a
library that sits atop the CLR—just like any other library such as System.Xml.dll.
Its primary role is to provide runtime services to unify dynamic programming—in
both statically and dynamically typed languages. Hence, languages such as C#, Vis‐
ual Basic, IronPython, and IronRuby all use the same protocol for calling functions
dynamically. This allows them to share libraries and call code written in other
languages.

The DLR also makes it relatively easy to write new dynamic languages in .NET.
Instead of having to emit Intermediate Language (IL), dynamic language
authors work at the level of expression trees (the same expression trees in
System.Linq.Expressions that we talked about in Chapter 8).
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The DLR further ensures that all consumers get the benefit of call-site caching,
an optimization whereby the DLR prevents unnecessarily repeating the potentially
expensive member resolution decisions made during dynamic binding.

What Are Call Sites?
When the compiler encounters a dynamic expression, it has no idea who will
evaluate that expression at runtime. For instance, consider the following method:

public dynamic Foo (dynamic x, dynamic y)
{
  return x / y;   // Dynamic expression
}

The x and y variables could be any CLR object, a COM object, or even an object
hosted in a dynamic language. The compiler cannot, therefore, take its usual static
approach of emitting a call to a known method of a known type. Instead, the
compiler emits code that eventually results in an expression tree that describes the
operation, managed by a call site that the DLR will bind at runtime. The call site
essentially acts as an intermediary between caller and callee.

A call site is represented by the CallSite<> class in System.Core.dll. We can see this
by disassembling the preceding method—the result is something like this:

static CallSite<Func<CallSite,object,object,object>> divideSite;

[return: Dynamic]
public object Foo ([Dynamic] object x, [Dynamic] object y)
{
  if (divideSite == null)
    divideSite =
      CallSite<Func<CallSite,object,object,object>>.Create (
        Microsoft.CSharp.RuntimeBinder.Binder.BinaryOperation (
          CSharpBinderFlags.None,
          ExpressionType.Divide,
          /* Remaining arguments omitted for brevity */ ));

  return divideSite.Target (divideSite, x, y);
}

As you can see, the call site is cached in a static field to avoid the cost of re-creating
it on each call. The DLR further caches the result of the binding phase and the
actual method targets. (There can be multiple targets depending on the types of x
and y.)

The actual dynamic call then happens by calling the site’s Target (a delegate),
passing in the x and y operands.

Notice that the Binder class is specific to C#. Every language with support for
dynamic binding provides a language-specific binder to help the DLR interpret
expressions in a manner specific to that language, so as not to surprise the program‐
mer. For instance, if we called Foo with integer values of 5 and 2, the C# binder
would ensure that we got back 2. In contrast, a VB.NET binder would give us 2.5.
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Dynamic Member Overload Resolution
Calling a statically known method with dynamically typed arguments defers mem‐
ber overload resolution from compile time to runtime. This is useful in simplifying
certain programming tasks—such as simplifying the Visitor design pattern. It’s also
useful in working around limitations imposed by C#’s static typing.

Simplifying the Visitor Pattern
In essence, the Visitor pattern allows you to “add” a method to a class hierarchy
without altering existing classes. Although useful, this pattern in its static incarna‐
tion is subtle and unintuitive compared to most other design patterns. It also
requires that visited classes be made “visitor-friendly” by exposing an Accept
method, which can be impossible if the classes are not under your control.

With dynamic binding, you can achieve the same goal more easily—and without
needing to modify existing classes. To illustrate, consider the following class
hierarchy:

class Person
{
  public string FirstName { get; set; }
  public string LastName  { get; set; }

  // The Friends collection may contain Customers & Employees:
  public readonly IList<Person> Friends = new Collection<Person> ();
}

class Customer : Person { public decimal CreditLimit { get; set; } }
class Employee : Person { public decimal Salary      { get; set; } }

Suppose that we want to write a method that programmatically exports a Person’s
details to an XML XElement. The most obvious solution is to write a virtual method
called ToXElement() in the Person class that returns an XElement populated with
a Person’s properties. We would then override it in Customer and Employee classes
such that the XElement was also populated with CreditLimit and Salary. This
pattern can be problematic, however, for two reasons:

• You might not own the Person, Customer, and Employee classes, making it•
impossible to add methods to them. (And extension methods wouldn’t give
polymorphic behavior.)

• The Person, Customer, and Employee classes might already be quite big. A•
frequent antipattern is the “God Object,” in which a class such as Person
attracts so much functionality that it becomes a nightmare to maintain. A
good antidote is to avoid adding functions to Person that don’t need to access
Person’s private state. A ToXElement method might be an excellent candidate.

With dynamic member overload resolution, we can write the ToXElement function‐
ality in a separate class, without resorting to ugly switches based on type:
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class ToXElementPersonVisitor
{
  public XElement DynamicVisit (Person p) => Visit ((dynamic)p);

  XElement Visit (Person p)
  {
    return new XElement ("Person",
      new XAttribute ("Type", p.GetType().Name),
      new XElement ("FirstName", p.FirstName),
      new XElement ("LastName", p.LastName),
      p.Friends.Select (f => DynamicVisit (f))
    );
  }

  XElement Visit (Customer c)   // Specialized logic for customers
  {
    XElement xe = Visit ((Person)c);   // Call "base" method
    xe.Add (new XElement ("CreditLimit", c.CreditLimit));
    return xe;
  }

  XElement Visit (Employee e)   // Specialized logic for employees
  {
    XElement xe = Visit ((Person)e);   // Call "base" method
    xe.Add (new XElement ("Salary", e.Salary));
    return xe;
  }
}

The DynamicVisit method performs a dynamic dispatch—calling the most specific
version of Visit as determined at runtime. Notice the line in boldface, in which we
call DynamicVisit on each person in the Friends collection. This ensures that if a
friend is a Customer or Employee, the correct overload is called.

We can demonstrate this class, as follows:

var cust = new Customer
{
  FirstName = "Joe", LastName = "Bloggs", CreditLimit = 123
};
cust.Friends.Add (
  new Employee { FirstName = "Sue", LastName = "Brown", Salary = 50000 }
);

Console.WriteLine (new ToXElementPersonVisitor().DynamicVisit (cust));

Here’s the result:

<Person Type="Customer">
  <FirstName>Joe</FirstName>
  <LastName>Bloggs</LastName>
  <Person Type="Employee">
    <FirstName>Sue</FirstName>
    <LastName>Brown</LastName>
    <Salary>50000</Salary>
  </Person>

864 | Chapter 19: Dynamic Programming



  <CreditLimit>123</CreditLimit>
</Person>

Variations
If you plan more than one visitor class, a useful variation is to define an abstract
base class for visitors:

abstract class PersonVisitor<T>
{
  public T DynamicVisit (Person p) { return Visit ((dynamic)p); }

  protected abstract T Visit (Person p);
  protected virtual T Visit (Customer c) { return Visit ((Person) c); }
  protected virtual T Visit (Employee e) { return Visit ((Person) e); }
}

Subclasses then don’t need to define their own DynamicVisit method: all they do
is override the versions of Visit whose behavior they want to specialize. This also
has the advantages of centralizing the methods that encompass the Person hierarchy
and allowing implementers to call base methods more naturally:

class ToXElementPersonVisitor : PersonVisitor<XElement>
{
  protected override XElement Visit (Person p)
  {
    return new XElement ("Person",
      new XAttribute ("Type", p.GetType().Name),
      new XElement ("FirstName", p.FirstName),
      new XElement ("LastName", p.LastName),
      p.Friends.Select (f => DynamicVisit (f))
    );
  }

  protected override XElement Visit (Customer c)
  {
    XElement xe = base.Visit (c);
    xe.Add (new XElement ("CreditLimit", c.CreditLimit));
    return xe;
  }

  protected override XElement Visit (Employee e)
  {
    XElement xe = base.Visit (e);
    xe.Add (new XElement ("Salary", e.Salary));
    return xe;
  }
}

You then can even subclass ToXElementPersonVisitor itself.
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Anonymously Calling Members of a Generic Type
The strictness of C#’s static typing is a double-edged sword. On the one hand, it
enforces a degree of correctness at compile time. On the other hand, it occasionally
makes certain kinds of code difficult or impossible to express, at which point you
must resort to reflection. In these situations, dynamic binding is a cleaner and faster
alternative to reflection.

An example is when you need to work with an object of type G<T> where T is
unknown. We can illustrate this by defining the following class:

public class Foo<T> { public T Value; }

Suppose that we then write a method as follows:

static void Write (object obj)
{
  if (obj is Foo<>)                           // Illegal
    Console.WriteLine ((Foo<>) obj).Value);   // Illegal
}

This method won’t compile: you can’t invoke members of unbound generic types.

Dynamic binding offers two means by which we can work around this. The first is
to access the Value member dynamically as follows:

static void Write (dynamic obj)
{
  try { Console.WriteLine (obj.Value); }
  catch (Microsoft.CSharp.RuntimeBinder.RuntimeBinderException) {...}
}

Multiple Dispatch
C# and the CLR have always supported a limited form of dynamism in the form
of virtual method calls. This differs from C#’s dynamic binding in that for virtual
method calls, the compiler must commit to a particular virtual member at compile
time—based on the name and signature of a member you called. This means that:

• The calling expression must be fully understood by the compiler (e.g., it must•
decide at compile time whether a target member is a field or property).

• Overload resolution must be completed entirely by the compiler, based on the•
compile-time argument types.

A consequence of that last point is that the ability to perform virtual method calls is
known as single dispatch. To see why, consider the following method call (in which
Walk is a virtual method):

animal.Walk (owner);

The runtime decision of whether to invoke a dog’s Walk method or a cat’s Walk
method depends only on the type of the receiver, animal (hence, “single”). If many
overloads of Walk accept different kinds of owner, an overload will be selected at
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compile time without regard to the actual runtime type of the owner object. In other
words, only the runtime type of the receiver can vary which method gets called.

In contrast, a dynamic call defers overload resolution until runtime:

animal.Walk ((dynamic) owner);

The final choice of which Walk method to call now depends on the types of both
animal and owner—this is called multiple dispatch because the runtime types of
arguments, in addition to the receiver type, contribute to the determination of
which Walk method to call.

This has the (potential) advantage of working with any object that defines a Value
field or property. However, there are a couple of problems. First, catching an
exception in this manner is somewhat messy and inefficient (and there’s no way
to ask the DLR in advance, “Will this operation succeed?”). Second, this approach
wouldn’t work if Foo were an interface (say, IFoo<T>) and either of the following
conditions were true:

• Value was implemented explicitly•

• The type that implemented IFoo<T> was inaccessible (more on this soon)•

A better solution is to write an overloaded helper method called GetFooValue and
to call it using dynamic member overload resolution:

static void Write (dynamic obj)
{
  object result = GetFooValue (obj);
  if (result != null) Console.WriteLine (result);
}

static T GetFooValue<T> (Foo<T> foo) => foo.Value;
static object GetFooValue (object foo) => null;

Notice that we overloaded GetFooValue to accept an object parameter, which
acts as a fallback for any type. At runtime, the C# dynamic binder will pick the
best overload when calling GetFooValue with a dynamic argument. If the object
in question is not based on Foo<T>, it will choose the object-parameter overload
instead of throwing an exception.

An alternative is to write just the first GetFooValue overload
and then catch the RuntimeBinderException. The advantage
is that it distinguishes the case of foo.Value being null. The
disadvantage is that it incurs the performance overhead of
throwing and catching an exception.

In Chapter 18, we solved the same problem with an interface using reflection—
with a lot more effort (see “Anonymously Calling Members of a Generic Interface”
on page 824). The example we used was to design a more powerful version of
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ToString() that could understand objects such as IEnumerable and IGrouping<,>.
Here’s the same example solved more elegantly using dynamic binding:

static string GetGroupKey<TKey,TElement> (IGrouping<TKey,TElement> group)
  => "Group with key=" + group.Key + ": ";

static string GetGroupKey (object source) => null;

public static string ToStringEx (object value)
{
  if (value == null) return "<null>";
  if (value is string s) return s;
  if (value.GetType().IsPrimitive) return value.ToString();

  StringBuilder sb = new StringBuilder();

  string groupKey = GetGroupKey ((dynamic)value);   // Dynamic dispatch
  if (groupKey != null) sb.Append (groupKey);

  if (value is IEnumerable)
    foreach (object element in ((IEnumerable)value))
      sb.Append (ToStringEx (element) + " ");

  if (sb.Length == 0) sb.Append (value.ToString());

  return "\r\n" + sb.ToString();
}

Here it is in action:

Console.WriteLine (ToStringEx ("xyyzzz".GroupBy (c => c) ));

Group with key=x: x
Group with key=y: y y
Group with key=z: z z z

Notice that we used dynamic member overload resolution to solve this problem. If
we instead did the following:

dynamic d = value;
try { groupKey = d.Value); }
catch (Microsoft.CSharp.RuntimeBinder.RuntimeBinderException) {...}

it would fail because LINQ’s GroupBy operator returns a type implementing IGroup
ing<,>, which itself is internal and therefore inaccessible:

internal class Grouping : IGrouping<TKey,TElement>, ...
{
  public TKey Key;
  ...
}

Even though the Key property is declared public, its containing class caps it at
internal, making it accessible only via the IGrouping<,> interface. And as is
explained in Chapter 4, there’s no way to instruct the DLR to bind to that interface
when invoking the Value member dynamically.
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Implementing Dynamic Objects
An object can provide its binding semantics by implementing IDynamicMetaObject
Provider—or more easily by subclassing DynamicObject, which provides a default
implementation of this interface. This is demonstrated briefly in Chapter 4 via the
following example:

dynamic d = new Duck();
d.Quack();                  // Quack method was called
d.Waddle();                 // Waddle method was called

public class Duck : DynamicObject
{
  public override bool TryInvokeMember (
    InvokeMemberBinder binder, object[] args, out object result)
  {
    Console.WriteLine (binder.Name + " method was called");
    result = null;
    return true;
  }
}

DynamicObject
In the preceding example, we overrode TryInvokeMember, which allows the con‐
sumer to invoke a method on the dynamic object—such as a Quack or Waddle.
DynamicObject exposes other virtual methods that enable consumers to use other
programming constructs as well. The following correspond to constructs that have
representations in C#:

Method Programming construct

TryInvokeMember Method

TryGetMember, TrySetMember Property or field

TryGetIndex, TrySetIndex Indexer

TryUnaryOperation Unary operator such as !

TryBinaryOperation Binary operator such as ==

TryConvert Conversion (cast) to another type

TryInvoke Invocation on the object itself—e.g., d("foo")

These methods should return true if successful. If they return false, the DLR will
fall back to the language binder, looking for a matching member on the Dynamic
Object (subclass) itself. If this fails, a RuntimeBinderException is thrown.
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We can illustrate TryGetMember and TrySetMember with a class that lets us dynami‐
cally access an attribute in an XElement (System.Xml.Linq):

static class XExtensions
{
  public static dynamic DynamicAttributes (this XElement e)
    => new XWrapper (e);
  
  class XWrapper : DynamicObject
  {
    XElement _element;
    public XWrapper (XElement e) { _element = e; }

    public override bool TryGetMember (GetMemberBinder binder,
                                       out object result)
    {
      result = _element.Attribute (binder.Name).Value;
      return true;
    }

    public override bool TrySetMember (SetMemberBinder binder,
                                       object value)
    {
      _element.SetAttributeValue (binder.Name, value);
      return true;
    }
  }
}

Here’s how to use it:

XElement x = XElement.Parse (@"<Label Text=""Hello"" Id=""5""/>");
dynamic da = x.DynamicAttributes();
Console.WriteLine (da.Id);           // 5
da.Text = "Foo";
Console.WriteLine (x.ToString());    // <Label Text="Foo" Id="5" />

The following does a similar thing for System.Data.IDataRecord, making it easier
to use data readers:

public class DynamicReader : DynamicObject
{
  readonly IDataRecord _dataRecord;
  public DynamicReader (IDataRecord dr) { _dataRecord = dr; }

  public override bool TryGetMember (GetMemberBinder binder,
                                     out object result)
  {
    result = _dataRecord [binder.Name];
    return true;
  }
}
...
using (IDataReader reader = someDbCommand.ExecuteReader())
{
  dynamic dr = new DynamicReader (reader);
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  while (reader.Read())
  {
    int id = dr.ID;
    string firstName = dr.FirstName;
    DateTime dob = dr.DateOfBirth;
    ...
  }
}

The following demonstrates TryBinaryOperation and TryInvoke:

dynamic d = new Duck();
Console.WriteLine (d + d);          // foo
Console.WriteLine (d (78, 'x'));    // 123

public class Duck : DynamicObject
{
  public override bool TryBinaryOperation (BinaryOperationBinder binder,
                                           object arg, out object result)
  {
    Console.WriteLine (binder.Operation);   // Add
    result = "foo";
    return true;
  }

  public override bool TryInvoke (InvokeBinder binder,
                                  object[] args, out object result)
  {
    Console.WriteLine (args[0]);    // 78
    result = 123;
    return true;
  }
}

DynamicObject also exposes some virtual methods for the benefit of dynamic lan‐
guages. In particular, overriding GetDynamicMemberNames allows you to return a list
of all member names that your dynamic object provides.

Another reason to implement GetDynamicMemberNames is that
Visual Studio’s debugger makes use of this method to display a
view of a dynamic object.

ExpandoObject
Another simple application of DynamicObject would be to write a dynamic class
that stored and retrieved objects in a dictionary, keyed by string. However, this
functionality is already provided via the ExpandoObject class:

dynamic x = new ExpandoObject();
x.FavoriteColor = ConsoleColor.Green;
x.FavoriteNumber = 7;
Console.WriteLine (x.FavoriteColor);    // Green
Console.WriteLine (x.FavoriteNumber);   // 7
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ExpandoObject implements IDictionary<string,object>—so we can continue
our example and do this:

var dict = (IDictionary<string,object>) x;
Console.WriteLine (dict ["FavoriteColor"]);    // Green
Console.WriteLine (dict ["FavoriteNumber"]);   // 7
Console.WriteLine (dict.Count);                // 2

Interoperating with Dynamic Languages
Although C# supports dynamic binding via the dynamic keyword, it doesn’t go as
far as allowing you to execute an expression described in a string at runtime:

string expr = "2 * 3";
// We can’t "execute" expr

This is because the code to translate a string into an expression tree requires a
lexical and semantic parser. These features are built into the C# compiler and are
not available as a runtime service. At runtime, C# merely provides a binder, which
instructs the DLR how to interpret an already-built expression tree.

True dynamic languages such as IronPython and IronRuby do allow you to execute
an arbitrary string, and this is useful in tasks such as scripting, writing dynamic
configuration systems, and implementing dynamic rules engines. So, although you
can write most of your application in C#, it can be useful to call out to a dynamic
language for such tasks. In addition, you might want to use an API that is written in
a dynamic language where no equivalent functionality is available in a .NET library.

The Roslyn scripting NuGet package Microsoft.CodeAnaly‐
sis.CSharp.Scripting provides an API that lets you execute a
C# string, although it does so by first compiling your code
into a program. The compilation overhead makes it slower
than Python interop, unless you intend to execute the same
expression repeatedly.

In the following example, we use IronPython to evaluate an expression created at
runtime from within C#. You could use the following script to write a calculator.

To run this code, add the NuGet packages DynamicLangua‐
geRuntime (not to be confused with the System.Dynamic.Run‐
time package) and IronPython to your application.

using System;
using IronPython.Hosting;
using Microsoft.Scripting;
using Microsoft.Scripting.Hosting;

int result = (int) Calculate ("2 * 3");
Console.WriteLine (result);              // 6

object Calculate (string expression)
{
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  ScriptEngine engine = Python.CreateEngine();
  return engine.Execute (expression);
}

Because we’re passing a string into Python, the expression will be evaluated accord‐
ing to Python’s rules and not C#’s. It also means that we can use Python’s language
features, such as lists:

var list = (IEnumerable) Calculate ("[1, 2, 3] + [4, 5]");
foreach (int n in list) Console.Write (n);  // 12345

Passing State Between C# and a Script
To pass variables from C# to Python, a few more steps are required. The following
example illustrates those steps and could be the basis of a rules engine:

// The following string could come from a file or database:
string auditRule = "taxPaidLastYear / taxPaidThisYear > 2";

ScriptEngine engine = Python.CreateEngine ();    

ScriptScope scope = engine.CreateScope ();       
scope.SetVariable ("taxPaidLastYear", 20000m);
scope.SetVariable ("taxPaidThisYear", 8000m);

ScriptSource source = engine.CreateScriptSourceFromString (
                      auditRule, SourceCodeKind.Expression);

bool auditRequired = (bool) source.Execute (scope);
Console.WriteLine (auditRequired);   // True

You can also get variables back by calling GetVariable:

string code = "result = input * 3";

ScriptEngine engine = Python.CreateEngine();

ScriptScope scope = engine.CreateScope();
scope.SetVariable ("input", 2);

ScriptSource source = engine.CreateScriptSourceFromString (code,
                                  SourceCodeKind.SingleStatement);
source.Execute (scope);
Console.WriteLine (scope.GetVariable ("result"));   // 6

Notice that we specified SourceCodeKind.SingleStatement in the second example
(rather than Expression) to inform the engine that we want to execute a statement.

Types are automatically marshaled between the .NET and Python worlds. You can
even access members of .NET objects from the scripting side:

string code = @"sb.Append (""World"")";

ScriptEngine engine = Python.CreateEngine ();

ScriptScope scope = engine.CreateScope ();
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var sb = new StringBuilder ("Hello");
scope.SetVariable ("sb", sb);

ScriptSource source = engine.CreateScriptSourceFromString (
                      code, SourceCodeKind.SingleStatement);
source.Execute (scope);
Console.WriteLine (sb.ToString());   // HelloWorld
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20
Cryptography

In this chapter, we discuss the major cryptography APIs in .NET:

• Windows Data Protection API (DPAPI)•
• Hashing•
• Symmetric encryption•
• Public key encryption and signing•

The types covered in this chapter are defined in the following namespaces:

System.Security;
System.Security.Cryptography;

Overview
Table 20-1 summarizes the cryptography options in .NET. In the remaining sec‐
tions, we explore each of these.

Table 20-1. Encryption and hashing options in .NET

Option Keys to
manage

Speed Strength Notes

File.Encrypt 0 Fast Depends on
user’s
password

Protects files transparently with filesystem
support. A key is derived implicitly from the
logged-in user’s credentials. Windows only.

Windows Data
Protection

0 Fast Depends on
user’s
password

Encrypts and decrypts byte arrays using an
implicitly derived key.

Hashing 0 Fast High One-way (irreversible) transformation. Used for
storing passwords, comparing files, and checking
for data corruption.
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Option Keys to
manage

Speed Strength Notes

Symmetric
Encryption

1 Fast High For general-purpose encryption/decryption. The
same key encrypts and decrypts. Can be used to
secure messages in transit.

Public Key Encryption 2 Slow High Encryption and decryption use different keys.
Used for exchanging a symmetric key in message
transmission and for digitally signing files.

.NET also provides more specialized support for creating and validating XML-based
signatures in System.Security.Cryptography.Xml and types for working with dig‐
ital certificates in System.Security.Cryptography.X509Certificates.

Windows Data Protection
Windows Data Protection is available on Windows only, and
throws a PlatformNotSupportedException on other operat‐
ing systems.

In the section “File and Directory Operations” on page 723, we described how you
could use File.Encrypt to request that the operating system transparently encrypt
a file:

File.WriteAllText ("myfile.txt", "");
File.Encrypt ("myfile.txt");
File.AppendAllText ("myfile.txt", "sensitive data");

The encryption in this case uses a key derived from the logged-in user’s pass‐
word. You can use this same implicitly derived key to encrypt a byte array with
the Windows Data Protection API (DPAPI). The DPAPI is exposed through the
ProtectedData class—a simple type with two static methods:

public static byte[] Protect
  (byte[] userData, byte[] optionalEntropy, DataProtectionScope scope);

public static byte[] Unprotect
  (byte[] encryptedData, byte[] optionalEntropy, DataProtectionScope scope);

Whatever you include in optionalEntropy is added to the key, thereby increasing
its security. The DataProtectionScope enum argument allows two options: Current
User or LocalMachine. With CurrentUser, a key is derived from the logged-in
user’s credentials; with LocalMachine, a machine-wide key is used, common to all
users. This means that with the CurrentUser scope, data encrypted by one user
cannot be decrypted by another. A LocalMachine key provides less protection but
works under a Windows Service or a program needing to operate under a variety of
accounts.

876 | Chapter 20: Cryptography



Here’s a simple encryption and decryption demonstration:

byte[] original = {1, 2, 3, 4, 5};
DataProtectionScope scope = DataProtectionScope.CurrentUser;

byte[] encrypted = ProtectedData.Protect (original, null, scope);
byte[] decrypted = ProtectedData.Unprotect (encrypted, null, scope);
// decrypted is now {1, 2, 3, 4, 5}

Windows Data Protection provides moderate security against an attacker with full
access to the computer, depending on the strength of the user’s password. With
LocalMachine scope, it’s effective only against those with restricted physical and
electronic access.

Hashing
A hashing algorithm distills a potentially large number of bytes into a small fixed-
length hashcode. Hashing algorithms are designed such that a single-bit change
anywhere in the source data results in a significantly different hashcode. This makes
it suitable for comparing files or detecting accidental (or malicious) corruption to a
file or data stream.

Hashing also acts as one-way encryption, because it’s difficult to impossible to
convert a hashcode back into the original data. This makes it ideal for storing
passwords in a database, because should your database become compromised, you
don’t want the attacker to gain access to plain-text passwords. To authenticate, you
simply hash what the user types in and compare it to the hash that’s stored in the
database.

To hash, you call ComputeHash on one of the HashAlgorithm subclasses, such as
SHA1 or SHA256:

byte[] hash;
using (Stream fs = File.OpenRead ("checkme.doc"))
  hash = SHA1.Create().ComputeHash (fs);   // SHA1 hash is 20 bytes long

The ComputeHash method also accepts a byte array, which is convenient for hashing
passwords (we describe a more secure technique in “Hashing Passwords” on page
878):

byte[] data = System.Text.Encoding.UTF8.GetBytes ("stRhong%pword");
byte[] hash = SHA256.Create().ComputeHash (data);

The GetBytes method on an Encoding object converts a
string to a byte array; the GetString method converts
it back. An Encoding object cannot, however, convert an
encrypted or hashed byte array to a string, because scram‐
bled data usually violates text encoding rules. Instead, use
Convert.ToBase64String and Convert.FromBase64String:
these convert between any byte array and a legal (and XML-
or JSON-friendly) string.

Hashing | 877

C
ryp

to
g

rap
hy



Hash Algorithms in .NET
SHA1 and SHA256 are two of the HashAlgorithm subtypes provided by .NET. Here
are the major algorithms, in ascending order of security:

Class Algorithm Hash length in bytes Strength

MD5 MD5 16 Very poor

SHA1 SHA-1 20 Poor

SHA256 SHA-2 32 Good

SHA384 SHA-2 48 Good

SHA512 SHA-2 64 Good

All five algorithms execute at roughly similar speeds in their current implementa‐
tions, with the exception of SHA256, which is 2-3 times faster (this may vary with
hardware and operating system). To give a ballpark figure, you can expect at least
500 MB per second on a 2024-era desktop or server with all algorithms. The longer
hashes decrease the possibility of collision (two distinct files yielding the same hash).

Use at least SHA256 when hashing passwords or other security-
sensitive data. MD5 and SHA1 are considered insecure for this
purpose and are suitable to protect only against accidental
corruption, not deliberate tampering.

.NET 8 and above also support the latest SHA-3 hashing note
via the SHA3_256, SHA3_384, and SHA3_512 classes. The SHA-3
algorithms are considered even more secure (and slower) than
the previously listed algorithms, but require Windows Build
25324+ or Linux with OpenSSL 1.1.1+. You can test whether
OS support is available via the static IsSupported property on
these classes.

Hashing Passwords
The longer SHA algorithms are suitable as a basis for password hashing, if you
enforce a strong password policy to mitigate a dictionary attack—a strategy whereby
an attacker builds a password lookup table by hashing every word in a dictionary.

A standard technique, when hashing passwords, is to incorporate “salt”—a long
series of bytes that you initially obtain via a random number generator and then
combine with each password before hashing. This frustrates hackers in two ways:

• They must also know the salt bytes.•
• They cannot use rainbow tables (publicly available precomputed databases of•

passwords and their hashcodes), although a dictionary attack might still be
possible with sufficient computing power.
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You can further strengthen security by “stretching” your password hashes—repeat‐
edly rehashing to obtain more computationally intensive byte sequences. If you
rehash 100 times, a dictionary attack that might otherwise take one month would
take eight years. The KeyDerivation, Rfc2898DeriveBytes, and PasswordDerive
Bytes classes perform exactly this kind of stretching while also allowing for conve‐
nient salting. Of these, KeyDerivation.Pbkdf2 offers the best hashing:

byte[] encrypted = KeyDerivation.Pbkdf2 (
    password: "stRhong%pword",
    salt: Encoding.UTF8.GetBytes ("j78Y#p)/saREN!y3@"),
    prf: KeyDerivationPrf.HMACSHA512,
    iterationCount: 100,
    numBytesRequested: 64);

KeyDerivation.Pbkdf2 requires the NuGet package Micro
soft.AspNetCore.Cryptography.KeyDerivation. Though it’s
in the ASP.NET Core namespace, any .NET application can
use it.

Symmetric Encryption
Symmetric encryption uses the same key for encryption as for decryption.
The .NET BCL provides four symmetric algorithms, of which Rijndael (pronounced
“Rhine Dahl” or “Rain Doll”) is the premium; the other algorithms are intended
mainly for compatibility with older applications. Rijndael is both fast and secure
and has two implementations:

• The Rijndael class•

• The Aes class•

The two are almost identical, except that Aes does not let you weaken the cipher by
changing the block size. Aes is recommended by the CLR’s security team.

Rijndael and Aes allow symmetric keys of length 16, 24, or 32 bytes: all are cur‐
rently considered secure. Here’s how to encrypt a series of bytes as they’re written to
a file, using a 16-byte key:

byte[] key = {145,12,32,245,98,132,98,214,6,77,131,44,221,3,9,50};
byte[] iv  = {15,122,132,5,93,198,44,31,9,39,241,49,250,188,80,7};

byte[] data = { 1, 2, 3, 4, 5 };   // This is what we're encrypting.

using (SymmetricAlgorithm algorithm = Aes.Create())
using (ICryptoTransform encryptor = algorithm.CreateEncryptor (key, iv))
using (Stream f = File.Create ("encrypted.bin"))
using (Stream c = new CryptoStream (f, encryptor, CryptoStreamMode.Write))
  c.Write (data, 0, data.Length);
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The following code decrypts the file:

byte[] key = {145,12,32,245,98,132,98,214,6,77,131,44,221,3,9,50};
byte[] iv  = {15,122,132,5,93,198,44,31,9,39,241,49,250,188,80,7};

byte[] decrypted = new byte[5];

using (SymmetricAlgorithm algorithm = Aes.Create())
using (ICryptoTransform decryptor = algorithm.CreateDecryptor (key, iv))
using (Stream f = File.OpenRead ("encrypted.bin"))
using (Stream c = new CryptoStream (f, decryptor, CryptoStreamMode.Read))
  for (int b; (b = c.ReadByte()) > -1;)
    Console.Write (b + " ");                            // 1 2 3 4 5

In this example, we made up a key of 16 randomly chosen bytes. If the wrong key
was used in decryption, CryptoStream would throw a CryptographicException.
Catching this exception is the only way to test whether a key is correct.

As well as a key, we made up an IV, or Initialization Vector. This 16-byte sequence
forms part of the cipher—much like the key—but is not considered secret. If you’re
transmitting an encrypted message, you would send the IV in plain text (perhaps in
a message header) and then change it with every message. This would render each
encrypted message unrecognizable from any previous one—even if their unencryp‐
ted versions were similar or identical.

If you don’t need—or want—the protection of an IV, you can
defeat it by using the same 16-byte value for both the key and
the IV. Sending multiple messages with the same IV, though,
weakens the cipher and might even make it possible to crack.

The cryptography work is divided among the classes. Aes is the mathematician; it
applies the cipher algorithm, along with its encryptor and decryptor transforms.
CryptoStream is the plumber; it takes care of stream plumbing. You can replace Aes
with a different symmetric algorithm yet still use CryptoStream.

CryptoStream is bidirectional, meaning you can read or write to the stream depend‐
ing on whether you choose CryptoStreamMode.Read or CryptoStreamMode.Write.
Both encryptors and decryptors are read and write savvy, yielding four combina‐
tions—the choice can have you staring at a blank screen for a while! It can be
helpful to model reading as “pulling” and writing as “pushing.” If in doubt, start
with Write for encryption and Read for decryption; this is often the most natural.

To generate a random key or IV, use RandomNumberGenerator in System.Cryptog
raphy. The numbers it produces are genuinely unpredictable, or cryptographically
strong (the System.Random class does not offer the same guarantee). Here’s an
example:

byte[] key = new byte [16];
byte[] iv  = new byte [16];
RandomNumberGenerator rand = RandomNumberGenerator.Create();
rand.GetBytes (key);
rand.GetBytes (iv);
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Or, from .NET 6:

byte[] key = RandomNumberGenerator.GetBytes (16);
byte[] iv = RandomNumberGenerator.GetBytes (16);

If you don’t specify a key and IV, cryptographically strong random values are
generated automatically. You can query these through the Aes object’s Key and IV
properties.

Encrypting in Memory
From .NET 6, you can utilize the EncryptCbc and DecryptCbc methods to shortcut
the process of encrypting and decrypting byte arrays:

public static byte[] Encrypt (byte[] data, byte[] key, byte[] iv)
{
  using Aes algorithm = Aes.Create();
  algorithm.Key = key;
  return algorithm.EncryptCbc (data, iv);
}

public static byte[] Decrypt (byte[] data, byte[] key, byte[] iv)
{
  using Aes algorithm = Aes.Create();
  algorithm.Key = key;
  return algorithm.DecryptCbc (data, iv);
}

Here’s an equivalent that works in all.NET versions:

public static byte[] Encrypt (byte[] data, byte[] key, byte[] iv)
{
  using (Aes algorithm = Aes.Create())
  using (ICryptoTransform encryptor = algorithm.CreateEncryptor (key, iv))
    return Crypt (data, encryptor);
}

public static byte[] Decrypt (byte[] data, byte[] key, byte[] iv)
{
  using (Aes algorithm = Aes.Create())
  using (ICryptoTransform decryptor = algorithm.CreateDecryptor (key, iv))
    return Crypt (data, decryptor);
}

static byte[] Crypt (byte[] data, ICryptoTransform cryptor)
{
  MemoryStream m = new MemoryStream();
  using (Stream c = new CryptoStream (m, cryptor, CryptoStreamMode.Write))
    c.Write (data, 0, data.Length);
  return m.ToArray();
}

Here, CryptoStreamMode.Write works best for both encryption and decryption,
since in both cases we’re “pushing” into a fresh memory stream.
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Here are overloads that accept and return strings:

public static string Encrypt (string data, byte[] key, byte[] iv)
{
  return Convert.ToBase64String (
    Encrypt (Encoding.UTF8.GetBytes (data), key, iv));
}

public static string Decrypt (string data, byte[] key, byte[] iv)
{
  return Encoding.UTF8.GetString (
    Decrypt (Convert.FromBase64String (data), key, iv));
}

The following demonstrates their use:

byte[] key = new byte[16];
byte[] iv = new byte[16];

var cryptoRng = RandomNumberGenerator.Create();
cryptoRng.GetBytes (key);
cryptoRng.GetBytes (iv);

string encrypted = Encrypt ("Yeah!", key, iv);
Console.WriteLine (encrypted);                 // R1/5gYvcxyR2vzPjnT7yaQ==

string decrypted = Decrypt (encrypted, key, iv);
Console.WriteLine (decrypted);                 // Yeah!

Chaining Encryption Streams
CryptoStream is a decorator, meaning that you can chain it with other streams. In
the following example, we write compressed encrypted text to a file and then read it
back:

byte[] key = new byte [16];
byte[] iv = new byte [16];

var cryptoRng = RandomNumberGenerator.Create();
cryptoRng.GetBytes (key);
cryptoRng.GetBytes (iv);

using (Aes algorithm = Aes.Create())
{
  using (ICryptoTransform encryptor = algorithm.CreateEncryptor(key, iv))
  using (Stream f = File.Create ("serious.bin"))
  using (Stream c = new CryptoStream (f, encryptor, CryptoStreamMode.Write))
  using (Stream d = new DeflateStream (c, CompressionMode.Compress))
  using (StreamWriter w = new StreamWriter (d))
    await w.WriteLineAsync ("Small and secure!");

  using (ICryptoTransform decryptor = algorithm.CreateDecryptor(key, iv))
  using (Stream f = File.OpenRead ("serious.bin"))
  using (Stream c = new CryptoStream (f, decryptor, CryptoStreamMode.Read))
  using (Stream d = new DeflateStream (c, CompressionMode.Decompress))
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  using (StreamReader r = new StreamReader (d))
    Console.WriteLine (await r.ReadLineAsync());     // Small and secure!
}

(As a final touch, we make our program asynchronous by calling WriteLineAsync
and ReadLineAsync and awaiting the result.)

In this example, all one-letter variables form part of a chain. The mathematicians—
algorithm, encryptor, and decryptor—are there to assist CryptoStream in the
cipher work, as illustrated in Figure 20-1.

Chaining streams in this manner demands little memory, regardless of the ultimate
stream sizes.

Figure 20-1. Chaining encryption and compression streams

Disposing Encryption Objects
Disposing a CryptoStream ensures that its internal cache of data is flushed to the
underlying stream. Internal caching is necessary for encryption algorithms because
they process data in blocks, rather than one byte at a time.

CryptoStream is unusual in that its Flush method does nothing. To flush a stream
(without disposing it) you must call FlushFinalBlock. In contrast to Flush, you can
call FlushFinalBlock only once, and then no further data can be written.

We also disposed the mathematicians—the Aes algorithm and ICryptoTransform
objects (encryptor and decryptor). When the Rijndael transforms are disposed,
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they wipe the symmetric key and related data from memory, preventing subsequent
discovery by other software running on the computer (we’re talking malware). You
can’t rely on the garbage collector for this job, because it merely flags sections of
memory as available; it doesn’t write zeros over every byte.

The easiest way to dispose an Aes object outside of a using statement is to call
Clear. Its Dispose method is hidden via explicit implementation (to signal its
unusual disposal semantics, whereby it clears memory rather than releasing unman‐
aged resources).

You can further reduce your application’s vulnerability to leak‐
ing secrets via released memory by doing the following:

• Avoiding strings for security information (being immut‐•
able, a string’s value can never be cleared once created)

• Overwriting buffers as soon as they’re no longer needed•
(for instance, by calling Array.Clear on a byte array)

Key Management
Key management is a critical element of security: if your keys are exposed, so is
your data. You need to consider who should have access to keys and how to back
them up in case of hardware failure while storing them in a manner that prevents
unauthorized access.

It is inadvisable to hardcode encryption keys because popular tools exist to decom‐
pile assemblies with little expertise required. A better option (on Windows) is to
manufacture a random key for each installation, storing it securely with Windows
Data Protection.

For applications deployed to the cloud, Microsoft Azure and Amazon Web Services
(AWS) offer key-management systems with additional features that can be useful
in an enterprise environment, such as audit trails. If you’re encrypting a message
stream, public-key encryption still provides the best option.

Public-Key Encryption and Signing
Public-key cryptography is asymmetric, meaning that encryption and decryption
use different keys.

Unlike symmetric encryption, for which any arbitrary series of bytes of appropriate
length can serve as a key, asymmetric cryptography requires specially crafted key
pairs. A key pair contains a public key and private key component that work together
as follows:

• The public key encrypts messages.•
• The private key decrypts messages.•
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The party “crafting” a key pair keeps the private key secret while distributing the
public key freely. A special feature of this type of cryptography is that you cannot
calculate a private key from a public key. So, if the private key is lost, encrypted data
cannot be recovered; conversely, if a private key is leaked, the encryption system
becomes useless.

A public key handshake allows two computers to communicate securely over a
public network, with no prior contact and no existing shared secret. To see how
this works, suppose that computer Origin wants to send a confidential message to
computer Target:

1. Target generates a public/private key pair and then sends its public key to1.
Origin.

2. Origin encrypts the confidential message using Target’s public key and then2.
sends it to Target.

3. Target decrypts the confidential message using its private key.3.

An eavesdropper will see the following:

• Target’s public key•
• The secret message, encrypted with Target’s public key•

But without Target’s private key, the message cannot be decrypted.

This doesn’t prevent against a man-in-the-middle attack: in
other words, Origin cannot know that Target isn’t some mali‐
cious party. To authenticate the recipient, the originator needs
to already know the recipient’s public key or be able to validate
its key through a digital site certificate.

Because public key encryption is relatively slow and its message size limited, the
secret message sent from Origin to Target typically contains a fresh key for subse‐
quent symmetric encryption. This allows public key encryption to be abandoned for
the remainder of the session, in favor of a symmetric algorithm capable of handling
larger messages. This protocol is particularly secure if a fresh public/private key
pair is generated for each session because no keys then need to be stored on either
computer.

The public key encryption algorithms rely on the message
being smaller than the key. This makes them suitable for
encrypting only small amounts of data, such as a key for sub‐
sequent symmetric encryption. If you try to encrypt a message
much larger than half the key size, the provider will throw an
exception.
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The RSA Class
.NET provides a number of asymmetric algorithms, of which RSA is the most
popular. Here’s how to encrypt and decrypt with RSA:

byte[] data = { 1, 2, 3, 4, 5 };   // This is what we're encrypting.

using (var rsa = new RSACryptoServiceProvider())
{
  byte[] encrypted = rsa.Encrypt (data, true);
  byte[] decrypted = rsa.Decrypt (encrypted, true);
}

Because we didn’t specify a public or private key, the cryptographic provider auto‐
matically generated a key pair, using the default length of 1,024 bits; you can
request longer keys in increments of eight bytes, through the constructor. For
security-critical applications, it’s prudent to request 2,048 bits:

var rsa = new RSACryptoServiceProvider (2048);

Generating a key pair is computationally intensive—taking perhaps 10 ms. For this
reason, the RSA implementation delays this until a key is actually needed, such as
when calling Encrypt. This gives you the chance to load in an existing key—or key
pair, should it exist.

The methods ImportCspBlob and ExportCspBlob load and save keys in byte array
format. FromXmlString and ToXmlString do the same job in a string format, the
string containing an XML fragment. A bool flag lets you indicate whether to include
the private key when saving. Here’s how to manufacture a key pair and save it to
disk:

using (var rsa = new RSACryptoServiceProvider())
{
  File.WriteAllText ("PublicKeyOnly.xml", rsa.ToXmlString (false));
  File.WriteAllText ("PublicPrivate.xml", rsa.ToXmlString (true));
}

Because we didn’t provide existing keys, ToXmlString forced the manufacture of a
fresh key pair (on the first call). In the next example, we read back these keys and
use them to encrypt and decrypt a message:

byte[] data = Encoding.UTF8.GetBytes ("Message to encrypt");

string publicKeyOnly = File.ReadAllText ("PublicKeyOnly.xml");
string publicPrivate = File.ReadAllText ("PublicPrivate.xml");

byte[] encrypted, decrypted;

using (var rsaPublicOnly = new RSACryptoServiceProvider())
{
  rsaPublicOnly.FromXmlString (publicKeyOnly);
  encrypted = rsaPublicOnly.Encrypt (data, true);
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  // The next line would throw an exception because you need the private
  // key in order to decrypt:
  // decrypted = rsaPublicOnly.Decrypt (encrypted, true);
}

using (var rsaPublicPrivate = new RSACryptoServiceProvider())
{
  // With the private key we can successfully decrypt:
  rsaPublicPrivate.FromXmlString (publicPrivate);
  decrypted = rsaPublicPrivate.Decrypt (encrypted, true);
}

Digital Signing
You also can use public key algorithms to digitally sign messages or documents.
A signature is like a hash, except that its production requires a private key and so
cannot be forged. The public key is used to verify the signature. Here’s an example:

byte[] data = Encoding.UTF8.GetBytes ("Message to sign");
byte[] publicKey;
byte[] signature;
object hasher = SHA1.Create();         // Our chosen hashing algorithm.

// Generate a new key pair, then sign the data with it:
using (var publicPrivate = new RSACryptoServiceProvider())
{
  signature = publicPrivate.SignData (data, hasher);
  publicKey = publicPrivate.ExportCspBlob (false);    // get public key
}

// Create a fresh RSA using just the public key, then test the signature.
using (var publicOnly = new RSACryptoServiceProvider())
{
  publicOnly.ImportCspBlob (publicKey);
  Console.Write (publicOnly.VerifyData (data, hasher, signature)); // True

  // Let's now tamper with the data and recheck the signature:
  data[0] = 0;
  Console.Write (publicOnly.VerifyData (data, hasher, signature)); // False

  // The following throws an exception as we're lacking a private key:
  signature = publicOnly.SignData (data, hasher);
}

Signing works by first hashing the data and then applying the asymmetric algorithm
to the resultant hash. Because hashes are of a small fixed size, large documents can
be signed relatively quickly (public key encryption is much more CPU-intensive
than hashing). If you want, you can do the hashing yourself and then call SignHash
instead of SignData:

using (var rsa = new RSACryptoServiceProvider())
{
  byte[] hash = SHA1.Create().ComputeHash (data);
  signature = rsa.SignHash (hash, CryptoConfig.MapNameToOID ("SHA1"));
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  ...
}

SignHash still needs to know what hash algorithm you used; CryptoConfig.Map
NameToOID provides this information in the correct format from a friendly name
such as “SHA1”.

RSACryptoServiceProvider produces signatures whose size matches that of the
key. Currently, no mainstream algorithm produces secure signatures significantly
smaller than 128 bytes (suitable for product activation codes, for instance).

For signing to be effective, the recipient must know, and
trust, the sender’s public key. This can happen via prior com‐
munication, preconfiguration, or a site certificate. A site cer‐
tificate is an electronic record of the originator’s public key
and name—itself signed by an independent trusted authority.
The namespace System.Security.Cryptography.X509Certif
icates defines the types for working with certificates.

888 | Chapter 20: Cryptography



21
Advanced Threading

We started Chapter 14 with the basics of threading as a precursor to tasks and asyn‐
chrony. Specifically, we showed how to start and configure a thread, and covered
essential concepts such as thread pooling, blocking, spinning, and synchronization
contexts. We also introduced locking and thread safety, and demonstrated the
simplest signaling construct, ManualResetEvent.

This chapter picks up where Chapter 14 left off on the topic of threading. In the first
three sections, we flesh out synchronization, locking, and thread safety in greater
detail. We then cover:

• Nonexclusive locking (Semaphore and reader/writer locks)•

• All signaling constructs (AutoResetEvent, ManualResetEvent, Countdown•
Event, and Barrier)

• Lazy initialization (Lazy<T> and LazyInitializer)•

• Thread-local storage (ThreadStaticAttribute, ThreadLocal<T>, and GetData/•
SetData)

• Timers•

Threading is such a vast topic that we’ve put additional material online to complete
the picture. Visit http://albahari.com/threading for a discussion on the following,
more arcane, topics:

• Monitor.Wait and Monitor.Pulse for specialized signaling scenarios•
• Nonblocking synchronization techniques for micro-optimization•

(Interlocked, memory barriers, volatile)

• SpinLock and SpinWait for high-concurrency scenarios•
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Synchronization Overview
Synchronization is the act of coordinating concurrent actions for a predictable
outcome. Synchronization is particularly important when multiple threads access
the same data; it’s surprisingly easy to run aground in this area.

The simplest and most useful synchronization tools are arguably the continuations
and task combinators described in Chapter 14. By formulating concurrent programs
into asynchronous operations strung together with continuations and combinators,
you lessen the need for locking and signaling. However, there are still times when
the lower-level constructs come into play.

The synchronization constructs can be divided into three categories:

Exclusive locking
Exclusive locking constructs allow just one thread to perform some activity or
execute a section of code at a time. Their primary purpose is to let threads
access shared writing state without interfering with one another. The exclusive
locking constructs are lock, Mutex, and SpinLock.

Nonexclusive locking
Nonexclusive locking lets you limit concurrency. The nonexclusive locking
constructs are Semaphore(Slim) and ReaderWriterLock(Slim).

Signaling
These allow a thread to block until receiving one or more notifications from
other thread(s). The signaling constructs include ManualResetEvent(Slim),
AutoResetEvent, CountdownEvent, and Barrier. The former three are referred
to as event wait handles.

It’s also possible (and tricky) to perform certain concurrent operations on shared
state without locking through the use of nonblocking synchronization constructs.
These are Thread.MemoryBarrier, Thread.VolatileRead, Thread.VolatileWrite,
the volatile keyword, and the Interlocked class. We cover this topic online, along
with Monitor’s Wait/Pulse methods, which you can use to write custom signaling
logic.

Exclusive Locking
There are three exclusive locking constructs: the lock statement, Mutex, and
SpinLock. The lock construct is the most convenient and widely used, whereas
the other two target niche scenarios:

• Mutex lets you span multiple processes (computer-wide locks).•

• SpinLock implements a micro-optimization that can lessen context switches in•
high-concurrency scenarios (see http://albahari.com/threading).
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1 Nuances in the behavior of Windows and the CLR mean that the fairness of the queue can
sometimes be violated.

The lock Statement
To illustrate the need for locking, consider the following class:

class ThreadUnsafe
{
  static int _val1 = 1, _val2 = 1;

  static void Go()
  {
    if (_val2 != 0) Console.WriteLine (_val1 / _val2);
    _val2 = 0;
  }
}

This class is not thread-safe: if Go were called by two threads simultaneously, it
would be possible to get a division-by-zero error because _val2 could be set to zero
in one thread right as the other thread was in between executing the if statement
and Console.WriteLine. Here’s how lock fixes the problem:

class ThreadSafe
{
  static readonly object _locker = new object();
  static int _val1 = 1, _val2 = 1;

  static void Go()
  {
    lock (_locker)
    {
      if (_val2 != 0) Console.WriteLine (_val1 / _val2);
      _val2 = 0;
    }
  }
}

Only one thread can lock the synchronizing object (in this case, _locker) at a time,
and any contending threads are blocked until the lock is released. If more than one
thread contends the lock, they are queued on a “ready queue” and granted the lock
on a first-come, first-served basis.1 Exclusive locks are sometimes said to enforce
serialized access to whatever’s protected by the lock because one thread’s access
cannot overlap with that of another. In this case, we’re protecting the logic inside the
Go method as well as the fields _val1 and _val2.

Monitor.Enter and Monitor.Exit
C#’s lock statement is in fact a syntactic shortcut for a call to the methods Moni
tor.Enter and Monitor.Exit, with a try/finally block. Here’s (a simplified ver‐
sion of) what’s actually happening within the Go method of the preceding example:
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Monitor.Enter (_locker);
try
{
  if (_val2 != 0) Console.WriteLine (_val1 / _val2);
  _val2 = 0;
}
finally { Monitor.Exit (_locker); }

Calling Monitor.Exit without first calling Monitor.Enter on the same object
throws an exception.

The lockTaken overloads
The code that we just demonstrated has a subtle vulnerability. Consider the
(unlikely) event of an exception being thrown between the call to Monitor.Enter
and the try block (due, perhaps, to an OutOfMemoryException or, in .NET Frame‐
work, if the thread is aborted). In such a scenario, the lock might or might not
be taken. If the lock is taken, it won’t be released—because we’ll never enter
the try/finally block. This will result in a leaked lock. To avoid this danger,
Monitor.Enter defines the following overload:

public static void Enter (object obj, ref bool lockTaken);

lockTaken is false after this method if (and only if) the Enter method throws an
exception and the lock was not taken.

Here’s the more robust pattern of use (which is exactly how C# translates a lock
statement):

bool lockTaken = false;
try
{
  Monitor.Enter (_locker, ref lockTaken);
  // Do your stuff...
}
finally { if (lockTaken) Monitor.Exit (_locker); }

TryEnter
Monitor also provides a TryEnter method that allows a timeout to be specified,
either in milliseconds or as a TimeSpan. The method then returns true if a lock was
obtained, or false if no lock was obtained because the method timed out. TryEnter
can also be called with no argument, which “tests” the lock, timing out immediately
if the lock can’t be obtained immediately. As with the Enter method, TryEnter is
overloaded to accept a lockTaken argument.

Choosing the Synchronization Object
You can use any object visible to each of the partaking threads as a synchronizing
object, subject to one hard rule: it must be a reference type. The synchronizing
object is typically private (because this helps to encapsulate the locking logic) and
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is typically an instance or static field. The synchronizing object can double as the
object it’s protecting, as the _list field does in the following example:

class ThreadSafe
{
  List <string> _list = new List <string>();

  void Test()
  {
    lock (_list)
    {
      _list.Add ("Item 1");
      ...

A field dedicated for the purpose of locking (such as _locker, in the example prior)
allows precise control over the scope and granularity of the lock. You can also use
the containing object (this) as a synchronization object:

lock (this) { ... }

Or even its type:

lock (typeof (Widget)) { ... }    // For protecting access to statics

The disadvantage of locking in this way is that you’re not encapsulating the locking
logic, so it becomes more difficult to prevent deadlocking and excessive blocking.

You can also lock on local variables captured by lambda expressions or anonymous
methods.

Locking doesn’t restrict access to the synchronizing object
itself in any way. In other words, x.ToString() will not block
because another thread has called lock(x); both threads must
call lock(x) in order for blocking to occur.

When to Lock
As a basic rule, you need to lock around accessing any writable shared field. Even
in the simplest case—an assignment operation on a single field—you must consider
synchronization. In the following class, neither the Increment nor the Assign
method is thread-safe:

class ThreadUnsafe
{
  static int _x;
  static void Increment() { _x++; }
  static void Assign()    { _x = 123; }
}

Here are thread-safe versions of Increment and Assign:

static readonly object _locker = new object();
static int _x;
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static void Increment() { lock (_locker) _x++; }
static void Assign()    { lock (_locker) _x = 123; }

Without locks, two problems can arise:

• Operations such as incrementing a variable (or even reading/writing a variable,•
under certain conditions) are not atomic.

• The compiler, CLR, and processor are entitled to reorder instructions and•
cache variables in CPU registers to improve performance—as long as such
optimizations don’t change the behavior of a single-threaded program (or a
multithreaded program that uses locks).

Locking mitigates the second problem because it creates a memory barrier before
and after the lock. A memory barrier is a “fence” through which the effects of
reordering and caching cannot penetrate.

This applies not just to locks but to all synchronization con‐
structs. So, if your use of a signaling construct, for instance,
ensures that just one thread reads/writes a variable at a time,
you don’t need to lock. Hence, the following code is thread-
safe without locking around x:

var signal = new ManualResetEvent (false);
int x = 0;
new Thread (() => { x++; signal.Set(); }).Start();
signal.WaitOne();
Console.WriteLine (x);    // 1 (always)

In “Nonblocking Synchronization”, we explain how this need arises and how the
memory barriers and the Interlocked class can provide alternatives to locking in
these situations.

Locking and Atomicity
If a group of variables are always read and written within the same lock, you can say
that the variables are read and written atomically. Let’s suppose that fields x and y
are always read and assigned within a lock on object locker:

lock (locker) { if (x != 0) y /= x; }

We can say that x and y are accessed atomically because the code block cannot be
divided or preempted by the actions of another thread in such a way that it will
change x or y and invalidate its outcome. You’ll never get a division-by-zero error,
provided that x and y are always accessed within this same exclusive lock.
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The atomicity provided by a lock is violated if an exception is
thrown within a lock block (whether or not multithreading is
involved). For example, consider the following:

decimal _savingsBalance, _checkBalance;

void Transfer (decimal amount)
{
  lock (_locker)
  {
    _savingsBalance += amount;
    _checkBalance -= amount + GetBankFee();
  }
}

If an exception were thrown by GetBankFee(), the bank
would lose money. In this case, we could avoid the problem by
calling GetBankFee earlier. A solution for more complex cases
is to implement “rollback” logic within a catch or finally
block.

Instruction atomicity is a different, albeit analogous, concept: an instruction is
atomic if it executes indivisibly on the underlying processor.

Nested Locking
A thread can repeatedly lock the same object in a nested (reentrant) fashion:

lock (locker)
  lock (locker)
    lock (locker)
    {
       // Do something...
    }

Alternatively:

Monitor.Enter (locker); Monitor.Enter (locker);  Monitor.Enter (locker); 
// Do something...
Monitor.Exit (locker);  Monitor.Exit (locker);   Monitor.Exit (locker);

In these scenarios, the object is unlocked only when the outermost lock statement
has exited—or a matching number of Monitor.Exit statements have executed.

Nested locking is useful when one method calls another from within a lock:

object locker = new object();

lock (locker)
{
  AnotherMethod();
  // We still have the lock - because locks are reentrant.
}

void AnotherMethod()
{
  lock (locker) { Console.WriteLine ("Another method"); }
}
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A thread can block on only the first (outermost) lock.

Deadlocks
A deadlock happens when two threads each wait for a resource held by the other, so
neither can proceed. The easiest way to illustrate this is with two locks:

object locker1 = new object();
object locker2 = new object();

new Thread (() => {
                    lock (locker1)
                    {
                      Thread.Sleep (1000);
                      lock (locker2);      // Deadlock
                    }
                  }).Start();
lock (locker2)
{
  Thread.Sleep (1000);
  lock (locker1);                          // Deadlock
}

You can create more elaborate deadlocking chains with three or more threads.

The CLR, in a standard hosting environment, is not like
SQL Server and does not automatically detect and resolve
deadlocks by terminating one of the offenders. A threading
deadlock causes participating threads to block indefinitely,
unless you’ve specified a locking timeout. (Under the SQL
CLR integration host, however, deadlocks are automatically
detected, and a [catchable] exception is thrown on one of the
threads.)

Deadlocking is one of the most difficult problems in multithreading—especially
when there are many interrelated objects. Fundamentally, the hard problem is that
you can’t be sure what locks your caller has taken out.

So, you might lock private field a within your class x, unaware that your caller (or
caller’s caller) has already locked field b within class y. Meanwhile, another thread
is doing the reverse—creating a deadlock. Ironically, the problem is exacerbated by
(good) object-oriented design patterns, because such patterns create call chains that
are not determined until runtime.

The popular advice “lock objects in a consistent order to prevent deadlocks,”
although helpful in our initial example, is difficult to apply to the scenario just
described. A better strategy is to be wary of locking around calls to methods in
objects that might have references back to your own object. Also, consider whether
you really need to lock around calls to methods in other classes (often you do—as
you’ll see in “Locking and Thread Safety” on page 898—but sometimes there
are other options). Relying more on higher-level synchronization options such as
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task continuations/combinators, data parallelism and immutable types (later in this
chapter) can lessen the need for locking.

Here is an alternative way to perceive the problem: when you
call out to other code while holding a lock, the encapsulation
of that lock subtly leaks. This is not a fault in the CLR; it’s
a fundamental limitation of locking in general. The problems
of locking are being addressed in various research projects,
including Software Transactional Memory.

Another deadlocking scenario arises when calling Dispatcher.Invoke (in a WPF
application) or Control.Invoke (in a Windows Forms application) while in posses‐
sion of a lock. If the user interface happens to be running another method that’s
waiting on the same lock, a deadlock will happen right there. You often can fix
this simply by calling BeginInvoke instead of Invoke (or relying on asynchronous
functions that do this implicitly when a synchronization context is present). Alter‐
natively, you can release your lock before calling Invoke, although this won’t work if
your caller took out the lock.

Performance
Locking is fast: you can expect to acquire and release a lock in less than 20 nanosec‐
onds on a 2020-era computer if the lock is uncontended. If it is contended, the
consequential context switch moves the overhead closer to the microsecond region,
although it can be longer before the thread is actually rescheduled.

Mutex
A Mutex is like a C# lock, but it can work across multiple processes. In other words,
Mutex can be computer-wide as well as application-wide. Acquiring and releasing an
uncontended Mutex takes around half a microsecond—more than 20 times slower
than a lock.

With a Mutex class, you call the WaitOne method to lock and ReleaseMutex to
unlock. Just as with the lock statement, a Mutex can be released only from the same
thread that obtained it.

If you forget to call ReleaseMutex and simply call Close or
Dispose, an AbandonedMutexException will be thrown upon
anyone else waiting upon that mutex.

A common use for a cross-process Mutex is to ensure that only one instance of a
program can run at a time. Here’s how it’s done:

// Naming a Mutex makes it available computer-wide. Use a name that's
// unique to your company and application (e.g., include your URL).

using var mutex = new Mutex (true, @"Global\oreilly.com OneAtATimeDemo");
// Wait a few seconds if contended, in case another instance
// of the program is still in the process of shutting down.
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if (!mutex.WaitOne (TimeSpan.FromSeconds (3), false))
{
  Console.WriteLine ("Another instance of the app is running. Bye!");
  return;
}
try { RunProgram(); }
finally { mutex.ReleaseMutex (); }

void RunProgram()
{
  Console.WriteLine ("Running. Press Enter to exit");
  Console.ReadLine();
}

If you’re running under Terminal Services or in separate Unix
consoles, a computer-wide Mutex is ordinarily visible only to
applications in the same session. To make it visible to all ter‐
minal server sessions, prefix its name with Global\, as shown
in the example.

Locking and Thread Safety
A program or method is thread-safe if it can work correctly in any multithreading
scenario. Thread safety is achieved primarily with locking and by reducing the
possibilities for thread interaction.

General-purpose types are rarely thread-safe in their entirety, for the following
reasons:

• The development burden in full thread safety can be significant, particularly if•
a type has many fields (each field is a potential for interaction in an arbitrarily
multithreaded context).

• Thread safety can entail a performance cost (payable, in part, whether or not•
the type is actually used by multiple threads).

• A thread-safe type does not necessarily make the program using it thread-safe,•
and often the work involved in the latter makes the former redundant.

Thread safety is thus usually implemented just where it needs to be in order to
handle a specific multithreading scenario.

There are, however, a few ways to “cheat” and have large and complex classes run
safely in a multithreaded environment. One is to sacrifice granularity by wrapping
large sections of code—even access to an entire object—within a single exclusive
lock, enforcing serialized access at a high level. This tactic is, in fact, essential if you
want to use thread-unsafe third-party code (or most .NET types, for that matter)
in a multithreaded context. The trick is simply to use the same exclusive lock to
protect access to all properties, methods, and fields on the thread-unsafe object. The
solution works well if the object’s methods all execute quickly (otherwise, there will
be a lot of blocking).
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Primitive types aside, few .NET types, when instantiated, are
thread-safe for anything more than concurrent read-only
access. The onus is on the developer to superimpose thread
safety, typically with exclusive locks. (The collections in
System.Collections.Concurrent that we cover in Chapter 22
are an exception.)

Another way to cheat is to minimize thread interaction by minimizing shared data.
This is an excellent approach and is used implicitly in “stateless” middle-tier appli‐
cation and web-page servers. Because multiple client requests can arrive simultane‐
ously, the server methods they call must be thread-safe. A stateless design (popular
for reasons of scalability) intrinsically limits the possibility of interaction because
classes do not save data between requests. Thread interaction is then limited just
to the static fields that you might choose to create, for such purposes as caching
commonly used data in memory and in providing infrastructure services such as
authentication and auditing.

Yet another solution (in rich-client applications) is to run code that accesses shared
state on the UI thread. As we saw in Chapter 14, asynchronous functions make this
easy.

Thread Safety and .NET Types
You can use locking to convert thread-unsafe code into thread-safe code. A good
application of this is .NET: nearly all of its nonprimitive types are not thread-safe
(for anything more than read-only access) when instantiated, and yet you can use
them in multithreaded code if all access to any given object is protected via a lock.
Here’s an example in which two threads simultaneously add an item to the same
List collection and then enumerate the list:

class ThreadSafe
{
  static List <string> _list = new List <string>();

  static void Main()
  {
    new Thread (AddItem).Start();
    new Thread (AddItem).Start();
  }

  static void AddItem()
  {
    lock (_list) _list.Add ("Item " + _list.Count);

    string[] items;
    lock (_list) items = _list.ToArray();
    foreach (string s in items) Console.WriteLine (s);
  }
}
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In this case, we’re locking on the _list object itself. If we had two interrelated lists,
we would need to choose a common object upon which to lock (we could nominate
one of the lists, or better: use an independent field).

Enumerating .NET collections is also thread-unsafe in the sense that an exception
is thrown if the list is modified during enumeration. Rather than locking for the
duration of enumeration, in this example, we first copy the items to an array.
This avoids holding the lock excessively if what we’re doing during enumeration
is potentially time-consuming. (Another solution is to use a reader/writer lock; see
“Reader/Writer Locks” on page 907.)

Locking around thread-safe objects
Sometimes, you also need to lock around accessing thread-safe objects. To illustrate,
imagine that .NET’s List class was, indeed, thread-safe, and we want to add an item
to a list:

if (!_list.Contains (newItem)) _list.Add (newItem);

Regardless of whether the list was thread-safe, this statement is certainly not! The
whole if statement would need to be wrapped in a lock to prevent preemption in
between testing for containership and adding the new item. This same lock would
then need to be used everywhere we modified that list. For instance, the following
statement would also need to be wrapped in the identical lock to ensure that it did
not preempt the former statement:

_list.Clear();

In other words, we would need to lock exactly as with our thread-unsafe collection
classes (making the List class’s hypothetical thread safety redundant).

Locking around accessing a collection can cause exces‐
sive blocking in highly concurrent environments. To this
end, .NET provides a thread-safe queue, stack, and dictionary,
which we discuss in Chapter 22.

Static members
Wrapping access to an object around a custom lock works only if all concurrent
threads are aware of—and use—the lock. This might not be the case if the object
is widely scoped. The worst case is with static members in a public type. For
instance, imagine if the static property on the DateTime struct, DateTime.Now, was
not thread-safe and that two concurrent calls could result in garbled output or an
exception. The only way to remedy this with external locking might be to lock the
type itself—lock(typeof(DateTime))—before calling DateTime.Now. This would
work only if all programmers agreed to do this (which is unlikely). Furthermore,
locking a type creates problems of its own.

For this reason, static members on the DateTime struct have been carefully pro‐
grammed to be thread-safe. This is a common pattern throughout .NET: static
members are thread-safe; instance members are not. Following this pattern also
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makes sense when writing types for public consumption, so as not to create
impossible thread-safety conundrums. In other words, by making static methods
thread-safe, you’re programming so as not to preclude thread safety for consumers
of that type.

Thread safety in static methods is something that you must
explicitly code: it doesn’t happen automatically by virtue of the
method being static!

Read-only thread safety
Making types thread-safe for concurrent read-only access (where possible) is advan‐
tageous because it means that consumers can avoid excessive locking. Many .NET
types follow this principle: collections, for instance, are thread-safe for concurrent
readers.

Following this principle yourself is simple: if you document a type as being thread-
safe for concurrent read-only access, don’t write to fields within methods that a
consumer would expect to be read-only (or lock around doing so). For instance, in
implementing a ToArray() method in a collection, you might begin by compacting
the collection’s internal structure. However, this would make it thread-unsafe for
consumers that expected this to be read-only.

Read-only thread safety is one of the reasons that enumerators are separate from
“enumerables”: two threads can simultaneously enumerate over a collection because
each gets a separate enumerator object.

In the absence of documentation, it pays to be cautious in
assuming whether a method is read-only in nature. A good
example is the Random class: when you call Random.Next(), its
internal implementation requires that it update private seed
values. Therefore, you must either lock around using the Ran
dom class or maintain a separate instance per thread.

Thread Safety in Application Servers
Application servers need to be multithreaded to handle simultaneous client
requests. ASP.NET Core and Web API applications are implicitly multithreaded.
This means that when writing code on the server side, you must consider thread
safety if there’s any possibility of interaction among the threads processing client
requests. Fortunately, such a possibility is rare; a typical server class is either state‐
less (no fields) or has an activation model that creates a separate object instance
for each client or each request. Interaction usually arises only through static fields,
sometimes used for caching in memory parts of a database to improve performance.

For example, suppose that you have a RetrieveUser method that queries a database:

// User is a custom class with fields for user data
internal User RetrieveUser (int id) { ... }
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If this method were called frequently, you could improve performance by caching
the results in a static Dictionary. Here’s a conceptually simple solution that takes
thread safety into account:

static class UserCache
{
  static Dictionary <int, User> _users = new Dictionary <int, User>();

  internal static User GetUser (int id)
  {
    User u = null;

    lock (_users)
      if (_users.TryGetValue (id, out u))
        return u;

    u = RetrieveUser (id);           // Method to retrieve from database;
    lock (_users) _users [id] = u;
    return u;
  }
}

We must, at a minimum, lock around reading and updating the dictionary to ensure
thread safety. In this example, we choose a practical compromise between simplicity
and performance in locking. Our design creates a small potential for inefficiency: if
two threads simultaneously called this method with the same previously unretrieved
id, the RetrieveUser method would be called twice—and the dictionary would be
updated unnecessarily. Locking once across the whole method would prevent this,
but it would create a worse inefficiency: the entire cache would be locked up for
the duration of calling RetrieveUser, during which time other threads would be
blocked in retrieving any user.

For an ideal solution, we need to use the strategy we described in “Completing
synchronously” on page 677. Instead of caching User, we cache Task<User>, which
the caller then awaits:

static class UserCache
{
  static Dictionary <int, Task<User>> _userTasks = 
     new Dictionary <int, Task<User>>();
  
  internal static Task<User> GetUserAsync (int id)
  {
    lock (_userTasks)
      if (_userTasks.TryGetValue (id, out var userTask))
        return userTask;
      else
        return _userTasks [id] = Task.Run (() => RetrieveUser (id));
  }
}

Notice that we now have a single lock that covers the entire method’s logic. We
can do this without hurting concurrency because all we’re doing inside the lock is
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accessing the dictionary and (potentially) initiating an asynchronous operation (by
calling Task.Run). Should two threads call this method at the same time with the
same ID, they’ll both end up awaiting the same task, which is exactly the outcome
we want.

Immutable Objects
An immutable object is one whose state cannot be altered—externally or internally.
The fields in an immutable object are typically declared read-only and are fully
initialized during construction.

Immutability is a hallmark of functional programming—where instead of mutating
an object, you create a new object with different properties. LINQ follows this
paradigm. Immutability is also valuable in multithreading in that it avoids the
problem of shared writable state—by eliminating (or minimizing) the writable.

One pattern is to use immutable objects to encapsulate a group of related fields, to
minimize lock durations. To take a very simple example, suppose that we had two
fields, as follows:

int _percentComplete;
string _statusMessage;

Now let’s assume that we want to read and write them atomically. Rather than
locking around these fields, we could define the following immutable class:

class ProgressStatus    // Represents progress of some activity
{
  public readonly int PercentComplete;
  public readonly string StatusMessage;

  // This class might have many more fields...

  public ProgressStatus (int percentComplete, string statusMessage)
  {
    PercentComplete = percentComplete;
    StatusMessage = statusMessage;
  }
}

Then we could define a single field of that type, along with a locking object:

readonly object _statusLocker = new object();
ProgressStatus _status;

We can now read and write values of that type without holding a lock for more than
a single assignment:

var status = new ProgressStatus (50, "Working on it");
// Imagine we were assigning many more fields...
// ...
lock (_statusLocker) _status = status;    // Very brief lock

To read the object, we first obtain a copy of the object reference (within a lock).
Then, we can read its values without needing to hold onto the lock:
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ProgressStatus status;
lock (_statusLocker) status = _status;   // Again, a brief lock
int pc = status.PercentComplete;
string msg = status.StatusMessage;
...

Nonexclusive Locking
The nonexclusive locking constructs serve to limit concurrency. In this section, we
cover semaphores and read/writer locks, and also illustrate how the SemaphoreSlim
class can limit concurrency with asynchronous operations.

Semaphore
A semaphore is like a nightclub with a limited capacity, enforced by a bouncer.
When the club is full, no more people can enter, and a queue builds up outside.

A semaphore’s count corresponds to the number of spaces in the nightclub. Releas‐
ing a semaphore increases the count; this typically happens when somebody leaves
the club (corresponding to a resource being released), and also when the semaphore
is initialized (to set its starting capacity). You can also call Release at any time to
increase capacity.

Waiting on a semaphore decrements the count, and typically occurs prior to a
resource being obtained. Calling Wait on a semaphore whose current count is
greater than 0 completes immediately.

A semaphore can optionally have a maximum count that serves as a hard limit.
Increasing the count beyond this limit throws an exception. When constructing
a semaphore, you specify the initial count (starting capacity), and optionally, a
maximum limit.

A semaphore with an initial count of one is similar to a Mutex or lock, except that
the semaphore has no “owner”—it’s thread agnostic. Any thread can call Release on
a Semaphore, whereas with Mutex and lock, only the thread that obtained the lock
can release it.

There are two functionally similar versions of this class:
Semaphore and SemaphoreSlim. The latter has been optimized
to meet the low-latency demands of parallel programming.
It’s also useful in traditional multithreading because it lets
you specify a cancellation token when waiting (see “Cancella‐
tion” on page 681), and it exposes a WaitAsync method for
asynchronous programming. You cannot use it, however, for
interprocess signaling.

Semaphore incurs about one microsecond in calling WaitOne
and Release; SemaphoreSlim incurs about one-tenth of that.
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Semaphores can be useful in limiting concurrency—preventing too many threads
from executing a particular piece of code at once. In the following example, five
threads try to enter a nightclub that allows only three threads in at once:

class TheClub      // No door lists!
{
  static SemaphoreSlim _sem = new SemaphoreSlim (3);    // Capacity of 3
 
  static void Main()
  {
    for (int i = 1; i <= 5; i++) new Thread (Enter).Start (i);
  }

  static void Enter (object id)
  {
    Console.WriteLine (id + " wants to enter");
    _sem.Wait();
    Console.WriteLine (id + " is in!");           // Only three threads
    Thread.Sleep (1000 * (int) id);               // can be here at
    Console.WriteLine (id + " is leaving");       // a time.
    _sem.Release();
  }
}

1 wants to enter
1 is in!
2 wants to enter
2 is in!
3 wants to enter
3 is in!
4 wants to enter
5 wants to enter
1 is leaving
4 is in!
2 is leaving
5 is in!

It’s also legal to instantiate a semaphore with an initial count (capacity) of 0
and then call Release to increase its count. The following two semaphores are
equivalent:

var semaphore1 = new SemaphoreSlim (3);
var semaphore2 = new SemaphoreSlim (0); semaphore2.Release (3);

A Semaphore, if named, can span processes in the same way as a Mutex (named
Semaphores are available only on Windows, whereas named Mutex also work on
Unix platforms).
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Asynchronous semaphores and locks
It is illegal to lock across an await statement:

lock (_locker)
{
  await Task.Delay (1000);    // Compilation error
  ...
}

Doing so would make no sense, because locks are held by a thread, which typically
changes when returning from an await. Locking also blocks, and blocking for a
potentially long period of time is exactly what you’re not trying to achieve with
asynchronous functions.

It’s still sometimes desirable, however, to make asynchronous operations execute
sequentially—or limit the parallelism such that not more than n operations execute
at once. For example, consider a web browser: it needs to perform asynchronous
downloads in parallel, but it might want to impose a limit such that a maximum of
10 downloads happen at a time. We can achieve this by using a SemaphoreSlim:

SemaphoreSlim _semaphore = new SemaphoreSlim (10);

async Task<byte[]> DownloadWithSemaphoreAsync (string uri)
{
    await _semaphore.WaitAsync();
    try { return await new WebClient().DownloadDataTaskAsync (uri); }
    finally { _semaphore.Release(); }
}

Reducing the semaphore’s initialCount to 1 reduces the maximum parallelism to
1, turning this into an asynchronous lock.

Writing an EnterAsync extension method
The following extension method simplifies the asynchronous use of SemaphoreSlim
by using the Disposable class that we wrote in “Anonymous Disposal” on page 585:

public static async Task<IDisposable> EnterAsync (this SemaphoreSlim ss)
{
  await ss.WaitAsync().ConfigureAwait (false);
  return Disposable.Create (() => ss.Release());
}

With this method, we can rewrite our DownloadWithSemaphoreAsync method as
follows:

async Task<byte[]> DownloadWithSemaphoreAsync (string uri)
{
  using (await _semaphore.EnterAsync())
    return await new WebClient().DownloadDataTaskAsync (uri);
}
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Parallel.ForEachAsync
From .NET 6, another approach to limit asynchronous concurrency is to use the
Parallel.ForEachAsync method. Assuming uris in an array of URIs that you
wish to download, here’s how to download them in parallel, while limiting the
concurrency to a maximum of 10 parallel downloads:

await Parallel.ForEachAsync (uris,
  new ParallelOptions { MaxDegreeOfParallelism = 10 },
  async (uri, cancelToken) =>
   {
    var download = await new HttpClient().GetByteArrayAsync (uri);
    Console.WriteLine ($"Downloaded {download.Length} bytes");
  });

The other methods in the Parallel class are intended for (compute-bound) parallel
programming scenarios, which we describe in Chapter 22.

Reader/Writer Locks
Quite often, instances of a type are thread-safe for concurrent read operations, but
not for concurrent updates (nor for a concurrent read and update). This can also
be true with resources such as a file. Although protecting instances of such types
with a simple exclusive lock for all modes of access usually does the trick, it can
unreasonably restrict concurrency if there are many readers and just occasional
updates. An example of where this could occur is in a business application server,
for which commonly used data is cached for fast retrieval in static fields. The
ReaderWriterLockSlim class is designed to provide maximum-availability locking
in just this scenario.

ReaderWriterLockSlim is a replacement for the older “fat”
ReaderWriterLock class. The latter is similar in functionality,
but it is several times slower and has an inherent design fault
in its mechanism for handling lock upgrades.

When compared to an ordinary lock (Monitor.Enter/Exit),
ReaderWriterLockSlim is still twice as slow, though. The
trade-off is less contention (when there’s a lot of reading and
minimal writing).

With both classes, there are two basic kinds of lock—a read lock and a write lock:

• A write lock is universally exclusive.•
• A read lock is compatible with other read locks.•

So, a thread holding a write lock blocks all other threads trying to obtain a read
or write lock (and vice versa). But if no thread holds a write lock, any number of
threads may concurrently obtain a read lock.
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ReaderWriterLockSlim defines the following methods for obtaining and releasing
read/write locks:

public void EnterReadLock();
public void ExitReadLock();
public void EnterWriteLock();
public void ExitWriteLock();

Additionally, there are “Try” versions of all EnterXXX methods that accept timeout
arguments in the style of Monitor.TryEnter (timeouts can occur quite easily if
the resource is heavily contended). ReaderWriterLock provides similar methods,
named AcquireXXX and ReleaseXXX. These throw an ApplicationException if a
timeout occurs, rather than returning false.

The following program demonstrates ReaderWriterLockSlim. Three threads con‐
tinually enumerate a list, while two further threads append a random number to the
list every 100 ms. A read lock protects the list readers, and a write lock protects the
list writers:

class SlimDemo
{
  static ReaderWriterLockSlim _rw = new ReaderWriterLockSlim();
  static List<int> _items = new List<int>();
  static Random _rand = new Random();

  static void Main()
  {
    new Thread (Read).Start();
    new Thread (Read).Start();
    new Thread (Read).Start();

    new Thread (Write).Start ("A");
    new Thread (Write).Start ("B");
  }

  static void Read()
  {
    while (true)
    {
      _rw.EnterReadLock();
      foreach (int i in _items) Thread.Sleep (10);
      _rw.ExitReadLock();
    }
  }

  static void Write (object threadID)
  {
    while (true)
    {
      int newNumber = GetRandNum (100);
      _rw.EnterWriteLock();
      _items.Add (newNumber);
      _rw.ExitWriteLock();
      Console.WriteLine ("Thread " + threadID + " added " + newNumber);
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      Thread.Sleep (100);
    }
  }

  static int GetRandNum (int max) { lock (_rand) return _rand.Next(max); }
}

In production code, you’d typically add try/finally blocks to
ensure that locks were released if an exception were thrown.

Here’s the result:

Thread B added 61
Thread A added 83
Thread B added 55
Thread A added 33
...

ReaderWriterLockSlim allows more concurrent Read activity than a simple lock.
We can illustrate this by inserting the following line in the Write method, at the
start of the while loop:

Console.WriteLine (_rw.CurrentReadCount + " concurrent readers");

This nearly always prints “3 concurrent readers” (the Read methods spend most of
their time inside the foreach loops). As well as CurrentReadCount, ReaderWriter
LockSlim provides the following properties for monitoring locks:

public bool IsReadLockHeld            { get; }
public bool IsUpgradeableReadLockHeld { get; }
public bool IsWriteLockHeld           { get; }

public int  WaitingReadCount          { get; }
public int  WaitingUpgradeCount       { get; }
public int  WaitingWriteCount         { get; }

public int  RecursiveReadCount        { get; }
public int  RecursiveUpgradeCount     { get; }
public int  RecursiveWriteCount       { get; }

Upgradeable locks
Sometimes, it’s useful to swap a read lock for a write lock in a single atomic
operation. For instance, suppose that you want to add an item to a list only if the
item wasn’t already present. Ideally, you’d want to minimize the time spent holding
the (exclusive) write lock, so you might proceed as follows:

1. Obtain a read lock.1.
2. Test whether the item is already present in the list; if so, release the lock and2.

return.
3. Release the read lock.3.
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4. Obtain a write lock.4.
5. Add the item.5.

The problem is that another thread could sneak in and modify the list (e.g.,
adding the same item) between Steps 3 and 4. ReaderWriterLockSlim addresses
this through a third kind of lock called an upgradeable lock. An upgradeable lock
is like a read lock except that it can later be promoted to a write lock in an atomic
operation. Here’s how you use it:

1. Call EnterUpgradeableReadLock.1.
2. Perform read-based activities (e.g., test whether the item is already present in2.

the list).

3. Call EnterWriteLock (this converts the upgradeable lock to a write lock).3.
4. Perform write-based activities (e.g., add the item to the list).4.

5. Call ExitWriteLock (this converts the write lock back to an upgradeable lock).5.
6. Perform any other read-based activities.6.

7. Call ExitUpgradeableReadLock.7.

From the caller’s perspective, it’s rather like nested or recursive locking. Function‐
ally, though, in Step 3, ReaderWriterLockSlim releases your read lock and obtains a
fresh write lock, atomically.

There’s another important difference between upgradeable locks and read locks.
Although an upgradeable lock can coexist with any number of read locks, only
one upgradeable lock can itself be taken out at a time. This prevents conversion
deadlocks by serializing competing conversions—just as update locks do in SQL
Server:

SQL Server ReaderWriterLockSlim

Share lock Read lock

Exclusive lock Write lock

Update lock Upgradeable lock

We can demonstrate an upgradeable lock by changing the Write method in the
preceding example such that it adds a number to the list only if it’s not already
present:

while (true)
{
  int newNumber = GetRandNum (100);
  _rw.EnterUpgradeableReadLock();
  if (!_items.Contains (newNumber))
  {
    _rw.EnterWriteLock();
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    _items.Add (newNumber);
    _rw.ExitWriteLock();
    Console.WriteLine ("Thread " + threadID + " added " + newNumber);
  }
  _rw.ExitUpgradeableReadLock();
  Thread.Sleep (100);
}

ReaderWriterLock can also do lock conversions—but unreli‐
ably because it doesn’t support the concept of upgradeable
locks. This is why the designers of ReaderWriterLockSlim had
to start afresh with a new class.

Lock recursion
Ordinarily, nested or recursive locking is prohibited with ReaderWriterLockSlim.
Hence, the following throws an exception:

var rw = new ReaderWriterLockSlim();
rw.EnterReadLock();
rw.EnterReadLock();
rw.ExitReadLock();
rw.ExitReadLock();

It runs without error, however, if you construct ReaderWriterLockSlim as follows:

var rw = new ReaderWriterLockSlim (LockRecursionPolicy.SupportsRecursion);

This ensures that recursive locking can happen only if you plan for it. Recursive
locking can create undesired complexity because it’s possible to acquire more than
one kind of lock:

rw.EnterWriteLock();
rw.EnterReadLock();
Console.WriteLine (rw.IsReadLockHeld);     // True
Console.WriteLine (rw.IsWriteLockHeld);    // True
rw.ExitReadLock();
rw.ExitWriteLock();

The basic rule is that after you’ve acquired a lock, subsequent recursive locks can be
less, but not greater, on the following scale:

Read Lock→Upgradeable Lock→Write Lock
A request to promote an upgradeable lock to a write lock, however, is always legal.

Signaling with Event Wait Handles
The simplest kind of signaling constructs are called event wait handles (unrelated
to C# events). Event wait handles come in three flavors: AutoResetEvent, Manual
ResetEvent(Slim), and CountdownEvent. The former two are based on the common
EventWaitHandle class from which they derive all their functionality.
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2 As with locks, the fairness of the queue can sometimes be violated due to nuances in the
operating system.

AutoResetEvent
An AutoResetEvent is like a ticket turnstile: inserting a ticket lets exactly one
person through. The “auto” in the class’s name refers to the fact that an open
turnstile automatically closes or “resets” after someone steps through. A thread
waits, or blocks, at the turnstile by calling WaitOne (wait at this “one” turnstile until
it opens), and a ticket is inserted by calling the Set method. If a number of threads
call WaitOne, a queue2 builds up behind the turnstile. A ticket can come from any
thread; in other words, any (unblocked) thread with access to the AutoResetEvent
object can call Set on it to release one blocked thread.

You can create an AutoResetEvent in two ways. The first is via its constructor:

var auto = new AutoResetEvent (false);

(Passing true into the constructor is equivalent to immediately calling Set upon it.)
The second way to create an AutoResetEvent is as follows:

var auto = new EventWaitHandle (false, EventResetMode.AutoReset);

In the following example, a thread is started whose job is simply to wait until
signaled by another thread (see Figure 21-1):

class BasicWaitHandle
{
  static EventWaitHandle _waitHandle = new AutoResetEvent (false);

  static void Main()
  {
    new Thread (Waiter).Start();
    Thread.Sleep (1000);                  // Pause for a second...
    _waitHandle.Set();                    // Wake up the Waiter.
  }

  static void Waiter()
  {
    Console.WriteLine ("Waiting...");
    _waitHandle.WaitOne();                // Wait for notification
    Console.WriteLine ("Notified");
  }
}

// Output:
Waiting... (pause) Notified.
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Figure 21-1. Signaling with an EventWaitHandle

If Set is called when no thread is waiting, the handle stays open for as long as it
takes until some thread calls WaitOne. This behavior helps prevent a race between
a thread heading for the turnstile and a thread inserting a ticket (“Oops, inserted
the ticket a microsecond too soon; now you’ll have to wait indefinitely!”). However,
calling Set repeatedly on a turnstile at which no one is waiting doesn’t allow an
entire party through when they arrive: only the next single person is let through,
and the extra tickets are “wasted.”

Disposing Wait Handles
After you’ve finished with a wait handle, you can call its Close method to release
the OS resource. Alternatively, you can simply drop all references to the wait handle
and allow the garbage collector to do the job for you sometime later (wait handles
implement the disposal pattern whereby the finalizer calls Close). This is one of the
few scenarios for which relying on this backup is (arguably) acceptable, because wait
handles have a light OS burden.

Wait handles are released automatically when a process exits.

Calling Reset on an AutoResetEvent closes the turnstile (should it be open)
without waiting or blocking.

WaitOne accepts an optional timeout parameter, returning false if the wait ended
because of a timeout rather than obtaining the signal.

Calling WaitOne with a timeout of 0 tests whether a wait
handle is “open,” without blocking the caller. Keep in mind,
though, that doing this resets the AutoResetEvent if it’s open.
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Two-way signaling
Suppose that we want the main thread to signal a worker thread three times in a
row. If the main thread simply calls Set on a wait handle several times in rapid
succession, the second or third signal can become lost because the worker might
take time to process each signal.

The solution is for the main thread to wait until the worker’s ready before signaling
it. We can do this by using another AutoResetEvent, as follows:

class TwoWaySignaling
{
  static EventWaitHandle _ready = new AutoResetEvent (false);
  static EventWaitHandle _go = new AutoResetEvent (false);
  static readonly object _locker = new object();
  static string _message;

  static void Main()
  {
    new Thread (Work).Start();

    _ready.WaitOne();                  // First wait until worker is ready
    lock (_locker) _message = "ooo";
    _go.Set();                         // Tell worker to go

    _ready.WaitOne();
    lock (_locker) _message = "ahhh";  // Give the worker another message
    _go.Set();

    _ready.WaitOne();
    lock (_locker) _message = null;    // Signal the worker to exit
    _go.Set();
  }

  static void Work()
  {
    while (true)
    {
      _ready.Set();                          // Indicate that we're ready
      _go.WaitOne();                         // Wait to be kicked off...
      lock (_locker)
      {
        if (_message == null) return;        // Gracefully exit
        Console.WriteLine (_message);
      }
    }
  }
}

// Output:
ooo
ahhh

Figure 21-2 shows this process.
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Figure 21-2. Two-way signaling

Here, we’re using a null message to indicate that the worker should end. With
threads that run indefinitely, it’s important to have an exit strategy!

ManualResetEvent
As we described in Chapter 14, a ManualResetEvent functions like a simple gate.
Calling Set opens the gate, allowing any number of threads calling WaitOne to be let
through. Calling Reset closes the gate. Threads that call WaitOne on a closed gate
will block; when the gate is next opened, they will be released all at once. Apart from
these differences, a ManualResetEvent functions like an AutoResetEvent.

As with AutoResetEvent, you can construct a ManualResetEvent in two ways:

var manual1 = new ManualResetEvent (false);
var manual2 = new EventWaitHandle (false, EventResetMode.ManualReset);

There’s another version of ManualResetEvent called ManualRe
setEventSlim. The latter is optimized for short waiting times
—with the ability to opt into spinning for a set number of iter‐
ations. It also has a more efficient managed implementation
and allows a Wait to be canceled via a CancellationToken.
ManualResetEventSlim doesn’t subclass WaitHandle; however,
it exposes a WaitHandle property that returns a WaitHandle-
based object when called (with the performance profile of a
traditional wait handle).

Signaling Constructs and Performance
Waiting or signaling an AutoResetEvent or ManualResetEvent takes about one
microsecond (assuming no blocking).

ManualResetEventSlim and CountdownEvent can be up to 50 times faster in short-
wait scenarios because of their nonreliance on the OS and judicious use of spinning
constructs. In most scenarios, however, the overhead of the signaling classes them‐
selves doesn’t create a bottleneck; thus, it is rarely a consideration.
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A ManualResetEvent is useful in allowing one thread to unblock many other
threads. The reverse scenario is covered by CountdownEvent.

CountdownEvent
CountdownEvent lets you wait on more than one thread. The class has an efficient,
fully managed implementation. To use the class, instantiate it with the number of
threads, or “counts,” that you want to wait on:

var countdown = new CountdownEvent (3);  // Initialize with "count" of 3.

Calling Signal decrements the “count”; calling Wait blocks until the count goes
down to zero:

new Thread (SaySomething).Start ("I am thread 1");
new Thread (SaySomething).Start ("I am thread 2");
new Thread (SaySomething).Start ("I am thread 3");

countdown.Wait();   // Blocks until Signal has been called 3 times
Console.WriteLine ("All threads have finished speaking!");

void SaySomething (object thing)
{
  Thread.Sleep (1000);
  Console.WriteLine (thing);
  countdown.Signal();
}

You can sometimes more easily solve problems for which
CountdownEvent is effective by using the structured parallelism
constructs that we describe in Chapter 22 (PLINQ and the
Parallel class).

You can reincrement a CountdownEvent’s count by calling AddCount. However, if
it has already reached zero, this throws an exception: you can’t “unsignal” a Count
downEvent by calling AddCount. To prevent the possibility of an exception being
thrown, you can instead call TryAddCount, which returns false if the countdown is
zero.

To unsignal a countdown event, call Reset: this both unsignals the construct and
resets its count to the original value.

Like ManualResetEventSlim, CountdownEvent exposes a WaitHandle property for
scenarios in which some other class or method expects an object based on
WaitHandle.

Creating a Cross-Process EventWaitHandle
EventWaitHandle’s constructor allows a “named” EventWaitHandle to be created,
capable of operating across multiple processes. The name is simply a string, and
it can be any value that doesn’t unintentionally conflict with someone else’s! If the
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name is already in use on the computer, you get a reference to the same underlying
EventWaitHandle; otherwise, the OS creates a new one. Here’s an example:

EventWaitHandle wh = new EventWaitHandle (false, EventResetMode.AutoReset,
                                      @"Global\MyCompany.MyApp.SomeName");

If two applications each ran this code, they would be able to signal each other: the
wait handle would work across all threads in both processes.

Named event wait handles are available only on Windows.

Wait Handles and Continuations
Rather than waiting on a wait handle (and blocking your thread), you can attach
a “continuation” to it by calling ThreadPool.RegisterWaitForSingleObject. This
method accepts a delegate that is executed when a wait handle is signaled:

var starter = new ManualResetEvent (false);

RegisteredWaitHandle reg = ThreadPool.RegisterWaitForSingleObject
 (starter, Go, "Some Data", -1, true);

Thread.Sleep (5000);
Console.WriteLine ("Signaling worker...");
starter.Set();
Console.ReadLine();
reg.Unregister (starter);    // Clean up when we’re done.

void Go (object data, bool timedOut)
{
  Console.WriteLine ("Started - " + data);
  // Perform task...
}

// Output:
(5 second delay)
Signaling worker...
Started - Some Data

When the wait handle is signaled (or a timeout elapses), the delegate runs on a
pooled thread. You are then supposed to call Unregister to release the unmanaged
handle to the callback.

In addition to the wait handle and delegate, RegisterWaitForSingleObject accepts
a “black box” object that it passes to your delegate method (rather like Parameteri
zedThreadStart) as well as a timeout in milliseconds (-1 meaning no timeout) and
a Boolean flag indicating whether the request is a one-off rather than recurring.

Signaling with Event Wait Handles | 917

A
d

vanced
Thread

ing



You can reliably call RegisterWaitForSingleObject only
once per wait handle. Calling this method again on the
same wait handle causes an intermittent failure, whereby an
unsignaled wait handle fires a callback as though it were
signaled.
This limitation makes (the nonslim) wait handles poorly
suited to asynchronous programming.

WaitAny, WaitAll, and SignalAndWait
In addition to the Set, WaitOne, and Reset methods, there are static methods on
the WaitHandle class to crack more complex synchronization nuts. The WaitAny,
WaitAll, and SignalAndWait methods perform signaling and waiting operations
on multiple handles. The wait handles can be of differing types (including Mutex
and Semaphore given that these also derive from the abstract WaitHandle class).
ManualResetEventSlim and CountdownEvent can also partake in these methods via
their WaitHandle properties.

WaitAll and SignalAndWait have a weird connection to
the legacy COM architecture: these methods require that
the caller be in a multithreaded apartment, the model least
suitable for interoperability. The main thread of a WPF or
Windows Forms application, for example, is unable to inter‐
act with the clipboard in this mode. We discuss alternatives
shortly.

WaitHandle.WaitAny waits for any one of an array of wait handles; Wait

Handle.WaitAll waits on all of the given handles, atomically. This means that if
you wait on two AutoResetEvents:

• WaitAny will never end up “latching” both events.•

• WaitAll will never end up “latching” only one event.•

SignalAndWait calls Set on one WaitHandle and then calls WaitOne on another
WaitHandle. After signaling the first handle, it will jump to the head of the queue
in waiting on the second handle; this helps it succeed (although the operation is not
truly atomic). You can think of this method as “swapping” one signal for another,
and use it on a pair of EventWaitHandles to set up two threads to rendezvous, or
“meet,” at the same point in time. Either AutoResetEvent or ManualResetEvent will
do the trick. The first thread executes the following:

WaitHandle.SignalAndWait (wh1, wh2);

The second thread does the opposite:

WaitHandle.SignalAndWait (wh2, wh1);
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Alternatives to WaitAll and SignalAndWait
WaitAll and SignalAndWait won’t run in a single-threaded apartment. Fortunately,
there are alternatives. In the case of SignalAndWait, it’s rare that you need its
queue-jumping semantics: in our rendezvous example, for instance, it would be
valid simply to call Set on the first wait handle, and then WaitOne on the other,
if wait handles were used solely for that rendezvous. In the following section, we
explore yet another option for implementing a thread rendezvous.

In the case of WaitAny and WaitAll, if you don’t need atomicity, you can use the
code we wrote in the previous section to convert the wait handles to tasks and then
use Task.WhenAny and Task.WhenAll (Chapter 14).

If you need atomicity, you can take the lowest-level approach to signaling and write
the logic yourself with Monitor’s Wait and Pulse methods. We describe Wait and
Pulse in detail in http://albahari.com/threading.

The Barrier Class
The Barrier class implements a thread execution barrier, allowing many threads to
rendezvous at a point in time (not to be confused with Thread.MemoryBarrier).
The class is very fast and efficient, and is built upon Wait, Pulse, and spinlocks.

To use this class:

1. Instantiate it, specifying how many threads should partake in the rendezvous1.
(you can change this later by calling AddParticipants/RemoveParticipants).

2. Have each thread call SignalAndWait when it wants to rendezvous.2.

Instantiating Barrier with a value of 3 causes SignalAndWait to block until that
method has been called three times. It then starts over: calling SignalAndWait again
blocks until called another three times. This keeps each thread “in step” with every
other thread.

In the following example, each of three threads writes the numbers 0 through 4
while keeping in step with the other threads:

var barrier = new Barrier (3);

new Thread (Speak).Start();
new Thread (Speak).Start();
new Thread (Speak).Start();

void Speak()
{
  for (int i = 0; i < 5; i++)
  {
    Console.Write (i + " ");
    barrier.SignalAndWait();
  }
}
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OUTPUT:  0 0 0 1 1 1 2 2 2 3 3 3 4 4 4

A really useful feature of Barrier is that you can also specify a post-phase action
when constructing it. This is a delegate that runs after SignalAndWait has been
called n times, but before the threads are unblocked (as shown in the shaded area in
Figure 21-3). In our example, if we instantiate our barrier as follows:

static Barrier _barrier = new Barrier (3, barrier => Console.WriteLine());

the output is this:

0 0 0 
1 1 1 
2 2 2 
3 3 3 
4 4 4

Figure 21-3. Barrier

A post-phase action can be useful for coalescing data from each of the worker
threads. It doesn’t need to worry about preemption, because all workers are blocked
while it does its thing.

Lazy Initialization
A frequent problem in threading is how to lazily initialize a shared field in a
thread-safe fashion. The need arises when you have a field of a type that’s expensive
to construct:

class Foo
{
  public readonly Expensive Expensive = new Expensive();
  ...
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}
class Expensive {  /* Suppose this is expensive to construct */  }

The problem with this code is that instantiating Foo incurs the performance cost of
instantiating Expensive—regardless of whether the Expensive field is ever accessed.
The obvious answer is to construct the instance on demand:

class Foo
{
  Expensive _expensive;
  public Expensive Expensive         // Lazily instantiate Expensive
  {
    get
    {
      if (_expensive == null) _expensive = new Expensive();
      return _expensive;
    }
  }
  ...
}

The question then arises, is this thread-safe? Aside from the fact that we’re accessing
_expensive outside a lock without a memory barrier, consider what would happen
if two threads accessed this property at once. They could both satisfy the if state‐
ment’s predicate and each thread end up with a different instance of Expensive.
Because this can lead to subtle errors, we would say, in general, that this code is not
thread-safe.

The solution to the problem is to lock around checking and initializing the object:

Expensive _expensive;
readonly object _expenseLock = new object();

public Expensive Expensive
{
  get
  {
    lock (_expenseLock)
    {
      if (_expensive == null) _expensive = new Expensive();
      return _expensive;
    }
  }
}

Lazy<T>
The Lazy<T> class is available to help with lazy initialization. If instantiated with an
argument of true, it implements the thread-safe initialization pattern just described.

Lazy<T> actually implements a micro-optimized version of
this pattern, called double-checked locking. Double-checked
locking performs an additional volatile read to avoid the cost
of obtaining a lock if the object is already initialized.
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To use Lazy<T>, instantiate the class with a value factory delegate that tells it how to
initialize a new value, and the argument true. Then, access its value via the Value
property:

Lazy<Expensive> _expensive = new Lazy<Expensive>
  (() => new Expensive(), true);

public Expensive Expensive { get { return _expensive.Value; } }

If you pass false into Lazy<T>’s constructor, it implements the thread-unsafe lazy
initialization pattern that we described at the beginning of this section—this makes
sense when you want to use Lazy<T> in a single-threaded context.

LazyInitializer
LazyInitializer is a static class that works exactly like Lazy<T> except:

• Its functionality is exposed through a static method that operates directly•
on a field in your own type. This prevents a level of indirection, improving
performance in cases where you need extreme optimization.

• It offers another mode of initialization in which multiple threads can race to•
initialize.

To use LazyInitializer, call EnsureInitialized before accessing the field, pass‐
ing a reference to the field and the factory delegate:

Expensive _expensive;
public Expensive Expensive
{ 
  get          // Implement double-checked locking
  { 
    LazyInitializer.EnsureInitialized (ref _expensive,
                                      () => new Expensive());
    return _expensive;
  }
}

You can also pass in another argument to request that competing threads race
to initialize. This sounds similar to our original thread-unsafe example except
that the first thread to finish always wins—and so you end up with only one
instance. The advantage of this technique is that it’s even faster (on multicores)
than double-checked locking because it can be implemented entirely without locks
using advanced techniques that we describe in “Nonblocking Synchronization” and
“Lazy Initialization” at http://albahari.com/threading. This is an extreme (and rarely
needed) optimization that comes at a cost:

• It’s slower when more threads race to initialize than you have cores.•
• It potentially wastes CPU resources performing redundant initialization.•
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• The initialization logic must be thread-safe (in this case, it would be thread-•
unsafe if Expensive’s constructor wrote to static fields, for instance).

• If the initializer instantiates an object requiring disposal, the “wasted” object•
won’t be disposed without additional logic.

Thread-Local Storage
Much of this chapter has focused on synchronization constructs and the issues aris‐
ing from having threads concurrently access the same data. Sometimes, however,
you want to keep data isolated, ensuring that each thread has a separate copy. Local
variables achieve exactly this, but they are useful only with transient data.

The solution is thread-local storage. You might be hard-pressed to think of a require‐
ment: data you’d want to keep isolated to a thread tends to be transient by nature.
Its main application is for storing “out-of-band” data—that which supports the
execution path’s infrastructure, such as messaging, transaction, and security tokens.
Passing such data around in method parameters can be clumsy and can alienate
all but your own methods; storing such information in ordinary static fields means
sharing it among all threads.

Thread-local storage can also be useful in optimizing parallel code. It allows each
thread to exclusively access its own version of a thread-unsafe object without need‐
ing locks—and without needing to reconstruct that object between method calls.

There are four ways to implement thread-local storage. We take a look at them in
the following subsections.

[ThreadStatic]
The easiest approach to thread-local storage is to mark a static field with the
ThreadStatic attribute:

[ThreadStatic] static int _x;

Each thread then sees a separate copy of _x.

Unfortunately, [ThreadStatic] doesn’t work with instance fields (it simply does
nothing); nor does it play well with field initializers—they execute only once on the
thread that’s running when the static constructor executes. If you need to work with
instance fields—or start with a nondefault value—ThreadLocal<T> provides a better
option.

ThreadLocal<T>
ThreadLocal<T> provides thread-local storage for both static and instance fields,
and allows you to specify default values.

Here’s how to create a ThreadLocal<int> with a default value of 3 for each thread:

static ThreadLocal<int> _x = new ThreadLocal<int> (() => 3);

Thread-Local Storage | 923

A
d

vanced
Thread

ing



You then use _x’s Value property to get or set its thread-local value. A bonus of
using ThreadLocal is that values are lazily evaluated: the factory function evaluates
on the first call (for each thread).

ThreadLocal<T> and instance fields
ThreadLocal<T> is also useful with instance fields and captured local variables. For
example, consider the problem of generating random numbers in a multithreaded
environment. The Random class is not thread-safe, so we have to either lock around
using Random (limiting concurrency) or generate a separate Random object for each
thread. ThreadLocal<T> makes the latter easy:

var localRandom = new ThreadLocal<Random>(() => new Random());
Console.WriteLine (localRandom.Value.Next());

Our factory function for creating the Random object is a bit simplistic, though, in
that Random’s parameterless constructor relies on the system clock for a random
number seed. This may be the same for two Random objects created within ~10 ms of
each other. Here’s one way to fix it:

var localRandom = new ThreadLocal<Random>
 ( () => new Random (Guid.NewGuid().GetHashCode()) );

We use this in Chapter 22 (see the parallel spellchecking example in “PLINQ” on
page 935).

GetData and SetData
The third approach is to use two methods in the Thread class: GetData and SetData.
These store data in thread-specific “slots.” Thread.GetData reads from a thread’s
isolated data store; Thread.SetData writes to it. Both methods require a Local
DataStoreSlot object to identify the slot. You can use the same slot across all
threads and they’ll still get separate values. Here’s an example:

class Test
{
  // The same LocalDataStoreSlot object can be used across all threads.
  LocalDataStoreSlot _secSlot = Thread.GetNamedDataSlot ("securityLevel");

  // This property has a separate value on each thread.
  int SecurityLevel
  {
    get
    {
      object data = Thread.GetData (_secSlot);
      return data == null ? 0 : (int) data;    // null == uninitialized
    }
    set { Thread.SetData (_secSlot, value); }
  }
  ...

924 | Chapter 21: Advanced Threading



In this instance, we called Thread.GetNamedDataSlot, which creates a named slot—
this allows sharing of that slot across the application. Alternatively, you can control
a slot’s scope yourself with an unnamed slot, obtained by calling Thread.Allocate
DataSlot:

class Test
{
  LocalDataStoreSlot _secSlot = Thread.AllocateDataSlot();
  ...

Thread.FreeNamedDataSlot will release a named data slot across all threads, but
only once all references to that LocalDataStoreSlot have dropped out of scope
and have been garbage-collected. This ensures that threads don’t have data slots
pulled out from under their feet, as long as they keep a reference to the appropriate
LocalDataStoreSlot object while the slot is needed.

AsyncLocal<T>
The approaches to thread-local storage that we’ve discussed so far are incompatible
with asynchronous functions, because after an await, execution can resume on a
different thread. The AsyncLocal<T> class solves this by preserving its value across
an await:

static AsyncLocal<string> _asyncLocalTest = new AsyncLocal<string>();

async void Main()
{
  _asyncLocalTest.Value = "test";  
  await Task.Delay (1000);  
  // The following works even if we come back on another thread:
  Console.WriteLine (_asyncLocalTest.Value);   // test
}

AsyncLocal<T> is still able to keep operations started on separate threads apart,
whether initiated by Thread.Start or Task.Run. The following writes “one one” and
“two two”:

static AsyncLocal<string> _asyncLocalTest = new AsyncLocal<string>();

void Main()
{
  // Call Test twice on two concurrent threads:
  new Thread (() => Test ("one")).Start();
  new Thread (() => Test ("two")).Start();
}

async void Test (string value)
{
  _asyncLocalTest.Value = value;
  await Task.Delay (1000);
  Console.WriteLine (value + " " + _asyncLocalTest.Value);
}
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AsyncLocal<T> has an interesting and unique nuance: if an AsyncLocal<T> object
already has a value when a thread is started, the new thread will “inherit” that value:

static AsyncLocal<string> _asyncLocalTest = new AsyncLocal<string>();

void Main()
{
  _asyncLocalTest.Value = "test";
  new Thread (AnotherMethod).Start();
}

void AnotherMethod() => Console.WriteLine (_asyncLocalTest.Value);  // test

The new thread, however, gets a copy of the value, so any changes that it makes will
not affect the original:

static AsyncLocal<string> _asyncLocalTest = new AsyncLocal<string>();

void Main()
{
  _asyncLocalTest.Value = "test";
  var t = new Thread (AnotherMethod);
  t.Start(); t.Join();
  Console.WriteLine (_asyncLocalTest.Value);   // test  (not ha-ha!)
}

void AnotherMethod() => _asyncLocalTest.Value = "ha-ha!";

Keep in mind that the new thread gets a shallow copy of the value. So, if you were
to replace Async<string> with Async<StringBuilder> or Async<List<string>>,
the new thread could clear the StringBuilder or add/remove items to the
List<string>, and this would affect the original.

Timers
If you need to execute some method repeatedly at regular intervals, the easiest way
is with a timer. Timers are convenient and efficient in their use of memory and
resources—compared with techniques such as the following:

new Thread (delegate() {
                         while (enabled)
                         {
                           DoSomeAction();
                           Thread.Sleep (TimeSpan.FromHours (24));
                         }
                       }).Start();

Not only does this permanently tie up a thread resource, but without additional
coding, DoSomeAction will happen at a later time each day. Timers solve these
problems.

926 | Chapter 21: Advanced Threading



.NET provides five timers. Two of these are general-purpose multithreaded timers:

• System.Threading.Timer•

• System.Timers.Timer•

The other two are special-purpose single-threaded timers:

• System.Windows.Forms.Timer (Windows Forms timer)•

• System.Windows.Threading.DispatcherTimer (WPF timer)•

The multithreaded timers are more powerful, accurate, and flexible; the single-
threaded timers are safer and more convenient for running simple tasks that update
Windows Forms controls or WPF elements.

Finally, from .NET 6, there’s the PeriodicTimer, which we will cover first.

PeriodicTimer
PeriodicTimer is not really a timer; it’s a class to help with asynchronous looping.
It’s important to consider that since the advent of async and await, traditional
timers are not usually necessary. Instead, the following pattern works nicely:

StartPeriodicOperation();

async void StartPeriodicOperation()
{
  while (true)
  {
    await Task.Delay (1000);
    Console.WriteLine ("Tick");   // Do some action
  }
 }

If you call StartPeriodicOperation from a UI thread, it
will behave as a single-threaded timer, because the await will
always return on the same synchronization context.
You can make it behave as a multithreaded timer simply by
adding .ConfigureAwait(false) to the await.

PeriodicTimer is a class to simplify this pattern:

var timer = new PeriodicTimer (TimeSpan.FromSeconds (1));
StartPeriodicOperation();
// Optionally dispose timer when you want to stop looping.

async void StartPeriodicOperation()
{
  while (await timer.WaitForNextTickAsync())
    Console.WriteLine ("Tick");    // Do some action
}
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PeriodicTimer also allows you to stop the timer by disposing the timer instance.
This results in WaitForNextTickAsync returning false, allowing the loop to end.

Multithreaded Timers
System.Threading.Timer is the simplest multithreaded timer: it has just a con‐
structor and two methods (a delight for minimalists, as well as book authors!). In
the following example, a timer calls the Tick method, which writes “tick...” after five
seconds have elapsed, and then every second after that, until the user presses Enter:

using System;
using System.Threading;

// First interval = 5000ms; subsequent intervals = 1000ms
Timer tmr = new Timer (Tick, "tick...", 5000, 1000);
Console.ReadLine();
tmr.Dispose();         // This both stops the timer and cleans up.

void Tick (object data)
{
  // This runs on a pooled thread
  Console.WriteLine (data);          // Writes "tick..."
}

See “Timers” on page 601 for a discussion on disposing multi‐
threaded timers.

You can change a timer’s interval later by calling its Change method. If you want a
timer to fire just once, specify Timeout.Infinite in the constructor’s last argument.

.NET provides another timer class of the same name in the System.Timers name‐
space. This simply wraps the System.Threading.Timer, providing additional con‐
venience while using the identical underlying engine. Here’s a summary of its added
features:

• An IComponent implementation, allowing it to be sited in Visual Studio’s•
Designer’s component tray

• An Interval property instead of a Change method•

• An Elapsed event instead of a callback delegate•

• An Enabled property to start and stop the timer (its default value being false)•

• Start and Stop methods in case you’re confused by Enabled•

• An AutoReset flag for indicating a recurring event (default value is true)•

• A SynchronizingObject property with Invoke and BeginInvoke methods for•
safely calling methods on WPF elements and Windows Forms controls
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Here’s an example:

using System;
using System.Timers;          // Timers namespace rather than Threading

var tmr = new Timer();        // Doesn't require any args
tmr.Interval = 500;
tmr.Elapsed += tmr_Elapsed;   // Uses an event instead of a delegate
tmr.Start();                  // Start the timer
Console.ReadLine();
tmr.Stop();                   // Stop the timer
Console.ReadLine();
tmr.Start();                  // Restart the timer
Console.ReadLine();
tmr.Dispose();                // Permanently stop the timer

void tmr_Elapsed (object sender, EventArgs e)
  => Console.WriteLine ("Tick");

Multithreaded timers use the thread pool to allow a few threads to serve many
timers. This means that the callback method or Elapsed event can fire on a different
thread each time it is called. Furthermore, the Elapsed event always fires (approxi‐
mately) on time—regardless of whether the previous Elapsed event finished execut‐
ing. Hence, callbacks or event handlers must be thread-safe.

The precision of multithreaded timers depends on the OS, and is typically in the
10- to 20-millisecond region. If you need greater precision, you can use native
interop and call the Windows multimedia timer. This has precision down to one
millisecond, and it is defined in winmm.dll. First call timeBeginPeriod to inform
the OS that you need high timing precision, and then call timeSetEvent to start
a multimedia timer. When you’re done, call timeKillEvent to stop the timer and
timeEndPeriod to inform the OS that you no longer need high timing precision.
Chapter 24 demonstrates calling external methods with P/Invoke. You can find
complete examples on the internet that use the multimedia timer by searching for
the keywords dllimport winmm.dll timesetevent.

Single-Threaded Timers
.NET provides timers designed to eliminate thread-safety issues for WPF and Win‐
dows Forms applications:

• System.Windows.Threading.DispatcherTimer (WPF)•

• System.Windows.Forms.Timer (Windows Forms)•

The single-threaded timers are not designed to work outside
their respective environments. If you use a Windows Forms
timer in a Windows Service application, for instance, the
Timer event won’t fire!
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Both are like System.Timers.Timer in the members that they expose—Interval,
Start, and Stop (and Tick, which is equivalent to Elapsed)—and are used in a
similar manner. However, they differ in how they work internally. Instead of firing
timer events on pooled threads, they post the events to the WPF or Windows Forms
message loop. This means that the Tick event always fires on the same thread that
originally created the timer—which, in a normal application, is the same thread
used to manage all user interface elements and controls. This has a number of
benefits:

• You can forget about thread safety.•

• A fresh Tick will never fire until the previous Tick has finished processing.•

• You can update user interface elements and controls directly from Tick event•
handling code without calling Control.BeginInvoke or Dispatcher.Begin
Invoke.

Thus, a program employing these timers is not really multithreaded: you end up
with the same kind of pseudo-concurrency that’s described in Chapter 14 with
asynchronous functions that execute on a UI thread. One thread serves all timers
as well as the processing UI events, which means that the Tick event handler must
execute quickly, otherwise the UI becomes unresponsive.

This makes the WPF and Windows Forms timers suitable for small jobs, typically
updating some aspect of the UI (e.g., a clock or countdown display).

In terms of precision, the single-threaded timers are similar to the multithreaded
timers (tens of milliseconds), although they are typically less accurate because they
can be delayed while other UI requests (or other timer events) are processed.
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22
Parallel Programming

In this chapter, we cover the multithreading APIs and constructs aimed at leverag‐
ing multicore processors:

• Parallel LINQ or PLINQ•

• The Parallel class•
• The task parallelism constructs•
• The concurrent collections•

These constructs are collectively known (loosely) as Parallel Framework (PFX).
The Parallel class together with the task parallelism constructs is called the Task
Parallel Library (TPL).

You’ll need to be comfortable with the fundamentals in Chapter 14 before reading
this chapter—particularly locking, thread safety, and the Task class.

.NET offers a number of additional specialized APIs to help
with parallel and asynchronous programming:

• System.Threading.Channels.Channel is a high-•
performance asynchronous producer/consumer queue,
introduced in .NET Core 3.

• Microsoft Dataflow (in the System.Threading.Tasks•
.Dataflow namespace) is a sophisticated API for creating
networks of buffered blocks that execute actions or data
transformations in parallel, with a semblance to actor/
agent programming.

• Reactive Extensions implements LINQ over IObservable•
(an alternative abstraction to IAsyncEnumerable) and
excels at combining asynchronous streams. Reactive
extensions ships in the System.Reactive NuGet package.
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Why PFX?
Over the past 15 years, CPU manufacturers have shifted from single-core to multi‐
core processors. This is problematic for us as programmers because single-threaded
code does not automatically run faster as a result of those extra cores.

Utilizing multiple cores is easy for most server applications, where each thread can
independently handle a separate client request, but it’s more difficult on the desktop
because it typically requires that you take your computationally intensive code and
do the following:

1. Partition it into small chunks.1.
2. Execute those chunks in parallel via multithreading.2.
3. Collate the results as they become available, in a thread-safe and performant3.

manner.

Although you can do all of this with the classic multithreading constructs, it’s
awkward—particularly the steps of partitioning and collating. A further problem is
that the usual strategy of locking for thread safety causes a lot of contention when
many threads work on the same data at once.

The PFX libraries have been designed specifically to help in these scenarios.

Programming to leverage multicores or multiple processors is
called parallel programming. This is a subset of the broader
concept of multithreading.

PFX Concepts
There are two strategies for partitioning work among threads: data parallelism and
task parallelism.

When a set of tasks must be performed on many data values, we can parallelize
by having each thread perform the (same) set of tasks on a subset of values. This
is called data parallelism because we are partitioning the data between threads. In
contrast, with task parallelism we partition the tasks; in other words, we have each
thread perform a different task.

In general, data parallelism is easier and scales better to highly parallel hardware
because it reduces or eliminates shared data (thereby reducing contention and
thread-safety issues). Also, data parallelism exploits the fact that there are often
more data values than discrete tasks, increasing the parallelism potential.

Data parallelism is also conducive to structured parallelism, which means that paral‐
lel work units start and finish in the same place in your program. In contrast, task
parallelism tends to be unstructured, meaning that parallel work units may start and
finish in places scattered across your program. Structured parallelism is simpler and
less error prone and allows you to farm the difficult job of partitioning and thread
coordination (and even result collation) out to libraries.
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PFX Components
PFX comprises two layers of functionality, as shown in Figure 22-1. The higher layer
consists of two structured data parallelism APIs: PLINQ and the Parallel class. The
lower layer contains the task parallelism classes—plus a set of additional constructs
to help with parallel programming activities.

Figure 22-1. PFX components

PLINQ offers the richest functionality: it automates all the steps of parallelization—
including partitioning the work into tasks, executing those tasks on threads, and
collating the results into a single output sequence. It’s called declarative—because
you simply declare that you want to parallelize your work (which you structure
as a LINQ query) and let the runtime take care of the implementation details.
In contrast, the other approaches are imperative, in that you need to explicitly
write code to partition or collate. As the following synopsis shows, in the case
of the Parallel class, you must collate results yourself; with the task parallelism
constructs, you must partition the work yourself, too:

Partitions work Collates results

PLINQ Yes Yes

The Parallel class Yes No

PFX’s task parallelism No No

The concurrent collections and spinning primitives help you with lower-level paral‐
lel programming activities. These are important because PFX has been designed to
work not only with today’s hardware, but also with future generations of processors
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with far more cores. If you want to move a pile of chopped wood and you have
32 workers to do the job, the biggest challenge is moving the wood without the
workers getting in each other’s way. It’s the same with dividing an algorithm among
32 cores: if ordinary locks are used to protect common resources, the resultant
blocking can mean that only a fraction of those cores are ever actually busy at
once. The concurrent collections are tuned specifically for highly concurrent access,
with the focus on minimizing or eliminating blocking. PLINQ and the Parallel
class themselves rely on the concurrent collections and on spinning primitives for
efficient management of work.

Other Uses for PFX
The parallel programming constructs are useful not only for leveraging multicores,
but also in other scenarios:

• The concurrent collections are sometimes appropriate when you want a•
thread-safe queue, stack, or dictionary.

• BlockingCollection provides an easy means to implement producer/consumer•
structures, and is a good way to limit concurrency.

• Tasks are the basis of asynchronous programming, as we saw in Chapter 14.•

When to Use PFX
The primary use case for PFX is parallel programming: leveraging multicore process‐
ors to speed up computationally intensive code.

A challenge in parallel programming is Amdahl’s law, which states that the maxi‐
mum performance improvement from parallelization is governed by the portion
of the code that must execute sequentially. For instance, if only two-thirds of
an algorithm’s execution time is parallelizable, you can never exceed a threefold
performance gain—even with an infinite number of cores.

So, before proceeding, it’s worth verifying that the bottleneck is in parallelizable
code. It’s also worth considering whether your code needs to be computationally
intensive—optimization is often the easiest and most effective approach. There’s a
trade-off, though, in that some optimization techniques can make it more difficult
to parallelize code.

The easiest gains come with what’s called embarrassingly parallel problems—this is
when a job can be easily divided into tasks that efficiently execute on their own
(structured parallelism is very well suited to such problems). Examples include
many image-processing tasks, ray tracing, and brute-force approaches in mathe‐
matics or cryptography. An example of a non-embarrassingly parallel problem is
implementing an optimized version of the quicksort algorithm—a good result takes
some thought and might require unstructured parallelism.
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PLINQ
PLINQ automatically parallelizes local LINQ queries. PLINQ has the advantage of
being easy to use in that it offloads the burden of both work partitioning and result
collation to .NET.

To use PLINQ, simply call AsParallel() on the input sequence and then con‐
tinue the LINQ query as usual. The following query calculates the prime numbers
between 3 and 100,000, making full use of all cores on the target machine:

// Calculate prime numbers using a simple (unoptimized) algorithm.

IEnumerable<int> numbers = Enumerable.Range (3, 100000-3);

var parallelQuery = 
  from n in numbers.AsParallel()
  where Enumerable.Range (2, (int) Math.Sqrt (n)).All (i => n % i > 0)
  select n;

int[] primes = parallelQuery.ToArray();

AsParallel is an extension method in System.Linq.ParallelEnumerable. It wraps
the input in a sequence based on ParallelQuery<TSource>, which causes the LINQ
query operators that you subsequently call to bind to an alternate set of extension
methods defined in ParallelEnumerable. These provide parallel implementations
of each of the standard query operators. Essentially, they work by partitioning the
input sequence into chunks that execute on different threads, collating the results
back into a single output sequence for consumption, as depicted in Figure 22-2.

Figure 22-2. PLINQ execution model

Calling AsSequential() unwraps a ParallelQuery sequence so that subsequent
query operators bind to the standard query operators and execute sequentially. This
is necessary before calling methods that have side effects or are not thread-safe.

For query operators that accept two input sequences (Join, GroupJoin, Concat,
Union, Intersect, Except, and Zip), you must apply AsParallel() to both input
sequences (otherwise, an exception is thrown). You don’t, however, need to keep
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applying AsParallel to a query as it progresses, because PLINQ’s query operators
output another ParallelQuery sequence. In fact, calling AsParallel again introdu‐
ces inefficiency in that it forces merging and repartitioning of the query:

mySequence.AsParallel()           // Wraps sequence in ParallelQuery<int>
          .Where (n => n > 100)   // Outputs another ParallelQuery<int>
          .AsParallel()           // Unnecessary - and inefficient!
          .Select (n => n * n)

Not all query operators can be effectively parallelized. For those that cannot (see
“PLINQ Limitations” on page 938), PLINQ implements the operator sequentially,
instead. PLINQ might also operate sequentially if it suspects that the overhead of
parallelization will actually slow a particular query.

PLINQ is only for local collections: it doesn’t work with Entity Framework, for
instance, because in those cases the LINQ translates into SQL, which then executes
on a database server. However, you can use PLINQ to perform additional local
querying on the result sets obtained from database queries.

If a PLINQ query throws an exception, it’s rethrown as an
AggregateException whose InnerExceptions property con‐
tains the real exception (or exceptions). For more details, see
“Working with AggregateException” on page 964.

Why Isn’t AsParallel the Default?
Given that AsParallel transparently parallelizes LINQ queries, the question arises:
Why didn’t Microsoft simply parallelize the standard query operators and make
PLINQ the default?

There are a number of reasons for the opt-in approach. First, for PLINQ to be
useful, there must be a reasonable amount of computationally intensive work for it
to farm out to worker threads. Most LINQ-to-Objects queries execute very quickly;
thus, not only would parallelization be unnecessary, but the overhead of partition‐
ing, collating, and coordinating the extra threads might actually slow things down.

Additionally:

• The output of a PLINQ query (by default) can differ from a LINQ query with•
respect to element ordering (see “PLINQ and Ordering” on page 937).

• PLINQ wraps exceptions in an AggregateException (to handle the possibility•
of multiple exceptions being thrown).

• PLINQ will give unreliable results if the query invokes thread-unsafe methods.•

Finally, PLINQ offers quite a few hooks for tuning and tweaking. Burdening the
standard LINQ-to-Objects API with such nuances would add distraction.
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Parallel Execution Ballistics
Like ordinary LINQ queries, PLINQ queries are lazily evaluated. This means that
execution is triggered only when you begin consuming the results—typically via a
foreach loop (although it can also be via a conversion operator such as ToArray or
an operator that returns a single element or value).

As you enumerate the results, though, execution proceeds somewhat differently
from that of an ordinary sequential query. A sequential query is powered entirely
by the consumer in a “pull” fashion: each element from the input sequence is
fetched exactly when required by the consumer. A parallel query ordinarily uses
independent threads to fetch elements from the input sequence slightly ahead of
when they’re needed by the consumer (rather like a teleprompter for newsreaders).
It then processes the elements in parallel through the query chain, holding the
results in a small buffer so that they’re ready for the consumer on demand. If the
consumer pauses or breaks out of the enumeration early, the query processor also
pauses or stops so as not to waste CPU time or memory.

You can tweak PLINQ’s buffering behavior by calling With
MergeOptions after AsParallel. The default value of AutoBuf
fered generally gives the best overall results. NotBuffered
disables the buffer and is useful if you want to see results
as soon as possible; FullyBuffered caches the entire result
set before presenting it to the consumer (the OrderBy and
Reverse operators naturally work this way, as do the element,
aggregation, and conversion operators).

PLINQ and Ordering
A side effect of parallelizing the query operators is that when the results are collated,
it’s not necessarily in the same order that they were submitted (see Figure 22-2). In
other words, LINQ’s normal order-preservation guarantee for sequences no longer
holds.

If you need order preservation, you can force it by calling AsOrdered() after
AsParallel():

myCollection.AsParallel().AsOrdered()...

Calling AsOrdered incurs a performance hit with large numbers of elements because
PLINQ must keep track of each element’s original position.

You can negate the effect of AsOrdered later in a query by calling AsUnordered:
this introduces a “random shuffle point,” which allows the query to execute more
efficiently from that point on. So, if you wanted to preserve input-sequence ordering
for just the first two query operators, you’d do this:

inputSequence.AsParallel().AsOrdered()
  .QueryOperator1()
  .QueryOperator2()
  .AsUnordered()       // From here on, ordering doesn’t matter
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  .QueryOperator3()
  ...

AsOrdered is not the default because for most queries, the original input ordering
doesn’t matter. In other words, if AsOrdered were the default, you’d need to apply
AsUnordered to the majority of your parallel queries to get the best performance,
which would be burdensome.

PLINQ Limitations
There are practical limitations on what PLINQ can parallelize. The following query
operators prevent parallelization by default unless the source elements are in their
original indexing position:

The indexed versions of Select, SelectMany, and ElementAt

Most query operators change the indexing position of elements (including those
that remove elements, such as Where). This means that if you want to use the
preceding operators, they’ll usually need to be at the start of the query.

The following query operators are parallelizable but use an expensive partitioning
strategy that can sometimes be slower than sequential processing:

Join, GroupBy, GroupJoin, Distinct, Union, Intersect, and Except

The Aggregate operator’s seeded overloads in their standard incarnations are not
parallelizable—PLINQ provides special overloads to deal with this (see “Optimizing
PLINQ” on page 942).

All other operators are parallelizable, although use of these operators doesn’t guar‐
antee that your query will be parallelized. PLINQ might run your query sequentially
if it suspects that the overhead of parallelization will slow down that particular
query. You can override this behavior and force parallelism by calling the following
after AsParallel():

.WithExecutionMode (ParallelExecutionMode.ForceParallelism)

Example: Parallel Spellchecker
Suppose that we want to write a spellchecker that runs quickly with very large
documents by utilizing all available cores. By formulating our algorithm into a
LINQ query, we can very easily parallelize it.

The first step is to download a dictionary of English words into a HashSet for
efficient lookup:

if (!File.Exists ("WordLookup.txt")    // Contains about 150,000 words
  File.WriteAllText ("WordLookup.txt",
    await new HttpClient().GetStringAsync (
      "http://www.albahari.com/ispell/allwords.txt"));
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var wordLookup = new HashSet<string> (
  File.ReadAllLines ("WordLookup.txt"),
  StringComparer.InvariantCultureIgnoreCase);

We then use our word lookup to create a test “document” comprising an array of a
million random words. After we build the array, let’s introduce a couple of spelling
mistakes:

var random = new Random();
string[] wordList = wordLookup.ToArray();

string[] wordsToTest = Enumerable.Range (0, 1000000)
  .Select (i => wordList [random.Next (0, wordList.Length)])
  .ToArray();

wordsToTest [12345] = "woozsh";     // Introduce a couple
wordsToTest [23456] = "wubsie";     // of spelling mistakes.

Now we can perform our parallel spellcheck by testing wordsToTest against wor
dLookup. PLINQ makes this very easy:

var query = wordsToTest
  .AsParallel()
  .Select  ((word, index) => (word, index))
  .Where   (iword => !wordLookup.Contains (iword.word))
  .OrderBy (iword => iword.index);

foreach (var mistake in query)
  Console.WriteLine (mistake.word + " - index = " + mistake.index);

// OUTPUT:
// woozsh - index = 12345
// wubsie - index = 23456

The wordLookup.Contains method in the predicate gives the query some “meat”
and makes it worth parallelizing.

Notice that our query uses tuples (word, index) rather than
anonymous types. Because tuples are implemented as value
types rather than reference types, this improves peak memory
consumption and performance by reducing heap allocations
and subsequent garbage collections. (Benchmarking reveals
the gains to be moderate in practice, due to the efficiency
of the memory manager and the fact that the allocations in
question don’t survive beyond Generation 0.)

Using ThreadLocal<T>
Let’s extend our example by parallelizing the creation of the random test-word list
itself. We structured this as a LINQ query, so it should be easy. Here’s the sequential
version:

string[] wordsToTest = Enumerable.Range (0, 1000000)
  .Select (i => wordList [random.Next (0, wordList.Length)])
  .ToArray();

PLINQ | 939

P
arallel

P
ro

g
ram

m
ing



Unfortunately, the call to random.Next is not thread-safe, so it’s not as simple as
inserting AsParallel() into the query. A potential solution is to write a function
that locks around random.Next; however, this would limit concurrency. The better
option is to use ThreadLocal<Random> (see “Thread-Local Storage” on page 923) to
create a separate Random object for each thread. We then can parallelize the query, as
follows:

var localRandom = new ThreadLocal<Random>
 ( () => new Random (Guid.NewGuid().GetHashCode()) );

string[] wordsToTest = Enumerable.Range (0, 1000000).AsParallel()
  .Select (i => wordList [localRandom.Value.Next (0, wordList.Length)])
  .ToArray();

In our factory function for instantiating a Random object, we pass in a Guid’s hash‐
code to ensure that if two Random objects are created within a short period of time,
they’ll yield different random number sequences.

When to Use PLINQ
It’s tempting to search your existing applications for LINQ queries and experiment
with parallelizing them. This is usually unproductive, because most problems for
which LINQ is obviously the best solution tend to execute very quickly and so don’t
benefit from parallelization. A better approach is to find a CPU-intensive bottleneck
and then consider whether it can be expressed as a LINQ query. (A welcome side
effect of such restructuring is that LINQ typically makes code smaller and more
readable.)

PLINQ is well suited to embarrassingly parallel problems. It can be a poor choice
for imaging, however, because collating millions of pixels into an output sequence
creates a bottleneck. Instead, it’s better to write pixels directly to an array or unman‐
aged memory block and use the Parallel class or task parallelism to manage the
multithreading. (It is possible, however, to defeat result collation using ForAll—we
discuss this in “Optimizing PLINQ” on page 942. Doing so makes sense if the
image processing algorithm naturally lends itself to LINQ.)

Functional Purity
Because PLINQ runs your query on parallel threads, you must be careful not to
perform thread-unsafe operations. In particular, writing to variables is side-effecting
and therefore thread-unsafe:

// The following query multiplies each element by its position.
// Given an input of Enumerable.Range(0,999), it should output squares.
int i = 0;
var query = from n in Enumerable.Range(0,999).AsParallel() select n * i++;

We could make incrementing i thread-safe by using locks, but the problem would
still remain that i won’t necessarily correspond to the position of the input element.
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And adding AsOrdered to the query wouldn’t fix the latter problem, because AsOr
dered ensures only that the elements are output in an order consistent with them
having been processed sequentially—it doesn’t actually process them sequentially.

The correct solution is to rewrite our query to use the indexed version of Select:

var query = Enumerable.Range(0,999).AsParallel().Select ((n, i) => n * i);

For best performance, any methods called from query operators should be thread-
safe by virtue of not writing to fields or properties (non-side-effecting, or function‐
ally pure). If they’re thread-safe by virtue of locking, the query’s parallelism potential
will be limited by the effects of contention.

Setting the Degree of Parallelism
By default, PLINQ chooses an optimum degree of parallelism for the processor in
use. You can override it by calling WithDegreeOfParallelism after AsParallel:

...AsParallel().WithDegreeOfParallelism(4)...

An example of when you might increase the parallelism beyond the core count
is with I/O-bound work (downloading many web pages at once, for instance).
However, task combinators and asynchronous functions provide a similarly easy
and more efficient solution (see “Task Combinators” on page 685). Unlike with
Tasks, PLINQ cannot perform I/O-bound work without blocking threads (and
pooled threads, to make matters worse).

Changing the degree of parallelism
You can call WithDegreeOfParallelism only once within a PLINQ query. If you
need to call it again, you must force merging and repartitioning of the query by
calling AsParallel() again within the query:

"The Quick Brown Fox"
  .AsParallel().WithDegreeOfParallelism (2)
  .Where (c => !char.IsWhiteSpace (c))
  .AsParallel().WithDegreeOfParallelism (3)   // Forces Merge + Partition
  .Select (c => char.ToUpper (c))

Cancellation
Canceling a PLINQ query whose results you’re consuming in a foreach loop is
easy: simply break out of the foreach and the query will be automatically canceled
as the enumerator is implicitly disposed.

For a query that terminates with a conversion, element, or aggregation operator,
you can cancel it from another thread via a cancellation token (see “Cancellation” on
page 681). To insert a token, call WithCancellation after calling AsParallel, pass‐
ing in the Token property of a CancellationTokenSource object. Another thread
can then call Cancel on the token source (or we can call it ourselves with a delay).
This then throws an OperationCanceledException on the query’s consumer:
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IEnumerable<int> tenMillion = Enumerable.Range (3, 10_000_000);

var cancelSource = new CancellationTokenSource();
cancelSource.CancelAfter (100);   // Cancel query after 100 milliseconds

var primeNumberQuery = 
  from n in tenMillion.AsParallel().WithCancellation (cancelSource.Token)
  where Enumerable.Range (2, (int) Math.Sqrt (n)).All (i => n % i > 0)
  select n;

try 
{
  // Start query running:
  int[] primes = primeNumberQuery.ToArray();
  // We'll never get here because the other thread will cancel us.
}
catch (OperationCanceledException)
{
  Console.WriteLine ("Query canceled");
}

Upon cancellation, PLINQ waits for each worker thread to finish with its current
element before ending the query. This means that any external methods that the
query calls will run to completion.

Optimizing PLINQ

Output-side optimization
One of PLINQ’s advantages is that it conveniently collates the results from parallel‐
ized work into a single output sequence. Sometimes, though, all that you end up
doing with that sequence is running some function once over each element:

foreach (int n in parallelQuery)
  DoSomething (n);

If this is the case—and you don’t care about the order in which the elements are
processed—you can improve efficiency with PLINQ’s ForAll method.

The ForAll method runs a delegate over every output element of a ParallelQuery.
It hooks directly into PLINQ’s internals, bypassing the steps of collating and enu‐
merating the results. Here’s a trivial example:

"abcdef".AsParallel().Select (c => char.ToUpper(c)).ForAll (Console.Write);

Figure 22-3 shows the process.
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Figure 22-3. PLINQ ForAll

Collating and enumerating results is not a massively expensive
operation, so the ForAll optimization yields the greatest gains
when there are large numbers of quickly executing input ele‐
ments.

Input-side optimization
PLINQ has three partitioning strategies for assigning input elements to threads:

Strategy Element allocation Relative performance

Chunk partitioning Dynamic Average

Range partitioning Static Poor to excellent

Hash partitioning Static Poor

For query operators that require comparing elements (GroupBy, Join, GroupJoin,
Intersect, Except, Union, and Distinct), you have no choice: PLINQ always uses
hash partitioning. Hash partitioning is relatively inefficient in that it must precalcu‐
late the hashcode of every element (so that elements with identical hashcodes can be
processed on the same thread). If you find this to be too slow, your only option is to
call AsSequential to disable parallelization.

For all other query operators, you have a choice as to whether to use range or chunk
partitioning. By default:

• If the input sequence is indexable (if it’s an array or implements IList<T>),•
PLINQ chooses range partitioning.

• Otherwise, PLINQ chooses chunk partitioning.•

In a nutshell, range partitioning is faster with long sequences for which every ele‐
ment takes a similar amount of CPU time to process. Otherwise, chunk partitioning
is usually faster.
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To force range partitioning:

• If the query starts with Enumerable.Range, replace that method with Paralle•
lEnumerable.Range.

• Otherwise, simply call ToList or ToArray on the input sequence (obviously,•
this incurs a performance cost in itself, which you should take into account).

ParallelEnumerable.Range is not simply a shortcut for call‐
ing Enumerable.Range(…).AsParallel(). It changes the
performance of the query by activating range partitioning.

To force chunk partitioning, wrap the input sequence in a call to Partitioner.Cre
ate (in System.Collection.Concurrent), as follows:

int[] numbers = { 3, 4, 5, 6, 7, 8, 9 };
var parallelQuery =
  Partitioner.Create (numbers, true).AsParallel()
  .Where (...)

The second argument to Partitioner.Create indicates that you want to load-
balance the query, which is another way of saying that you want chunk partitioning.

Chunk partitioning works by having each worker thread periodically grab small
“chunks” of elements from the input sequence to process (see Figure 22-4). PLINQ
starts by allocating very small chunks (one or two elements at a time). It then
increases the chunk size as the query progresses: this ensures that small sequences
are effectively parallelized and large sequences don’t cause excessive round-tripping.
If a worker happens to get “easy” elements (that process quickly), it will end up
getting more chunks. This system keeps every thread equally busy (and the cores
“balanced”); the only downside is that fetching elements from the shared input
sequence requires synchronization (typically an exclusive lock)—and this can result
in some overhead and contention.

Range partitioning bypasses the normal input-side enumeration and preallocates
an equal number of elements to each worker, avoiding contention on the input
sequence. But if some threads happen to get easy elements and finish early, they
sit idle while the remaining threads continue working. Our earlier prime number
calculator might perform poorly with range partitioning. An example of when range
partitioning would do well is in calculating the sum of the square roots of the first
10 million integers:

ParallelEnumerable.Range (1, 10000000).Sum (i => Math.Sqrt (i))
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Figure 22-4. Chunk versus range partitioning

ParallelEnumerable.Range returns a ParallelQuery<T>, so you don’t need to
subsequently call AsParallel.

Range partitioning doesn’t necessarily allocate element ranges
in contiguous blocks—it might instead choose a “striping”
strategy. For instance, if there are two workers, one worker
might process odd-numbered elements while the other pro‐
cesses even-numbered elements. The TakeWhile operator is
almost certain to trigger a striping strategy to avoid unneces‐
sarily processing elements later in the sequence.

Optimizing custom aggregations
PLINQ parallelizes the Sum, Average, Min, and Max operators efficiently without
additional intervention. The Aggregate operator, though, presents special chal‐
lenges for PLINQ. As described in Chapter 9, Aggregate performs custom aggrega‐
tions. For example, the following sums a sequence of numbers, mimicking the Sum
operator:

int[] numbers = { 1, 2, 3 };
int sum = numbers.Aggregate (0, (total, n) => total + n);   // 6
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We also saw in Chapter 9 that for unseeded aggregations, the supplied delegate
must be associative and commutative. PLINQ will give incorrect results if this rule
is violated, because it draws multiple seeds from the input sequence in order to
aggregate several partitions of the sequence simultaneously.

Explicitly seeded aggregations might seem like a safe option with PLINQ, but
unfortunately these ordinarily execute sequentially because of the reliance on a
single seed. To mitigate this, PLINQ provides another overload of Aggregate that
lets you specify multiple seeds—or rather, a seed factory function. For each thread,
it executes this function to generate a separate seed, which becomes a thread-local
accumulator into which it locally aggregates elements.

You must also supply a function to indicate how to combine the local and main
accumulators. Finally, this Aggregate overload (somewhat gratuitously) expects a
delegate to perform any final transformation on the result (you can achieve this as
easily by running some function on the result yourself afterward). So, here are the
four delegates, in the order they are passed:

seedFactory

Returns a new local accumulator

updateAccumulatorFunc

Aggregates an element into a local accumulator

combineAccumulatorFunc

Combines a local accumulator with the main accumulator

resultSelector

Applies any final transformation on the end result

In simple scenarios, you can specify a seed value instead of a
seed factory. This tactic fails when the seed is a reference type
that you want to mutate, because the same instance will then
be shared by each thread.

To give a very simple example, the following sums the values in a numbers array:

numbers.AsParallel().Aggregate (
 () => 0,                                      // seedFactory
  (localTotal, n) => localTotal + n,           // updateAccumulatorFunc
  (mainTot, localTot) => mainTot + localTot,   // combineAccumulatorFunc
  finalResult => finalResult)                  // resultSelector

This example is contrived in that we could get the same answer just as efficiently
using simpler approaches (such as an unseeded aggregate, or better, the Sum oper‐
ator). To give a more realistic example, suppose that we want to calculate the fre‐
quency of each letter in the English alphabet in a given string. A simple sequential
solution might look like this:

string text = "Let’s suppose this is a really long string";
var letterFrequencies = new int[26];
foreach (char c in text)
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{
  int index = char.ToUpper (c) - 'A';
  if (index >= 0 && index < 26) letterFrequencies [index]++;
};

An example of when the input text might be very long is in
gene sequencing. The “alphabet” would then consist of the
letters a, c, g, and t.

To parallelize this, we could replace the foreach statement with a call to Paral
lel.ForEach (which we cover in the following section), but this will leave us to
deal with concurrency issues on the shared array. And locking around accessing that
array would all but kill the potential for parallelization.

Aggregate offers a tidy solution. The accumulator, in this case, is an array just like
the letterFrequencies array in our preceding example. Here’s a sequential version
using Aggregate:

int[] result =
  text.Aggregate (
    new int[26],                // Create the "accumulator"
    (letterFrequencies, c) =>   // Aggregate a letter into the accumulator
    {
      int index = char.ToUpper (c) - 'A';
      if (index >= 0 && index < 26) letterFrequencies [index]++;
      return letterFrequencies;
    });

And now the parallel version, using PLINQ’s special overload:

int[] result =
  text.AsParallel().Aggregate (
   () => new int[26],             // Create a new local accumulator

    (localFrequencies, c) =>       // Aggregate into the local accumulator
    {
      int index = char.ToUpper (c) - 'A';
      if (index >= 0 && index < 26) localFrequencies [index]++;
      return localFrequencies;
    },
                                   // Aggregate local->main accumulator
    (mainFreq, localFreq) =>
      mainFreq.Zip (localFreq, (f1, f2) => f1 + f2).ToArray(),

    finalResult => finalResult     // Perform any final transformation
  );                               // on the end result.

Notice that the local accumulation function mutates the localFrequencies array.
This ability to perform this optimization is important—and is legitimate because
localFrequencies is local to each thread.
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The Parallel Class
PFX provides a basic form of structured parallelism via three static methods in the
Parallel class:

Parallel.Invoke

Executes an array of delegates in parallel

Parallel.For

Performs the parallel equivalent of a C# for loop

Parallel.ForEach

Performs the parallel equivalent of a C# foreach loop

All three methods block until all work is complete. As with PLINQ, after an
unhandled exception, remaining workers are stopped after their current iteration
and the exception (or exceptions) are thrown back to the caller—wrapped in an
AggregateException (see “Working with AggregateException” on page 964).

Parallel.Invoke
Parallel.Invoke executes an array of Action delegates in parallel and then waits
for them to complete. The simplest version of the method is defined as follows:

public static void Invoke (params Action[] actions);

Just as with PLINQ, the Parallel.* methods are optimized for compute-bound and
not I/O-bound work. However, downloading two web pages at once provides a
simple way to demonstrate Parallel.Invoke:

Parallel.Invoke (
 () => new WebClient().DownloadFile ("http://www.linqpad.net", "lp.html"),
 () => new WebClient().DownloadFile ("http://microsoft.com", "ms.html"));

On the surface, this seems like a convenient shortcut for creating and wait‐
ing on two thread-bound Task objects. But there’s an important difference:
Parallel.Invoke still works efficiently if you pass in an array of a million delegates.
This is because it partitions large numbers of elements into batches that it assigns to
a handful of underlying Tasks rather than creating a separate Task for each delegate.

As with all of Parallel’s methods, you’re on your own when it comes to collating
the results. This means that you need to keep thread safety in mind. The following,
for instance, is thread-unsafe:

var data = new List<string>();
Parallel.Invoke (
 () => data.Add (new WebClient().DownloadString ("http://www.foo.com")),
 () => data.Add (new WebClient().DownloadString ("http://www.far.com")));

Locking around adding to the list would resolve this, although locking would create
a bottleneck if you had a much larger array of quickly executing delegates. A better
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solution is to use the thread-safe collections, which we cover in later sections—
ConcurrentBag would be ideal in this case.

Parallel.Invoke is also overloaded to accept a ParallelOptions object:

public static void Invoke (ParallelOptions options,
                           params Action[] actions);

With ParallelOptions, you can insert a cancellation token, limit the maximum
concurrency, and specify a custom task scheduler. A cancellation token is relevant
when you’re executing (roughly) more tasks than you have cores: upon cancellation,
any unstarted delegates will be abandoned. Any already executing delegates will,
however, continue to completion. See “Cancellation” on page 941 for an example of
how to use cancellation tokens.

Parallel.For and Parallel.ForEach
Parallel.For and Parallel.ForEach perform the equivalent of a C# for and
foreach loop but with each iteration executing in parallel instead of sequentially.
Here are their (simplest) signatures:

public static ParallelLoopResult For (
  int fromInclusive, int toExclusive, Action<int> body)

public static ParallelLoopResult ForEach<TSource> (
  IEnumerable<TSource> source, Action<TSource> body)

This sequential for loop:

for (int i = 0; i < 100; i++)
  Foo (i);

is parallelized like this:

Parallel.For (0, 100, i => Foo (i));

or more simply:

Parallel.For (0, 100, Foo);

And this sequential foreach:

foreach (char c in "Hello, world")
  Foo (c);

is parallelized like this:

Parallel.ForEach ("Hello, world", Foo);

To give a practical example, if we import the System.Security.Cryptography
namespace, we can generate six public/private keypair strings in parallel, as follows:

var keyPairs = new string[6];

Parallel.For (0, keyPairs.Length,
              i => keyPairs[i] = RSA.Create().ToXmlString (true));
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As with Parallel.Invoke, we can feed Parallel.For and Parallel.ForEach a
large number of work items and they’ll be efficiently partitioned onto a few tasks.

The latter query could also be done with PLINQ:
string[] keyPairs =
  ParallelEnumerable.Range (0, 6)
  .Select (i => RSA.Create().ToXmlString (true))
  .ToArray();

Outer versus inner loops
Parallel.For and Parallel.ForEach usually work best on outer rather than inner
loops. This is because with the former, you’re offering larger chunks of work to
parallelize, diluting the management overhead. Parallelizing both inner and outer
loops is usually unnecessary.

In the following example, we’d typically need more than 100 cores to benefit from
the inner parallelization:

Parallel.For (0, 100, i =>
{
  Parallel.For (0, 50, j => Foo (i, j));   // Sequential would be better
});                                        // for the inner loop.

Indexed Parallel.ForEach
Sometimes, it’s useful to know the loop iteration index. With a sequential foreach,
it’s easy:

int i = 0;
foreach (char c in "Hello, world")
  Console.WriteLine (c.ToString() + i++);

Incrementing a shared variable, however, is not thread-safe in a parallel context.
You must instead use the following version of ForEach:

public static ParallelLoopResult ForEach<TSource> (
  IEnumerable<TSource> source, Action<TSource,ParallelLoopState,long> body)

We’ll ignore ParallelLoopState (which we cover in the following section). For
now, we’re interested in Action’s third type parameter of type long, which indicates
the loop index:

Parallel.ForEach ("Hello, world", (c, state, i) =>
{
   Console.WriteLine (c.ToString() + i);
});

To put this into a practical context, let’s revisit the spellchecker that we wrote with
PLINQ. The following code loads up a dictionary along with an array of a million
words to test:

if (!File.Exists ("WordLookup.txt"))    // Contains about 150,000 words
  new WebClient().DownloadFile (
    "http://www.albahari.com/ispell/allwords.txt", "WordLookup.txt");
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var wordLookup = new HashSet<string> (
  File.ReadAllLines ("WordLookup.txt"),
  StringComparer.InvariantCultureIgnoreCase);

var random = new Random();
string[] wordList = wordLookup.ToArray();

string[] wordsToTest = Enumerable.Range (0, 1000000)
  .Select (i => wordList [random.Next (0, wordList.Length)])
  .ToArray();

wordsToTest [12345] = "woozsh";     // Introduce a couple
wordsToTest [23456] = "wubsie";     // of spelling mistakes.

We can perform the spellcheck on our wordsToTest array using the indexed version
of Parallel.ForEach, as follows:

var misspellings = new ConcurrentBag<Tuple<int,string>>();

Parallel.ForEach (wordsToTest, (word, state, i) =>
{
  if (!wordLookup.Contains (word))
    misspellings.Add (Tuple.Create ((int) i, word));
});

Notice that we had to collate the results into a thread-safe collection: having to
do this is the disadvantage when compared to using PLINQ. The advantage over
PLINQ is that we avoid the cost of applying an indexed Select query operator—
which is less efficient than an indexed ForEach.

ParallelLoopState: breaking early out of loops
Because the loop body in a parallel For or ForEach is a delegate, you can’t exit
the loop early with a break statement. Instead, you must call Break or Stop on a
ParallelLoopState object:

public class ParallelLoopState
{
  public void Break();
  public void Stop();

  public bool IsExceptional { get; }
  public bool IsStopped { get; }
  public long? LowestBreakIteration { get; }
  public bool ShouldExitCurrentIteration { get; }
}

Obtaining a ParallelLoopState is easy: all versions of For and ForEach are over‐
loaded to accept loop bodies of type Action<TSource,ParallelLoopState>. So, to
parallelize this:

foreach (char c in "Hello, world")
  if (c == ',')
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    break;
  else
    Console.Write (c);

do this:

Parallel.ForEach ("Hello, world", (c, loopState) =>
{
  if (c == ',')
    loopState.Break();
  else
    Console.Write (c);
});

// OUTPUT: Hlloe

You can see from the output that loop bodies can complete in a random order.
Aside from this difference, calling Break yields at least the same elements as execut‐
ing the loop sequentially: this example will always output at least the letters H, e, l, l,
and o in some order. In contrast, calling Stop instead of Break forces all threads to
finish immediately after their current iteration. In our example, calling Stop could
give us a subset of the letters H, e, l, l, and o if another thread were lagging behind.
Calling Stop is useful when you’ve found something that you’re looking for—or
when something has gone wrong and you won’t be looking at the results.

The Parallel.For and Parallel.ForEach methods return
a ParallelLoopResult object that exposes properties called
IsCompleted and LowestBreakIteration. These tell you
whether the loop ran to completion; if it didn’t, it indicates
at what cycle the loop was broken.

If LowestBreakIteration returns null, it means that you
called Stop (rather than Break) on the loop.

If your loop body is long, you might want other threads to break partway through
the method body in case of an early Break or Stop. You can do this by polling
the ShouldExitCurrentIteration property at various places in your code; this
property becomes true immediately after a Stop—or soon after a Break.

ShouldExitCurrentIteration also becomes true after a can‐
cellation request—or if an exception is thrown in the loop.

IsExceptional lets you know whether an exception has occurred on another
thread. Any unhandled exception will cause the loop to stop after each thread’s
current iteration: to avoid this, you must explicitly handle exceptions in your code.
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Optimization with local values
Parallel.For and Parallel.ForEach each offer a set of overloads that feature a
generic type argument called TLocal. These overloads are designed to help you
optimize the collation of data with iteration-intensive loops. The simplest is this:

public static ParallelLoopResult For <TLocal> (
  int fromInclusive,
  int toExclusive,
  Func <TLocal> localInit,
  Func <int, ParallelLoopState, TLocal, TLocal> body,
  Action <TLocal> localFinally);

These methods are rarely needed in practice because their target scenarios are cov‐
ered mostly by PLINQ (which is fortunate because these overloads are somewhat
intimidating!).

Essentially, the problem is this: suppose that we want to sum the square roots of
the numbers 1 through 10,000,000. Calculating 10 million square roots is easily par‐
allelizable, but summing their values is troublesome because we must lock around
updating the total:

object locker = new object();
double total = 0;
Parallel.For (1, 10000000,
              i => { lock (locker) total += Math.Sqrt (i); });

The gain from parallelization is more than offset by the cost of obtaining 10 million
locks—plus the resultant blocking.

The reality, though, is that we don’t actually need 10 million locks. Imagine a team
of volunteers picking up a large volume of litter. If all workers shared a single trash
can, the travel and contention would make the process extremely inefficient. The
obvious solution is for each worker to have a private or “local” trash can, which is
occasionally emptied into the main bin.

The TLocal versions of For and ForEach work in exactly this way. The volunteers
are internal worker threads, and the local value represents a local trash can. For
Parallel to do this job, you must feed it two additional delegates that indicate the
following:

1. How to initialize a new local value1.
2. How to combine a local aggregation with the master value2.

Additionally, instead of the body delegate returning void, it should return the new
aggregate for the local value. Here’s our example refactored:

object locker = new object();
double grandTotal = 0;

Parallel.For (1, 10000000,

  () => 0.0,                        // Initialize the local value.
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  (i, state, localTotal) =>         // Body delegate. Notice that it
     localTotal + Math.Sqrt (i),    // returns the new local total.

  localTotal =>                                    // Add the local value
    { lock (locker) grandTotal += localTotal; }    // to the master value.
);

We must still lock, but only around aggregating the local value to the grand total.
This makes the process dramatically more efficient.

As stated earlier, PLINQ is often a good fit in these scenarios.
Our example could be parallelized with PLINQ like this:

ParallelEnumerable.Range (1, 10000000)
                  .Sum (i => Math.Sqrt (i))

(Notice that we used ParallelEnumerable to force range par‐
titioning: this improves performance in this case because all
numbers will take equally long to process.)

In more complex scenarios, you might use LINQ’s Aggregate
operator instead of Sum. If you supplied a local seed factory,
the situation would be somewhat analogous to providing a
local value function with Parallel.For. 

Task Parallelism
Task parallelism is the lowest-level approach to parallelization with PFX. The classes
for working at this level are defined in the System.Threading.Tasks namespace
and comprise the following:

Class Purpose

Task For managing a unit for work

Task<TResult> For managing a unit for work with a return value

TaskFactory For creating tasks

TaskFactory<TResult> For creating tasks and continuations with the same return type

TaskScheduler For managing the scheduling of tasks

TaskCompletionSource For manually controlling a task’s workflow

We covered the basics of tasks in Chapter 14; in this section, we look at advanced
features of tasks that are aimed at parallel programming:

• Tuning a task’s scheduling•
• Establish a parent/child relationship when one task is started from another•
• Advanced use of continuations•

• TaskFactory•

954 | Chapter 22: Parallel Programming



The Task Parallel Library lets you create hundreds (or even
thousands) of tasks with minimal overhead. But if you want
to create millions of tasks, you’ll need to partition those tasks
into larger work units to maintain efficiency. The Parallel
class and PLINQ do this automatically.

Visual Studio provides a window for monitoring tasks
(Debug®Window®Parallel Tasks). This is equivalent to the
Threads window, but for tasks. The Parallel Stacks window
also has a special mode for tasks.

Creating and Starting Tasks
As described in Chapter 14, Task.Run creates and starts a Task or Task<TResult>.
This method is actually a shortcut for calling Task.Factory.StartNew, which allows
greater flexibility through additional overloads.

Specifying a state object
Task.Factory.StartNew lets you specify a state object that is passed to the target.
The target method’s signature must then comprise a single object-type parameter:

var task = Task.Factory.StartNew (Greet, "Hello");
task.Wait();  // Wait for task to complete.

void Greet (object state) { Console.Write (state); }   // Hello

This avoids the cost of the closure required for executing a lambda expression that
calls Greet. This is a micro-optimization and is rarely necessary in practice, so we
can put the state object to better use, which is to assign a meaningful name to the
task. We can then use the AsyncState property to query its name:

var task = Task.Factory.StartNew (state => Greet ("Hello"), "Greeting");
Console.WriteLine (task.AsyncState);   // Greeting
task.Wait();

void Greet (string message) { Console.Write (message); }

Visual Studio displays each task’s AsyncState in the Parallel
Tasks window, so having a meaningful name here can ease
debugging considerably.

TaskCreationOptions
You can tune a task’s execution by specifying a TaskCreationOptions enum when
calling StartNew (or instantiating a Task). TaskCreationOptions is a flags enum
with the following (combinable) values:

LongRunning, PreferFairness, AttachedToParent

LongRunning suggests to the scheduler to dedicate a thread to the task, and as we
described in Chapter 14, this is beneficial for I/O-bound tasks and for long-running
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tasks that might otherwise force short-running tasks to wait an unreasonable
amount of time before being scheduled.

PreferFairness instructs the scheduler to try to ensure that tasks are scheduled in
the order in which they were started. It might ordinarily do otherwise because it
internally optimizes the scheduling of tasks using local work-stealing queues—an
optimization that allows the creation of child tasks without incurring the contention
overhead that would otherwise arise with a single work queue. A child task is
created by specifying AttachedToParent.

Child tasks
When one task starts another, you can optionally establish a parent-child
relationship:

Task parent = Task.Factory.StartNew (() =>
{
  Console.WriteLine ("I am a parent");

  Task.Factory.StartNew (() =>        // Detached task
  {
    Console.WriteLine ("I am detached");
  });

  Task.Factory.StartNew (() =>        // Child task
  {
    Console.WriteLine ("I am a child");
  }, TaskCreationOptions.AttachedToParent);
});

A child task is special in that when you wait for the parent task to complete, it waits
for any children, as well. At which point any child exceptions bubble up:

TaskCreationOptions atp = TaskCreationOptions.AttachedToParent;
var parent = Task.Factory.StartNew (() => 
{
  Task.Factory.StartNew (() =>   // Child
  {
    Task.Factory.StartNew (() => { throw null; }, atp);   // Grandchild
  }, atp);
});

// The following call throws a NullReferenceException (wrapped
// in nested AggregateExceptions):
parent.Wait();

This can be particularly useful when a child task is a continuation, as you’ll see
shortly.

Waiting on Multiple Tasks
We saw in Chapter 14 that you can wait on a single task either by calling its Wait
method or by accessing its Result property (if it’s a Task<TResult>). You can also
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wait on multiple tasks at once—via the static methods Task.WaitAll (waits for all
the specified tasks to finish) and Task.WaitAny (waits for just one task to finish).

WaitAll is similar to waiting out each task in turn, but is more efficient in that it
requires (at most) just one context switch. Also, if one or more of the tasks throw
an unhandled exception, WaitAll still waits out every task. It then rethrows an
AggregateException that accumulates the exceptions from each faulted task (this is
where AggregateException is genuinely useful). It’s equivalent to doing this:

// Assume t1, t2 and t3 are tasks:
var exceptions = new List<Exception>();
try { t1.Wait(); } catch (AggregateException ex) { exceptions.Add (ex); }
try { t2.Wait(); } catch (AggregateException ex) { exceptions.Add (ex); }
try { t3.Wait(); } catch (AggregateException ex) { exceptions.Add (ex); }
if (exceptions.Count > 0) throw new AggregateException (exceptions);

Calling WaitAny is equivalent to waiting on a ManualResetEventSlim that’s signaled
by each task as it finishes.

As well as a timeout, you can also pass in a cancellation token to the Wait methods:
this lets you cancel the wait—not the task itself.

Canceling Tasks
You can optionally pass in a cancellation token when starting a task. Then, if
cancellation occurs via that token, the task itself enters the “Canceled” state:

var cts = new CancellationTokenSource();
CancellationToken token = cts.Token;
cts.CancelAfter (500);

Task task = Task.Factory.StartNew (() => 
{
  Thread.Sleep (1000);
  token.ThrowIfCancellationRequested();  // Check for cancellation request
}, token);

try { task.Wait(); }
catch (AggregateException ex)
{
  Console.WriteLine (ex.InnerException is TaskCanceledException);  // True
  Console.WriteLine (task.IsCanceled);                             // True
  Console.WriteLine (task.Status);                             // Canceled
}

TaskCanceledException is a subclass of OperationCanceledException. If you
want to explicitly throw an OperationCanceledException (rather than calling
token.ThrowIfCancellationRequested), you must pass the cancellation token into
OperationCanceledException’s constructor. If you fail to do this, the task won’t
end up with a TaskStatus.Canceled status and won’t trigger OnlyOnCanceled
continuations.
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If the task is canceled before it has started, it won’t get scheduled—an OperationCan
celedException will instead be thrown on the task immediately.

Because cancellation tokens are recognized by other APIs, you can pass them into
other constructs and cancellations will propagate seamlessly:

var cancelSource = new CancellationTokenSource();
CancellationToken token = cancelSource.Token;

Task task = Task.Factory.StartNew (() =>
{
  // Pass our cancellation token into a PLINQ query:
  var query = someSequence.AsParallel().WithCancellation (token)...
  ... enumerate query ...
});

Calling Cancel on cancelSource in this example will cancel the PLINQ query,
which will throw an OperationCanceledException on the task body, which will
then cancel the task.

The cancellation tokens that you can pass into methods such
as Wait and CancelAndWait allow you to cancel the wait oper‐
ation and not the task itself.

Continuations
The ContinueWith method executes a delegate immediately after a task ends:

Task task1 = Task.Factory.StartNew (() => Console.Write ("antecedent.."));
Task task2 = task1.ContinueWith (ant => Console.Write ("..continuation"));

As soon as task1 (the antecedent) completes, fails, or is canceled, task2 (the contin‐
uation) starts. (If task1 had completed before the second line of code ran, task2
would be scheduled to execute immediately.) The ant argument passed to the con‐
tinuation’s lambda expression is a reference to the antecedent task. ContinueWith
itself returns a task, making it easy to add further continuations.

By default, antecedent and continuation tasks may execute on different threads.
You can force them to execute on the same thread by specifying TaskContinuation
Options.ExecuteSynchronously when calling ContinueWith: this can improve per‐
formance in very fine-grained continuations by lessening indirection.

Continuations and Task<TResult>
Just like ordinary tasks, continuations can be of type Task<TResult> and return
data. In the following example, we calculate Math.Sqrt(8*2) using a series of
chained tasks and then write out the result:

Task.Factory.StartNew<int> (() => 8)
  .ContinueWith (ant => ant.Result * 2)
  .ContinueWith (ant => Math.Sqrt (ant.Result))
  .ContinueWith (ant => Console.WriteLine (ant.Result));   // 4
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Our example is somewhat contrived for simplicity; in real life, these lambda expres‐
sions would call computationally intensive functions.

Continuations and exceptions
A continuation can know whether an antecedent faulted by querying the antecedent
task’s Exception property—or simply by invoking Result / Wait and catching
the resultant AggregateException. If an antecedent faults and the continuation
does neither, the exception is considered unobserved and the static TaskScheduler
.UnobservedTaskException event fires when the task is later garbage-collected.

A safe pattern is to rethrow antecedent exceptions. As long as the continuation is
Waited upon, the exception will be propagated and rethrown to the Waiter:

Task continuation = Task.Factory.StartNew     (()  => { throw null; })
                                .ContinueWith (ant =>
  {
    ant.Wait();
    // Continue processing...
  });

continuation.Wait();    // Exception is now thrown back to caller.

Another way to deal with exceptions is to specify different continuations for
exceptional versus nonexceptional outcomes. This is done with TaskContinuatio
nOptions:

Task task1 = Task.Factory.StartNew (() => { throw null; });

Task error = task1.ContinueWith (ant => Console.Write (ant.Exception),
                                 TaskContinuationOptions.OnlyOnFaulted);

Task ok = task1.ContinueWith (ant => Console.Write ("Success!"),
                              TaskContinuationOptions.NotOnFaulted);

This pattern is particularly useful in conjunction with child tasks, as you’ll see very
soon.

The following extension method “swallows” a task’s unhandled exceptions:

public static void IgnoreExceptions (this Task task)
{
  task.ContinueWith (t => { var ignore = t.Exception; },
    TaskContinuationOptions.OnlyOnFaulted);
}

(This could be improved by adding code to log the exception.) Here’s how it would
be used:

Task.Factory.StartNew (() => { throw null; }).IgnoreExceptions();
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Continuations and child tasks
A powerful feature of continuations is that they kick off only when all child tasks
have completed (see Figure 22-5). At that point, any exceptions thrown by the
children are marshaled to the continuation.

In the following example, we start three child tasks, each throwing a NullReference
Exception. We then catch all of them in one fell swoop via a continuation on the
parent:

TaskCreationOptions atp = TaskCreationOptions.AttachedToParent;
Task.Factory.StartNew (() =>
{
  Task.Factory.StartNew (() => { throw null; }, atp);
  Task.Factory.StartNew (() => { throw null; }, atp);
  Task.Factory.StartNew (() => { throw null; }, atp);
})
.ContinueWith (p => Console.WriteLine (p.Exception),
                    TaskContinuationOptions.OnlyOnFaulted);

Figure 22-5. Continuations

Conditional continuations
By default, a continuation is scheduled unconditionally, whether the antecedent
completes, throws an exception, or is canceled. You can alter this behavior via
a set of (combinable) flags included within the TaskContinuationOptions enum.
Following are the three core flags that control conditional continuation:
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NotOnRanToCompletion = 0x10000,
NotOnFaulted = 0x20000,
NotOnCanceled = 0x40000,

These flags are subtractive in the sense that the more you apply, the less likely the
continuation is to execute. For convenience, there are also the following precom‐
bined values:

OnlyOnRanToCompletion = NotOnFaulted | NotOnCanceled,
OnlyOnFaulted = NotOnRanToCompletion | NotOnCanceled,
OnlyOnCanceled = NotOnRanToCompletion | NotOnFaulted

(Combining all the Not* flags [NotOnRanToCompletion, NotOnFaulted, NotOn
Canceled] is nonsensical because it would result in the continuation always being
canceled.)

“RanToCompletion” means that the antecedent succeeded without cancellation or
unhandled exceptions.

“Faulted” means that an unhandled exception was thrown on the antecedent.

“Canceled” means one of two things:

• The antecedent was canceled via its cancellation token. In other words, an•
OperationCanceledException was thrown on the antecedent, whose Cancella
tionToken property matched that passed to the antecedent when it was started.

• The antecedent was implicitly canceled because it didn’t satisfy a conditional•
continuation predicate.

It’s essential to grasp that when a continuation doesn’t execute by virtue of these
flags, the continuation is not forgotten or abandoned—it’s canceled. This means that
any continuations on the continuation itself will then run unless you predicate them
with NotOnCanceled. For example, consider this:

Task t1 = Task.Factory.StartNew (...);

Task fault = t1.ContinueWith (ant => Console.WriteLine ("fault"),
                              TaskContinuationOptions.OnlyOnFaulted);

Task t3 = fault.ContinueWith (ant => Console.WriteLine ("t3"));

As it stands, t3 will always get scheduled—even if t1 doesn’t throw an exception
(see Figure 22-6). This is because if t1 succeeds, the fault task will be canceled, and
with no continuation restrictions placed on t3, t3 will then execute unconditionally.

If we want t3 to execute only if fault actually runs, we must instead do this:

Task t3 = fault.ContinueWith (ant => Console.WriteLine ("t3"),
                              TaskContinuationOptions.NotOnCanceled);

(Alternatively, we could specify OnlyOnRanToCompletion; the difference is that t3
would not then execute if an exception were thrown within fault.)
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Figure 22-6. Conditional continuations

Continuations with multiple antecedents
You can schedule continuation to execute based on the completion of multiple
antecedents with the ContinueWhenAll and ContinueWhenAny methods in the Task
Factory class. These methods have become redundant, however, with the introduc‐
tion of the task combinators discussed in Chapter 14 (WhenAll and WhenAny).
Specifically, given the following tasks:

var task1 = Task.Run (() => Console.Write ("X"));
var task2 = Task.Run (() => Console.Write ("Y"));

we can schedule a continuation to execute when both complete as follows:

var continuation = Task.Factory.ContinueWhenAll (
  new[] { task1, task2 }, tasks => Console.WriteLine ("Done"));

Here’s the same result with the WhenAll task combinator:

var continuation = Task.WhenAll (task1, task2)
                       .ContinueWith (ant => Console.WriteLine ("Done"));

Multiple continuations on a single antecedent
Calling ContinueWith more than once on the same task creates multiple contin‐
uations on a single antecedent. When the antecedent finishes, all continuations
will start together (unless you specify TaskContinuationOptions.ExecuteSynchro
nously, in which case the continuations will execute sequentially).

The following waits for one second and then writes either XY or YX:

var t = Task.Factory.StartNew (() => Thread.Sleep (1000));
t.ContinueWith (ant => Console.Write ("X"));
t.ContinueWith (ant => Console.Write ("Y"));

Task Schedulers
A task scheduler allocates tasks to threads and is represented by the abstract Task
Scheduler class. .NET provides two concrete implementations: the default scheduler
that works in tandem with the CLR thread pool, and the synchronization context
scheduler. The latter is designed (primarily) to help you with the threading model of
WPF and Windows Forms, which requires that user interface elements and controls
are accessed only from the thread that created them (see “Threading in Rich Client
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Applications” on page 643). By capturing it, we can instruct a task or a continuation
to execute on this context:

// Suppose we are on a UI thread in a Windows Forms / WPF application:
_uiScheduler = TaskScheduler.FromCurrentSynchronizationContext();

Assuming Foo is a compute-bound method that returns a string and lblResult is
a WPF or Windows Forms label, we could then safely update the label after the
operation completes, as follows:

Task.Run (() => Foo())
  .ContinueWith (ant => lblResult.Content = ant.Result, _uiScheduler);

Of course, C#’s asynchronous functions would more commonly be used for this
kind of thing.

It’s also possible to write our own task scheduler (by subclassing TaskScheduler),
although this is something you’d do only in very specialized scenarios. For custom
scheduling, you’d more commonly use TaskCompletionSource.

TaskFactory
When you call Task.Factory, you’re calling a static property on Task that returns
a default TaskFactory object. The purpose of a task factory is to create tasks;
specifically, three kinds of tasks:

• “Ordinary” tasks (via StartNew)•

• Continuations with multiple antecedents (via ContinueWhenAll and Continue•
WhenAny)

• Tasks that wrap methods that follow the defunct APM (via FromAsync; see•
“Obsolete Patterns” on page 689)

Another way to create tasks is to instantiate Task and call Start. However, this lets
you create only “ordinary” tasks, not continuations.

Creating your own task factories
TaskFactory is not an abstract factory: you can actually instantiate the class, and
this is useful when you want to repeatedly create tasks using the same (nonstan‐
dard) values for TaskCreationOptions, TaskContinuationOptions, or TaskSchedu
ler. For example, if we want to repeatedly create long-running parented tasks, we
could create a custom factory, as follows:

var factory = new TaskFactory (
  TaskCreationOptions.LongRunning | TaskCreationOptions.AttachedToParent,
  TaskContinuationOptions.None);
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Creating tasks is then simply a matter of calling StartNew on the factory:

Task task1 = factory.StartNew (Method1);
Task task2 = factory.StartNew (Method2);
...

The custom continuation options are applied when calling ContinueWhenAll and
ContinueWhenAny.

Working with AggregateException
As we’ve seen, PLINQ, the Parallel class, and Tasks automatically marshal excep‐
tions to the consumer. To see why this is essential, consider the following LINQ
query, which throws a DivideByZeroException on the first iteration:

try
{
  var query = from i in Enumerable.Range (0, 1000000)
              select 100 / i;
  ...
}
catch (DivideByZeroException)
{
  ...
}

If we asked PLINQ to parallelize this query and it ignored the handling of excep‐
tions, a DivideByZeroException would probably be thrown on a separate thread,
bypassing our catch block and causing the application to die.

Hence, exceptions are automatically caught and rethrown to the caller. But unfortu‐
nately, it’s not quite as simple as catching a DivideByZeroException. Because these
libraries utilize many threads, it’s actually possible for two or more exceptions to
be thrown simultaneously. To ensure that all exceptions are reported, exceptions
are therefore wrapped in an AggregateException container, which exposes an
InnerExceptions property containing each of the caught exception(s):

try
{
  var query = from i in ParallelEnumerable.Range (0, 1000000)
              select 100 / i;
  // Enumerate query
  ...
}
catch (AggregateException aex)
{
  foreach (Exception ex in aex.InnerExceptions)
    Console.WriteLine (ex.Message);
}
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Both PLINQ and the Parallel class end the query or loop
execution upon encountering the first exception—by not pro‐
cessing any further elements or loop bodies. More exceptions
might be thrown, however, before the current cycle is com‐
plete. The first exception in AggregateException is visible in
the InnerException property.

Flatten and Handle
The AggregateException class provides a couple of methods to simplify exception
handling: Flatten and Handle.

Flatten
AggregateExceptions will quite often contain other AggregateExceptions. An
example of when this might happen is if a child task throws an exception. You can
eliminate any level of nesting to simplify handling by calling Flatten. This method
returns a new AggregateException with a simple flat list of inner exceptions:

catch (AggregateException aex)
{
  foreach (Exception ex in aex.Flatten().InnerExceptions)
    myLogWriter.LogException (ex);
}

Handle
Sometimes, it’s useful to catch only specific exception types, and have other types
rethrown. The Handle method on AggregateException provides a shortcut for
doing this. It accepts an exception predicate which it runs over every inner excep‐
tion:

public void Handle (Func<Exception, bool> predicate)

If the predicate returns true, it considers that exception “handled.” After the dele‐
gate has run over every exception, the following happens:

• If all exceptions were “handled” (the delegate returned true), the exception is•
not rethrown.

• If there were any exceptions for which the delegate returned false (“unhan‐•
dled”), a new AggregateException is built up containing those exceptions and
is rethrown.

For instance, the following ends up rethrowing another AggregateException that
contains a single NullReferenceException:

var parent = Task.Factory.StartNew (() => 
{
  // We’ll throw 3 exceptions at once using 3 child tasks:

  int[] numbers = { 0 };
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  var childFactory = new TaskFactory
   (TaskCreationOptions.AttachedToParent, TaskContinuationOptions.None);

  childFactory.StartNew (() => 5 / numbers[0]);   // Division by zero
  childFactory.StartNew (() => numbers [1]);      // Index out of range
  childFactory.StartNew (() => { throw null; });  // Null reference
});

try { parent.Wait(); }
catch (AggregateException aex)
{
  aex.Flatten().Handle (ex =>   // Note that we still need to call Flatten
  {
    if (ex is DivideByZeroException)
    {
      Console.WriteLine ("Divide by zero");
      return true;                           // This exception is "handled"
    }
    if (ex is IndexOutOfRangeException)
    {
      Console.WriteLine ("Index out of range");
      return true;                           // This exception is "handled"   
    }
    return false;    // All other exceptions will get rethrown
  });
}

Concurrent Collections
.NET offers thread-safe collections in the System.Collections.Concurrent

namespace:

Concurrent collection Nonconcurrent equivalent

ConcurrentStack<T> Stack<T>

ConcurrentQueue<T> Queue<T>

ConcurrentBag<T> (none)

ConcurrentDictionary<TKey,TValue> Dictionary<TKey,TValue>

The concurrent collections are optimized for high-concurrency scenarios; however,
they can also be useful whenever you need a thread-safe collection (as an alternative
to locking around an ordinary collection). There are some caveats, though:

• The conventional collections outperform the concurrent collections in all but•
highly concurrent scenarios.

• A thread-safe collection doesn’t guarantee that the code using it will be thread-•
safe (see “Locking and Thread Safety” on page 898).
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• If you enumerate over a concurrent collection while another thread is modify‐•
ing it, no exception is thrown—instead, you get a mixture of old and new
content.

• There’s no concurrent version of List<T>.•
• The concurrent stack, queue, and bag classes are implemented internally with•

linked lists. This makes them less memory-efficient than the nonconcurrent
Stack and Queue classes, but better for concurrent access because linked
lists are conducive to lock-free or low-lock implementations. (This is because
inserting a node into a linked list requires updating just a couple of references,
whereas inserting an element into a List<T>-like structure might require mov‐
ing thousands of existing elements.)

In other words, these collections are not merely shortcuts for using an ordinary
collection with a lock. To demonstrate, if we execute the following code on a single
thread:

var d = new ConcurrentDictionary<int,int>();
for (int i = 0; i < 1000000; i++) d[i] = 123;

it runs three times more slowly than this:

var d = new Dictionary<int,int>();
for (int i = 0; i < 1000000; i++) lock (d) d[i] = 123;

(Reading from a ConcurrentDictionary, however, is fast because reads are lock-
free.)

The concurrent collections also differ from conventional collections in that they
expose special methods to perform atomic test-and-act operations, such as TryPop.
Most of these methods are unified via the IProducerConsumerCollection<T> inter‐
face.

IProducerConsumerCollection<T>
A producer/consumer collection is one for which the two primary use cases are:

• Adding an element (“producing”)•
• Retrieving an element while removing it (“consuming”)•

The classic examples are stacks and queues. Producer/consumer collections are
significant in parallel programming because they’re conducive to efficient lock-free
implementations.

The IProducerConsumerCollection<T> interface represents a thread-safe pro‐
ducer/consumer collection. The following classes implement this interface:

ConcurrentStack<T>
ConcurrentQueue<T>
ConcurrentBag<T>
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IProducerConsumerCollection<T> extends ICollection, adding the following
methods:

void CopyTo (T[] array, int index);
T[] ToArray();
bool TryAdd (T item);
bool TryTake (out T item);

The TryAdd and TryTake methods test whether an add/remove operation can be
performed; if so, they perform the add/remove. The testing and acting are atomi‐
cally performed, eliminating the need to lock as you would around a conventional
collection:

int result;
lock (myStack) if (myStack.Count > 0) result = myStack.Pop();

TryTake returns false if the collection is empty. TryAdd always succeeds and
returns true in the three implementations provided. If you wrote your own concur‐
rent collection that prohibited duplicates, however, you’d make TryAdd return false
if the element already existed (an example would be if you wrote a concurrent set).

The particular element that TryTake removes is defined by the subclass:

• With a stack, TryTake removes the most recently added element.•

• With a queue, TryTake removes the least recently added element.•

• With a bag, TryTake removes whatever element it can remove most efficiently.•

The three concrete classes mostly implement the TryTake and TryAdd methods
explicitly, exposing the same functionality through more specifically named public
methods such as TryDequeue and TryPop.

ConcurrentBag<T>
ConcurrentBag<T> stores an unordered collection of objects (with duplicates per‐
mitted). ConcurrentBag<T> is suitable in situations for which you don’t care which
element you get when calling Take or TryTake.

The benefit of ConcurrentBag<T> over a concurrent queue or stack is that a bag’s
Add method suffers almost no contention when called by many threads at once.
In contrast, calling Add in parallel on a queue or stack incurs some contention
(although a lot less than locking around a nonconcurrent collection). Calling Take
on a concurrent bag is also very efficient—as long as each thread doesn’t take more
elements than it Added.

Inside a concurrent bag, each thread gets its own private linked list. Elements
are added to the private list that belongs to the thread calling Add, eliminating
contention. When you enumerate over the bag, the enumerator travels through each
thread’s private list, yielding each of its elements in turn.
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1 Due to an implementation detail, there actually needs to be at least two elements to avoid
contention entirely.

When you call Take, the bag first looks at the current thread’s private list. If there’s at
least one element,1 it can complete the task easily and without contention. But if the
list is empty, it must “steal” an element from another thread’s private list and incur
the potential for contention.

So, to be precise, calling Take gives you the element added most recently on that
thread; if there are no elements on that thread, it gives you the element added most
recently on another thread, chosen at random.

Concurrent bags are ideal when the parallel operation on your collection mostly
comprises Adding elements—or when the Adds and Takes are balanced on a thread.
We saw an example of the former previously, when using Parallel.ForEach to
implement a parallel spellchecker:

var misspellings = new ConcurrentBag<Tuple<int,string>>();

Parallel.ForEach (wordsToTest, (word, state, i) =>
{
  if (!wordLookup.Contains (word))
    misspellings.Add (Tuple.Create ((int) i, word));
});

A concurrent bag would be a poor choice for a producer/consumer queue because
elements are added and removed by different threads.

BlockingCollection<T>
If you call TryTake on any of the producer/consumer collections we discussed in
the previous section, ConcurrentStack<T>, ConcurrentQueue<T>, and Concurrent
Bag<T>, and the collection is empty, the method returns false. Sometimes, it would
be more useful in this scenario to wait until an element is available.

Rather than overloading the TryTake methods with this functionality (which would
have caused a blowout of members after allowing for cancellation tokens and
timeouts), PFX’s designers encapsulated this functionality into a wrapper class
called BlockingCollection<T>. A blocking collection wraps any collection that
implements IProducerConsumerCollection<T> and lets you Take an element from
the wrapped collection—blocking if no element is available.

A blocking collection also lets you limit the total size of the collection, blocking
the producer if that size is exceeded. A collection limited in this manner is called a
bounded blocking collection.
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To use BlockingCollection<T>:

1. Instantiate the class, optionally specifying the IProducerConsumerCollec1.
tion<T> to wrap and the maximum size (bound) of the collection.

2. Call Add or TryAdd to add elements to the underlying collection.2.

3. Call Take or TryTake to remove (consume) elements from the underlying3.
collection.

If you call the constructor without passing in a collection, the class will automati‐
cally instantiate a ConcurrentQueue<T>. The producing and consuming methods
let you specify cancellation tokens and timeouts. Add and TryAdd may block if the
collection size is bounded; Take and TryTake block while the collection is empty.

Another way to consume elements is to call GetConsumingEnumerable. This returns
a (potentially) infinite sequence that yields elements as they become available. You
can force the sequence to end by calling CompleteAdding: this method also prevents
further elements from being enqueued.

BlockingCollection also provides static methods called AddToAny and TakeFrom
Any, which let you add or take an element while specifying several blocking collec‐
tions. The action is then honored by the first collection able to service the request.

Writing a Producer/Consumer Queue
A producer/consumer queue is a useful structure, both in parallel programming
and general concurrency scenarios. Here’s how it works:

• A queue is set up to describe work items—or data upon which work is per‐•
formed.

• When a task needs executing, it’s enqueued, and the caller gets on with other•
things.

• One or more worker threads plug away in the background, picking off and•
executing queued items.

A producer/consumer queue gives you precise control over how many worker
threads execute at once, which is useful not only in limiting CPU consumption but
other resources, as well. If the tasks perform intensive disk I/O, for instance, you
can limit concurrency to avoid starving the operating system and other applications.
You can also dynamically add and remove workers throughout the queue’s life.
The CLR’s thread pool itself is a kind of producer/consumer queue, optimized for
short-running compute-bound jobs.

A producer/consumer queue typically holds items of data upon which (the same)
task is performed. For example, the items of data may be filenames, and the task
might be to encrypt those files. By making the item a delegate, however, you can
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write a more general-purpose producer/consumer queue where each item can do
anything.

At http://albahari.com/threading, we show how to write a producer/consumer queue
from scratch using an AutoResetEvent (and later, using Monitor’s Wait and Pulse).
However, writing a producer/consumer from scratch is unnecessary because most
of the functionality is provided by BlockingCollection<T>. Here’s how to use it:

public class PCQueue : IDisposable
{
  BlockingCollection<Action> _taskQ = new BlockingCollection<Action>();

  public PCQueue (int workerCount)
  {
    // Create and start a separate Task for each consumer:
    for (int i = 0; i < workerCount; i++)
      Task.Factory.StartNew (Consume);
  }

  public void Enqueue (Action action) { _taskQ.Add (action); }

  void Consume()
  {
    // This sequence that we’re enumerating will block when no elements
    // are available and will end when CompleteAdding is called.

    foreach (Action action in _taskQ.GetConsumingEnumerable())
      action();     // Perform task.
  }

  public void Dispose() { _taskQ.CompleteAdding(); }
}

Because we didn’t pass anything into BlockingCollection’s constructor, it instanti‐
ated a concurrent queue automatically. Had we passed in a ConcurrentStack, we’d
have ended up with a producer/consumer stack.

Using Tasks
The producer/consumer that we just wrote is inflexible in that we can’t track work
items after they’ve been enqueued. It would be nice if we could do the following:

• Know when a work item has completed (and await it)•
• Cancel a work item•
• Deal elegantly with any exceptions thrown by a work item•

An ideal solution would be to have the Enqueue method return some object giving
us the functionality just described. The good news is that a class already exists to do
exactly this—the Task class, which we can generate either with a TaskCompletion
Source or by instantiating directly (creating an unstarted or cold task):
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public class PCQueue : IDisposable
{
  BlockingCollection<Task> _taskQ = new BlockingCollection<Task>();

  public PCQueue (int workerCount)
  {
    // Create and start a separate Task for each consumer:
    for (int i = 0; i < workerCount; i++)
      Task.Factory.StartNew (Consume);
  }

  public Task Enqueue (Action action, CancellationToken cancelToken
                                            = default (CancellationToken))
  {
    var task = new Task (action, cancelToken);
    _taskQ.Add (task);
    return task;
  }

  public Task<TResult> Enqueue<TResult> (Func<TResult> func, 
              CancellationToken cancelToken = default (CancellationToken))
  {
    var task = new Task<TResult> (func, cancelToken);
    _taskQ.Add (task);
    return task;
  }
  
  void Consume()
  {
    foreach (var task in _taskQ.GetConsumingEnumerable())
      try 
      {
          if (!task.IsCanceled) task.RunSynchronously();
      } 
      catch (InvalidOperationException) { }  // Race condition
  }

  public void Dispose() { _taskQ.CompleteAdding(); }
}

In Enqueue, we enqueue and return to the caller a task that we create but don’t start.

In Consume, we run the task synchronously on the consumer’s thread. We catch an
InvalidOperationException to handle the unlikely event that the task is canceled
in between checking whether it’s canceled and running it.

Here’s how we can use this class:

var pcQ = new PCQueue (2);    // Maximum concurrency of 2
string result = await pcQ.Enqueue (() => "That was easy!");
...

Hence, we have all the benefits of tasks—with exception propagation, return values,
and cancellation—while taking complete control over scheduling.
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23
Span<T> and Memory<T>

The Span<T> and Memory<T> structs act as low-level façades over an array, string, or
any contiguous block of managed or unmanaged memory. Their main purpose is to
help with certain kinds of micro-optimization—in particular, writing low-allocation
code that minimizes managed memory allocations (thereby reducing the load on
the garbage collector), without having to duplicate your code for different kinds
of input. They also enable slicing—working with a portion of an array, string, or
memory block without creating a copy.

Span<T> and Memory<T> are particularly useful in performance hotspots, such as the
ASP.NET Core processing pipeline, or a JSON parser that serves an object database.

Should you come across these types in an API and not need or
care for their potential performance advantages, you can deal
with them easily as follows:

• When calling a method that expects a Span<T>, ReadOnly•
Span<T>, Memory<T>, or ReadOnlyMemory<T>, pass in an
array instead; that is, T[]. (This works thanks to implicit
conversion operators.)

• To convert from a span/memory to an array, call the•
ToArray method. And if T is char, ToString will convert
the span/memory into a string.

From C# 12, you can also use collection initializers to create
spans.
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Specifically, Span<T> does two things:

• It provides a common array-like interface over managed arrays, strings, and•
pointer-backed memory. This gives you the freedom to employ stack-allocated
and unmanaged memory to avoid garbage collection, without having to dupli‐
cate code or mess with pointers.

• It allows “slicing”: exposing reusable subsections of the span without making•
copies.

Span<T> comprises just two fields, a pointer and a length. For
this reason, it can represent only contiguous blocks of mem‐
ory. (Should you need to work with noncontiguous memory,
the ReadOnlySequence<T> class is available to serve as a linked
list.)

Because Span<T> can wrap stack-allocated memory, there are restrictions on how
you can store or pass around instances (imposed, in part, by Span<T> being a ref
struct). Memory<T> acts as a span without those restrictions, but it cannot wrap
stack-allocated memory. Memory<T> still provides the benefit of slicing.

Each struct comes with a read-only counterpart (ReadOnlySpan<T> and ReadOnly
Memory<T>). As well as preventing unintentional change, the read-only counterparts
further improve performance by allowing the compiler and runtime additional
freedom for optimization.

.NET itself (and ASP.NET Core) use these types to improve efficiency with I/O,
networking, string handling, and JSON parsing.

Span<T> and Memory<T>’s ability to perform array slicing make
the old ArraySegment<T> class redundant. To help with any
transition, there are implicit conversion operators from Array
Segment<T> to all of the span/memory structs, and from
Memory<T> and ReadOnlyMemory<T> to ArraySegment<T>.

Spans and Slicing
Unlike an array, a span can easily be sliced to represent different subsections of the
same underlying data, as illustrated in Figure 23-1.

To give a practical example, suppose that you’re writing a method to sum an array
of integers. A micro-optimized implementation would avoid LINQ in favor of a
foreach loop:

int Sum (int[] numbers)
{
  int total = 0;
  foreach (int i in numbers) total += i;
  return total;
}
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Figure 23-1. Slicing

Now imagine that you want to sum just a portion of the array. You have two options:

• First copy the portion of the array that you want to sum into another array•

• Add additional parameters to the method (offset and count)•

The first option is inefficient; the second option adds clutter and complexity (which
worsens with methods that need to accept more than one array).

Spans solve this nicely. All you need to do is to change the parameter type from
int[] to ReadOnlySpan<int> (everything else stays the same):

int Sum (ReadOnlySpan<int> numbers)
{
  int total = 0;
  foreach (int i in numbers) total += i;
  return total;
}

We used ReadOnlySpan<T> rather than Span<T> because we
don’t need to modify the array. There’s an implicit conversion
from Span<T> to ReadOnlySpan<T>, so you can pass a Span<T>
into a method that expects a ReadOnlySpan<T>.

We can test this method, as follows:

var numbers = new int [1000];
for (int i = 0; i < numbers.Length; i++) numbers [i] = i;

int total = Sum (numbers);

We can call Sum with an array because there’s an implicit conversion from T[]
to Span<T> and ReadOnlySpan<T>. Another option is to use the AsSpan extension
method:

var span = numbers.AsSpan();

The indexer for ReadOnlySpan<T> uses C#’s ref readonly feature to reach directly
into the underlying data: this allows our method to perform almost as well as the
original example that used an array. But what we’ve gained is that we can now “slice”
the array and sum just a portion of the elements as follows:
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// Sum the middle 500 elements (starting from position 250):
int total = Sum (numbers.AsSpan (250, 500));

If you already have a Span<T> or ReadOnlySpan<T>, you can slice it by calling the
Slice method:

Span<int> span = numbers;
int total = Sum (span.Slice (250, 500));

You can also use C#’s indices and ranges (from C# 8):

Span<int> span = numbers;
Console.WriteLine (span [^1]);            // Last element
Console.WriteLine (Sum (span [..10]));    // First 10 elements
Console.WriteLine (Sum (span [100..]));   // 100th element to end
Console.WriteLine (Sum (span [^5..]));    // Last 5 elements

Although Span<T> doesn’t implement IEnumerable<T> (it can’t implement inter‐
faces by virtue of being a ref struct), it does implement the pattern that allows C#’s
foreach statement to work (see “Enumeration” on page 203).

CopyTo and TryCopyTo
The CopyTo method copies elements from one span (or Memory<T>) to another. In
the following example, we copy all of the elements from span x into span y:

Span<int> x = [1, 2, 3, 4];   // Collection expression
Span<int> y = new int[4];
x.CopyTo (y);

Notice that we initialized x with a collection expression. Collec‐
tion expressions (from C# 12) are not only a useful shortcut,
but in the case of spans, they allow the compiler the freedom
to choose the underlying type. When the element count is
small, the compiler may allocate memory on the stack (rather
than creating an array) to avoid the overhead of a heap alloca‐
tion.

Slicing makes this method much more useful. In the next example, we copy the first
half of span x into the second half of span y:

Span<int> x = [1,  2,  3,  4 ];
Span<int> y = [10, 20, 30, 40];
x[..2].CopyTo (y[2..]);                 // y is now [10, 20, 1, 2]

If there’s not enough space in the destination to complete the copy, CopyTo throws
an exception, whereas TryCopyTo returns false (without copying any elements).

The span structs also expose methods to Clear and Fill the span as well as an
IndexOf method to search for an element in the span.
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Searching in Spans
The MemoryExtensions class defines numerous extension methods to help with
searching for values within spans such as Contains, IndexOf, LastIndexOf, and
BinarySearch (as well as methods that mutate spans, such as Fill, Replace, and
Reverse).

From .NET 8, there are also methods to search for any one of a number of values,
such as ContainsAny, ContainsAnyExcept, IndexOfAny, and IndexOfAnyExcept.
With these methods, you can specify the values to search either as a span or as a
SearchValues<T> instance (in System.Buffers), which you instantiate by calling
SearchValues.Create:

ReadOnlySpan<char> span = "The quick brown fox jumps over the lazy dog.";
var vowels = SearchValues.Create ("aeiou");
Console.WriteLine (span.IndexOfAny (vowels));   // 2

SearchValues<T> improves performance when the instance is reused across multi‐
ple searches.

You can also utilize these methods when working with arrays
or strings, simply by calling AsSpan() on the array or string.

Working with Text
Spans are designed to work well with strings, which are treated as ReadOnly
Span<char>. The following method counts whitespace characters:

int CountWhitespace (ReadOnlySpan<char> s)
{
  int count = 0;
  foreach (char c in s)
    if (char.IsWhiteSpace (c))
      count++;
  return count;
}

You can call such a method with a string (thanks to an implicit conversion opera‐
tor):

int x = CountWhitespace ("Word1 Word2");   // OK

or with a substring:

int y = CountWhitespace (someString.AsSpan (20, 10));

The ToString() method converts a ReadOnlySpan<char> back to a string.

Extension methods ensure that some of the commonly used methods on the string
class are also available to ReadOnlySpan<char>:

var span = "This ".AsSpan();                    // ReadOnlySpan<char>
Console.WriteLine (span.StartsWith ("This"));   // True
Console.WriteLine (span.Trim().Length);         // 4
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(Note that methods such as StartsWith use ordinal comparison, whereas the corre‐
sponding methods on the string class use culture-sensitive comparison by default.)

Methods such as ToUpper and ToLower are available, but you must pass in a desti‐
nation span with the correct length (this allows you to decide how and where to
allocate the memory).

Some of string’s methods are unavailable, such as Split (which splits a string into
an array of words). It’s actually impossible to write the direct equivalent of string’s
Split method because you cannot create an array of spans.

This is because spans are defined as ref structs, which can exist
only on the stack.
(By “exist only on the stack,” we mean that the struct itself
can exist only on the stack. The content that the span wraps
can—and does, in this case—exist on the heap.)

The System.Buffers.Text namespace contains additional types to help you work
with span-based text, including the following:

• Utf8Formatter.TryFormat does the equivalent of calling ToString on built-in•
and simple types such as decimal, DateTime, and so on but writes to a span
instead of a string.

• Utf8Parser.TryParse does the reverse and parses data from a span into a•
simple type.

• The Base64 type provides methods for reading/writing base-64 data.•

From .NET 8, the .NET numeric and date/time types (as well
as other simple types) allow direct formatting and parsing of
UTF-8, via new TryFormat and Parse/TryParse methods that
operate on a Span<byte>. The new methods are defined in
the IUtf8SpanFormattable and IUtf8SpanParsable<TSelf>
interfaces (the latter leverages C# 12’s ability to define static
abstract interface members).

Fundamental CLR methods such as int.Parse have also been overloaded to accept
ReadOnlySpan<char>.

Memory<T>
Span<T> and ReadOnlySpan<T> are defined as ref structs to maximize their optimiza‐
tion potential as well as allowing them to work safely with stack-allocated memory
(as you’ll see in the next section). However, it also imposes limitations. In addition
to being array-unfriendly, you cannot use them as fields in a class (this would put
them on the heap). This, in turn, prevents them from appearing in lambda expres‐
sions—and as parameters in asynchronous methods, iterators, and asynchronous
streams:
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async void Foo (Span<int> notAllowed)   // Compile-time error!

(Remember that the compiler processes asynchronous methods and iterators by
writing a private state machine, which means that any parameters and local variables
end up as fields. The same applies to lambda expressions that close over variables:
these also end up as fields in a closure.)

The Memory<T> and ReadOnlyMemory<T> structs work around this, acting as spans
that cannot wrap stack-allocated memory, allowing their use in fields, lambda
expressions, asynchronous methods, and so on.

You can obtain a Memory<T> or ReadOnlyMemory<T> from an array via an implicit
conversion or the AsMemory() extension method:

Memory<int> mem1 = new int[] { 1, 2, 3 };
var mem2 = new int[] { 1, 2, 3 }.AsMemory();

You can easily “convert” a Memory<T> or ReadOnlyMemory<T> into a Span<T> or
ReadOnlySpan<T> via its Span property so that you can interact with it as though it
were a span. The conversion is efficient in that it doesn’t perform any copying:

async void Foo (Memory<int> memory)   
{
  Span<int> span = memory.Span;
  ...
}

(You can also directly slice a Memory<T> or ReadOnlyMemory<T> via its Slice method
or a C# range, and access its length via its Length property.)

Another way to obtain a Memory<T> is to rent it from a pool,
using the System.Buffers.MemoryPool<T> class. This works
just like array pooling (see “Array Pooling” on page 599) and
offers another strategy for reducing the load on the garbage
collector.

We said in the previous section that you cannot write the direct equivalent of
string.Split for spans, because you cannot create an array of spans. This limitation
does not apply to ReadOnlyMemory<char>:

// Split a string into words:
IEnumerable<ReadOnlyMemory<char>> Split (ReadOnlyMemory<char> input)
{
  int wordStart = 0;
  for (int i = 0; i <= input.Length; i++)
    if (i == input.Length || char.IsWhiteSpace (input.Span [i]))
    {
      yield return input [wordStart..i];   // Slice with C# range operator
      wordStart = i + 1;
    }
}
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This is more efficient than string’s Split method: instead of creating new strings for
each word, it returns slices of the original string:

foreach (var slice in Split ("The quick brown fox jumps over the lazy dog"))
{
  // slice is a ReadOnlyMemory<char>
}

You can easily convert a Memory<T> into a Span<T> (via the
Span property), but not vice versa. For this reason, it’s better to
write methods that accept Span<T> than Memory<T> when you
have a choice.
For the same reason, it’s better to write methods that accept
ReadOnlySpan<T> rather than Span<T>.

Forward-Only Enumerators
In the preceding section, we employed ReadOnlyMemory<char> as a solution
to implementing a string-style Split method. But by giving up on ReadOnly
Span<char>, we lost the ability to slice spans backed by unmanaged memory. Let’s
revisit ReadOnlySpan<char> to see whether we can find another solution.

One possible option would be to write our Split method so that it returns ranges:

Range[] Split (ReadOnlySpan<char> input)
{
  int pos = 0;
  var list = new List<Range>();
  for (int i = 0; i <= input.Length; i++)
    if (i == input.Length || char.IsWhiteSpace (input [i]))
    {
      list.Add (new Range (pos, i));
      pos = i + 1;
    }
  return list.ToArray();
}

The caller could then use those ranges to slice the original span:

ReadOnlySpan<char> source = "The quick brown fox";
foreach (Range range in Split (source))
{
  ReadOnlySpan<char> wordSpan = source [range];
  ...
}

This is an improvement, but it’s still imperfect. One of the reasons for using spans
in the first place is to avoid memory allocations. But notice that our Split method
creates a List<Range>, adds items to it, and then converts the list into an array. This
incurs at least two memory allocations as well a memory-copy operation.
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The solution to this is to eschew the list and array in favor of a forward-only enu‐
merator. An enumerator is clumsier to work with, but it can be made allocation-free
with the use of structs:

// We must define this as a ref struct, because _input is a ref struct.
public readonly ref struct CharSpanSplitter
{
  readonly ReadOnlySpan<char> _input;
  public CharSpanSplitter (ReadOnlySpan<char> input) => _input = input;
  public Enumerator GetEnumerator() => new Enumerator (_input);

  public ref struct Enumerator   // Forward-only enumerator
  {
    readonly ReadOnlySpan<char> _input;
    int _wordPos;
    public ReadOnlySpan<char> Current { get; private set; }

    public Rator (ReadOnlySpan<char> input)
    {
      _input = input;
      _wordPos = 0;
      Current = default;
    }

    public bool MoveNext()
    {
      for (int i = _wordPos; i <= _input.Length; i++)
        if (i == _input.Length || char.IsWhiteSpace (_input [i]))
        {
          Current = _input [_wordPos..i];
          _wordPos = i + 1;
          return true;
        }
      return false;
    }
  }
}

public static class CharSpanExtensions
{
  public static CharSpanSplitter Split (this ReadOnlySpan<char> input)
    => new CharSpanSplitter (input);

  public static CharSpanSplitter Split (this Span<char> input)
    => new CharSpanSplitter (input);
}

Here’s how you would call it:

var span = "the quick brown fox".AsSpan();
foreach (var word in span.Split())
{
  // word is a ReadOnlySpan<char>
}
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By defining a Current property and a MoveNext method, our enumerator can
work with C#’s foreach statement (see “Enumeration” on page 203). We don’t
have to implement the IEnumerable<T>/IEnumerator<T> interfaces (in fact, we
can’t; ref structs can’t implement interfaces). We’re sacrificing abstraction for micro-
optimization. 

Working with Stack-Allocated and Unmanaged Memory
Another effective micro-optimization technique is to reduce the load on the garbage
collector by minimizing heap-based allocations. This means making greater use of
stack-based memory—or even unmanaged memory.

Unfortunately, this normally requires that you rewrite code to use pointers. In the
case of our previous example that summed elements in an array, we would need to
write another version as follows:

unsafe int Sum (int* numbers, int length)
{
  int total = 0;
  for (int i = 0; i < length; i++) total += numbers [i];
  return total;
}

so that we could do this:

int* numbers = stackalloc int [1000];   // Allocate array on the stack
int total = Sum (numbers, 1000);

Spans solve this problem: you can construct a Span<T> or ReadOnlySpan<T> directly
from a pointer:

int* numbers = stackalloc int [1000];
var span = new Span<int> (numbers, 1000);

Or in one step:

Span<int> numbers = stackalloc int [1000];

(Note that this doesn’t require the use of unsafe). Recall the Sum method that we
wrote previously:

int Sum (ReadOnlySpan<int> numbers)
{
  int total = 0;
  int len = numbers.Length;
  for (int i = 0; i < len; i++) total += numbers [i];
  return total;
}

This method works equally well for a stack-allocated span. We have gained on three
counts:
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• The same method works with both arrays and stack-allocated memory•
• We can use stack-allocated memory with minimal use of pointers•
• The span can be sliced•

The compiler is smart enough to prevent you from writing a
method that allocates memory on the stack and returns it to
the caller via a Span<T> or ReadOnlySpan<T>.

(In other scenarios, however, you can legally return a Span<T>
or ReadOnlySpan<T>.)

You can also use spans to wrap memory that you allocate from the unmanaged
heap. In the following example, we allocate unmanaged memory using the Mar
shal.AllocHGlobal function, wrap it in a Span<char>, and then copy a string into
the unmanaged memory. Finally, we employ the CharSpanSplitter struct that we
wrote in the preceding section to split the unmanaged string into words:

var source = "The quick brown fox".AsSpan();
var ptr = Marshal.AllocHGlobal (source.Length * sizeof (char));
try
{
  var unmanaged = new Span<char> ((char*)ptr, source.Length);
  source.CopyTo (unmanaged);
  foreach (var word in unmanaged.Split())
    Console.WriteLine (word.ToString());
}
finally { Marshal.FreeHGlobal (ptr); }

A nice bonus is that Span<T>’s indexer performs bounds-checking, preventing a
buffer overrun. This protection applies if you correctly instantiate Span<T>: in our
example, you would lose this protection if you wrongly obtained the span:

var span = new Span<char> ((char*)ptr, source.Length * 2);

There’s also no protection from the equivalent of a dangling pointer, so you must
take care not to access the span after releasing its unmanaged memory with
Marshal.FreeHGlobal.
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24
Native and COM Interoperability

This chapter describes how to integrate with native (unmanaged) Dynamic-Link
Libraries (DLLs) and Component Object Model (COM) components. Unless other‐
wise stated, the types mentioned in this chapter exist in either the System or the
System.Runtime.InteropServices namespace.

Calling into Native DLLs
P/Invoke, short for Platform Invocation Services, allows you to access functions,
structs, and callbacks in unmanaged DLLs (shared libraries on Unix).

For example, consider the MessageBox function, defined in the Windows DLL
user32.dll, as follows:

int MessageBox (HWND hWnd, LPCTSTR lpText, LPCTSTR lpCaption, UINT uType);

You can call this function directly by declaring a static method of the same name,
applying the extern keyword, and adding the DllImport attribute:

using System;
using System.Runtime.InteropServices;

MessageBox (IntPtr.Zero,
            "Please do not press this again.", "Attention", 0);

[DllImport("user32.dll")]
static extern int MessageBox (IntPtr hWnd, string text, string caption,
                              int type);

The MessageBox classes in the System.Windows and System.Windows.Forms name‐
spaces themselves call similar unmanaged methods.
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Here’s a DllImport example for Ubuntu Linux:

Console.WriteLine ($"User ID: {getuid()}");

[DllImport("libc")]
static extern uint getuid();

The CLR includes a marshaler that knows how to convert parameters and return
values between .NET types and unmanaged types. In the Windows example, the int
parameters translate directly to four-byte integers that the function expects, and the
string parameters are converted into null-terminated arrays of Unicode characters
(encoded in UTF-16). IntPtr is a struct designed to encapsulate an unmanaged
handle; it’s 32 bits wide on 32-bit platforms and 64 bits wide on 64-bit platforms. A
similar translation happens on Unix. (From C# 9, you can also use the nint type,
which maps to IntPtr.)

Type and Parameter Marshaling
Marshaling Common Types
On the unmanaged side, there can be more than one way to represent a given data
type. A string, for instance, can contain single-byte ANSI characters or UTF-16
Unicode characters, and can be length prefixed, null terminated, or of fixed length.
With the MarshalAs attribute, you can specify to the CLR marshaler the variation in
use, so it can provide the correct translation. Here’s an example:

[DllImport("...")]
static extern int Foo ( [MarshalAs (UnmanagedType.LPStr)] string s );

The UnmanagedType enumeration includes all the Win32 and COM types that the
marshaler understands. In this case, the marshaler was told to translate to LPStr,
which is a null-terminated single-byte ANSI string.

On the .NET side, you also have some choice as to what data type to use. Unman‐
aged handles, for instance, can map to IntPtr, int, uint, long, or ulong.

Most unmanaged handles encapsulate an address or pointer
and so must be mapped to IntPtr for compatibility with
both 32- and 64-bit operating systems. A typical example is
HWND.

Quite often with Win32 and POSIX functions, you come across an integer parame‐
ter that accepts a set of constants, defined in a C++ header file such as WinUser.h.
Rather than defining these as simple C# constants, you can define them within an
enum instead. Using an enum can make for tidier code as well as increase static type
safety. We provide an example in “Shared Memory” on page 995.
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When installing Microsoft Visual Studio, be sure to install
the C++ header files—even if you choose nothing else in the
C++ category. This is where all the native Win32 constants are
defined. You can then locate all header files by searching for
*.h in the Visual Studio program directory.
On Unix, the POSIX standard defines names of constants,
but individual implementations of POSIX-compliant Unix
systems may assign different numeric values to these con‐
stants. You must use the correct numeric value for your oper‐
ating system of choice. Similarly, POSIX defines a standard
for structs used in interop calls. The ordering of fields in the
struct is not fixed by the standard, and a Unix implementation
might add additional fields. C++ header files defining func‐
tions and types are often installed in /usr/include or /usr/local/
include.

Receiving strings from unmanaged code back to .NET requires that some memory
management take place. The marshaler automatically performs this work if you
declare the external method with a StringBuilder rather than a string, as follows:

StringBuilder s = new StringBuilder (256);
GetWindowsDirectory (s, 256);
Console.WriteLine (s);

[DllImport("kernel32.dll")]
static extern int GetWindowsDirectory (StringBuilder sb, int maxChars);

On Unix, it works similarly. The following calls getcwd to return the current
directory:

var sb = new StringBuilder (256);
Console.WriteLine (getcwd (sb, sb.Capacity));

[DllImport("libc")]
static extern string getcwd (StringBuilder buf, int size);

Although StringBuilder is convenient to use, it’s somewhat inefficient in that the
CLR must perform additional memory allocations and copying. In performance
hotspots, you can avoid this overhead by using char[] instead:

[DllImport ("kernel32.dll", CharSet = CharSet.Unicode)]
static extern int GetWindowsDirectory (char[] buffer, int maxChars);

Notice that you must specify a CharSet in the DllImport attribute. You must also
trim the output string to length after calling the function. You can achieve this while
minimizing memory allocations with the use of array pooling (see “Array Pooling”
on page 599), as follows:

string GetWindowsDirectory()
{
  var array = ArrayPool<char>.Shared.Rent (256);
  try
  {
    int length = GetWindowsDirectory (array, 256);
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    return new string (array, 0, length).ToString();
  }
  finally { ArrayPool<char>.Shared.Return (array); }
}

(Of course, this example is contrived in that you can obtain the Windows directory
via the built-in Environment.GetFolderPath method.)

If you are unsure how to call a particular Win32 or Unix
method, you will usually find an example on the internet if
you search for the method name and DllImport. For Windows,
the site http://www.pinvoke.net is a wiki that aims to document
all Win32 signatures.

Marshaling Classes and Structs
Sometimes, you need to pass a struct to an unmanaged method. For example,
GetSystemTime in the Win32 API is defined as follows:

void GetSystemTime (LPSYSTEMTIME lpSystemTime);

LPSYSTEMTIME conforms to this C struct:

typedef struct _SYSTEMTIME {
  WORD wYear;
  WORD wMonth;
  WORD wDayOfWeek;
  WORD wDay;
  WORD wHour;
  WORD wMinute;
  WORD wSecond;
  WORD wMilliseconds;
} SYSTEMTIME, *PSYSTEMTIME;

To call GetSystemTime, we must define a .NET class or struct that matches this C
struct:

using System;
using System.Runtime.InteropServices;

[StructLayout(LayoutKind.Sequential)]
class SystemTime
{
   public ushort Year;
   public ushort Month;
   public ushort DayOfWeek;
   public ushort Day;
   public ushort Hour;
   public ushort Minute;
   public ushort Second;
   public ushort Milliseconds;
}
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The StructLayout attribute instructs the marshaler how to map each field to its
unmanaged counterpart. LayoutKind.Sequential means that we want the fields
aligned sequentially on pack-size boundaries (you’ll see what this means shortly),
just as they would be in a C struct. The field names here are irrelevant; it’s the
ordering of fields that’s important.

Now we can call GetSystemTime:

SystemTime t = new SystemTime();
GetSystemTime (t);
Console.WriteLine (t.Year);

[DllImport("kernel32.dll")]
static extern void GetSystemTime (SystemTime t);

Similarly, on Unix:

Console.WriteLine (GetSystemTime());

static DateTime GetSystemTime()
{
  DateTime startOfUnixTime = 
    new DateTime(1970, 1, 1, 0, 0, 0, 0, System.DateTimeKind.Utc);

  Timespec tp = new Timespec();
  int success = clock_gettime (0, ref tp);
  if (success != 0) throw new Exception ("Error checking the time.");
  return startOfUnixTime.AddSeconds (tp.tv_sec).ToLocalTime();  
}

[DllImport("libc")]
static extern int clock_gettime (int clk_id, ref Timespec tp);

[StructLayout(LayoutKind.Sequential)]
struct Timespec
{
  public long tv_sec;   /* seconds */
  public long tv_nsec;  /* nanoseconds */
}

In both C and C#, fields in an object are located at n number of bytes from the
address of that object. The difference is that in a C# program, the CLR finds this
offset by looking it up using the field token; C field names are compiled directly into
offsets. For instance, in C, wDay is just a token to represent whatever is at the address
of a SystemTime instance plus 24 bytes.

For access speed, each field is placed at an offset that is a multiple of the field’s
size. That multiplier, however, is restricted to a maximum of x bytes, where x is
the pack size. In the current implementation, the default pack size is 8 bytes, so a
struct comprising an sbyte followed by an (8-byte) long occupies 16 bytes, and the
7 bytes following the sbyte are wasted. You can lessen or eliminate this wastage
by specifying a pack size via the Pack property of the StructLayout attribute: this
makes the fields align to offsets that are multiples of the specified pack size. So, with
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a pack size of 1, the struct just described would occupy just 9 bytes. You can specify
pack sizes of 1, 2, 4, 8, or 16 bytes.

The StructLayout attribute also lets you specify explicit field offsets (see “Simulat‐
ing a C Union” on page 994).

In and Out Marshaling
In the previous example, we implemented SystemTime as a class. We could have
instead chosen a struct—provided that GetSystemTime was declared with a ref or
out parameter:

[DllImport("kernel32.dll")]
static extern void GetSystemTime (out SystemTime t);

In most cases, C#’s directional parameter semantics work the same with external
methods. Pass-by-value parameters are copied in, C# ref parameters are copied
in/out, and C# out parameters are copied out. However, there are some exceptions
for types that have special conversions. For instance, array classes and the String
Builder class require copying when coming out of a function, so they are in/out. It
is occasionally useful to override this behavior, with the In and Out attributes. For
example, if an array should be read-only, the in modifier indicates to copy only the
array going into the function, not coming out of it:

static extern void Foo ( [In] int[] array);

Calling Conventions
Unmanaged methods receive arguments and return values via the stack and
(optionally) CPU registers. Because there’s more than one way to accomplish this, a
number of different protocols have emerged. These protocols are known as calling
conventions.

The CLR currently supports three calling conventions: StdCall, Cdecl, and ThisCall.

By default, the CLR uses the platform default calling convention (the standard
convention for that platform). On Windows, it’s StdCall, and on Linux x86, it’s
Cdecl.

Should an unmanaged method not follow this default, you can explicitly state its
calling convention as follows:

[DllImport ("MyLib.dll", CallingConvention=CallingConvention.Cdecl)]
static extern void SomeFunc (...)

The somewhat misleadingly named CallingConvention.WinApi refers to the plat‐
form default.
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Callbacks from Unmanaged Code
C# also allows external functions to call C# code, via callbacks. There are two ways
to accomplish callbacks:

• Via function pointers•
• Via delegates•

To illustrate, we will call the following Windows function in User32.dll, which
enumerates all top-level window handles:

BOOL EnumWindows (WNDENUMPROC lpEnumFunc, LPARAM lParam);

WNDENUMPROC is a callback that is fired with the handle of each window in sequence
(or until the callback returns false). Here is its definition:

BOOL CALLBACK EnumWindowsProc (HWND hwnd, LPARAM lParam);

Callbacks with Function Pointers
From C# 9, the simplest and most performant option—when your callback is a
static method—is to use a function pointer. In the case of the WNDENUMPROC callback,
we can use the following function pointer:

delegate*<IntPtr, IntPtr, bool>

This denotes a function that accepts two IntPtr arguments and returns a bool. You
can then use the & operator to feed it a static method:

using System;
using System.Runtime.InteropServices;

unsafe
{
  EnumWindows (&PrintWindow, IntPtr.Zero);

  [DllImport ("user32.dll")]
  static extern int EnumWindows (
    delegate*<IntPtr, IntPtr, bool> hWnd, IntPtr lParam);

  static bool PrintWindow (IntPtr hWnd, IntPtr lParam)
  {
    Console.WriteLine (hWnd.ToInt64());
    return true;
  }
}

With function pointers, the callback must be a static method (or a static local
function, as in this example).
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UnmanagedCallersOnly
You can improve performance by applying the unmanaged keyword to the function
pointer declaration, and the [UnmanagedCallersOnly] attribute to the callback
method:

using System;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;

unsafe
{
  EnumWindows (&PrintWindow, IntPtr.Zero);

  [DllImport ("user32.dll")]
  static extern int EnumWindows (
    delegate* unmanaged <IntPtr, IntPtr, byte> hWnd, IntPtr lParam);

  [UnmanagedCallersOnly]
  static byte PrintWindow (IntPtr hWnd, IntPtr lParam)
  {
    Console.WriteLine (hWnd.ToInt64());
    return 1;
  }
}

This attribute flags the PrintWindow method such that it can be called only from
unmanaged code, allowing the runtime to take shortcuts. Notice that we’ve also
changed the method’s return type from bool to byte: this is because methods to
which you apply [UnmanagedCallersOnly] can use only blittable value types in the
signature. Blittable types are those that don’t require any special marshalling logic
because they’re represented identically in the managed and unmanaged worlds.
These include the primitive integral types, float, double, and structs that contain
only blittable types. The char type is also blittable, if part of a struct with a Struct
Layout attribute specifying CharSet.Unicode:

[StructLayout (LayoutKind.Sequential, CharSet=CharSet.Unicode)]

Nondefault calling conventions
By default, the compiler assumes that the unmanaged callback follows the platform-
default calling convention. Should this not be so, you can explicitly state its calling
convention via the CallConvs parameter of the [UnmanagedCallersOnly] attribute:

[UnmanagedCallersOnly (CallConvs = new[] { typeof (CallConvStdcall) })]
static byte PrintWindow (IntPtr hWnd, IntPtr lParam) ...

You must also update the function pointer type by inserting a special modifier after
the unmanaged keyword:

delegate* unmanaged[Stdcall] <IntPtr, IntPtr, byte> hWnd, IntPtr lParam);
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The compiler lets you put any identifier (such as XYZ) inside
the square brackets, as long as there’s a .NET type called Call
ConvXYZ (that’s understood by the runtime and matches what
you specified when applying the [UnmanagedCallersOnly]
attribute). This makes it easier for Microsoft to add new call‐
ing conventions in the future.

In this case, we specified StdCall, which is the platform default for Windows (Cdecl
is the default for Linux x86). Here are all the options that are currently supported:

Name unmanaged modifier Supporting type

Stdcall unmanaged[Stdcall] CallConvStdcall

Cdecl unmanaged[Cdecl] CallConvCdecl

ThisCall unmanaged[Thiscall] CallConvThiscall

Callbacks with Delegates
Unmanaged callbacks can also be accomplished with delegates. This approach
works in all versions of C#, and allows for callbacks that reference instance
methods.

To proceed, first declare a delegate type with a signature that matches the callback.
Then you can pass a delegate instance to the external method:

class CallbackFun
{
  delegate bool EnumWindowsCallback (IntPtr hWnd, IntPtr lParam);

  [DllImport("user32.dll")]
  static extern int EnumWindows (EnumWindowsCallback hWnd, IntPtr lParam);

  static bool PrintWindow (IntPtr hWnd, IntPtr lParam)
  {
    Console.WriteLine (hWnd.ToInt64());
    return true;
  }
  static readonly EnumWindowsCallback printWindowFunc = PrintWindow;

  static void Main() => EnumWindows (printWindowFunc, IntPtr.Zero);
}

Using delegates for unmanaged callbacks is ironically unsafe, because it’s easy to
fall into the trap of allowing a callback to occur after the delegate instance falls out
of scope (at which point the delegate becomes eligible for garbage collection). This
can result in the worst kind of runtime exception—one with no useful stack trace.
In the case of static method callbacks, you can avoid this by assigning the delegate
instance to a read-only static field (as we did in this example). With instance
method callbacks, this pattern won’t help, so you must code carefully to ensure that
you maintain at least one reference to the delegate instance for the duration of any
potential callback. Even then, if there’s a bug on the unmanaged side—whereby
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it invokes a callback after you’ve told it not to—you may still have to deal with
an untraceable exception. A workaround is to define a unique delegate type per
unmanaged function: this helps diagnostically because the delegate type is reported
in the exception.

You can change the callback’s calling convention from the platform default by
applying the [UnmanagedFunctionPointer] attribute to the delegate:

[UnmanagedFunctionPointer (CallingConvention.Cdecl)]
delegate void MyCallback (int foo, short bar);

Simulating a C Union
Each field in a struct is given enough room to store its data. Consider a struct
containing one int and one char. The int is likely to start at an offset of 0 and is
guaranteed at least four bytes. So, the char would start at an offset of at least 4. If, for
some reason, the char started at an offset of 2, you’d change the value of the int if
you assigned a value to the char. Sounds like mayhem, doesn’t it? Strangely enough,
the C language supports a variation on a struct called a union that does exactly this.
You can simulate this in C# by using LayoutKind.Explicit and the FieldOffset
attribute.

It might be challenging to think of a case in which this would be useful. However,
suppose that you want to play a note on an external synthesizer. The Windows
Multimedia API provides a function for doing just this via the MIDI protocol:

[DllImport ("winmm.dll")]
public static extern uint midiOutShortMsg (IntPtr handle, uint message);

The second argument, message, describes what note to play. The problem is in con‐
structing this 32-bit unsigned integer: it’s divided internally into bytes, representing
a MIDI channel, note, and velocity at which to strike. One solution is to shift and
mask via the bitwise <<, >>, &, and | operators to convert these bytes to and from
the 32-bit “packed” message. Far simpler, though, is to define a struct with explicit
layout:

[StructLayout (LayoutKind.Explicit)]
public struct NoteMessage
{
  [FieldOffset(0)] public uint PackedMsg;    // 4 bytes long

  [FieldOffset(0)] public byte Channel;      // FieldOffset also at 0
  [FieldOffset(1)] public byte Note;
  [FieldOffset(2)] public byte Velocity;
}

The Channel, Note, and Velocity fields deliberately overlap with the 32-bit packed
message. This allows you to read and write using either. No calculations are
required to keep other fields in sync:

NoteMessage n = new NoteMessage();
Console.WriteLine (n.PackedMsg);    // 0
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n.Channel = 10;
n.Note = 100;
n.Velocity = 50;
Console.WriteLine (n.PackedMsg);    // 3302410

n.PackedMsg = 3328010;
Console.WriteLine (n.Note);         // 200

Shared Memory
Memory-mapped files, or shared memory, is a feature in Windows that allows multi‐
ple processes on the same computer to share data. Shared memory is extremely fast
and, unlike pipes, offers random access to the shared data. We saw in Chapter 15
how you can use the MemoryMappedFile class to access memory-mapped files;
bypassing this and calling the Win32 methods directly is a good way to demonstrate
P/Invoke.

The Win32 CreateFileMapping function allocates shared memory. You tell it how
many bytes you need and the name with which to identify the share. Another
application can then subscribe to this memory by calling OpenFileMapping with the
same name. Both methods return a handle, which you can convert to a pointer by
calling MapViewOfFile.

Here’s a class that encapsulates access to shared memory:

using System;
using System.Runtime.InteropServices;
using System.ComponentModel;

public sealed class SharedMem : IDisposable
{
  // Here we're using enums because they're safer than constants

  enum FileProtection : uint      // constants from winnt.h
  {
    ReadOnly = 2,
    ReadWrite = 4
  }

  enum FileRights : uint          // constants from WinBASE.h
  {
    Read = 4,
    Write = 2,
    ReadWrite = Read + Write
  }

  static readonly IntPtr NoFileHandle = new IntPtr (-1);

  [DllImport ("kernel32.dll", SetLastError = true)]
  static extern IntPtr CreateFileMapping (IntPtr hFile,
                                          int lpAttributes,
                                          FileProtection flProtect,
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                                          uint dwMaximumSizeHigh,
                                          uint dwMaximumSizeLow,
                                          string lpName);

  [DllImport ("kernel32.dll", SetLastError=true)]
  static extern IntPtr OpenFileMapping (FileRights dwDesiredAccess,
                                        bool bInheritHandle,
                                        string lpName);

  [DllImport ("kernel32.dll", SetLastError = true)]
  static extern IntPtr MapViewOfFile (IntPtr hFileMappingObject,
                                      FileRights dwDesiredAccess,
                                      uint dwFileOffsetHigh,
                                      uint dwFileOffsetLow,
                                      uint dwNumberOfBytesToMap);

  [DllImport ("Kernel32.dll", SetLastError = true)]
  static extern bool UnmapViewOfFile (IntPtr map);

  [DllImport ("kernel32.dll", SetLastError = true)]
  static extern int CloseHandle (IntPtr hObject);

  IntPtr fileHandle, fileMap;

  public IntPtr Root => fileMap;

  public SharedMem (string name, bool existing, uint sizeInBytes)
  {
    if (existing)
      fileHandle = OpenFileMapping (FileRights.ReadWrite, false, name);
    else
      fileHandle = CreateFileMapping (NoFileHandle, 0,
                                      FileProtection.ReadWrite,
                                      0, sizeInBytes, name);
    if (fileHandle == IntPtr.Zero)
      throw new Win32Exception();

    // Obtain a read/write map for the entire file
    fileMap = MapViewOfFile (fileHandle, FileRights.ReadWrite, 0, 0, 0);

    if (fileMap == IntPtr.Zero)
      throw new Win32Exception();
  }

  public void Dispose()
  {
    if (fileMap != IntPtr.Zero) UnmapViewOfFile (fileMap);
    if (fileHandle != IntPtr.Zero) CloseHandle (fileHandle);
    fileMap = fileHandle = IntPtr.Zero;
  }
}
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In this example, we set SetLastError=true on the DllImport methods that use the
SetLastError protocol for emitting error codes. This ensures that the Win32Excep
tion is populated with details of the error when that exception is thrown. (It also
allows you to query the error explicitly by calling Marshal.GetLastWin32Error.)

To demonstrate this class, we need to run two applications. The first one creates the
shared memory, as follows:

using (SharedMem sm = new SharedMem ("MyShare", false, 1000))
{
  IntPtr root = sm.Root;
  // I have shared memory!

  Console.ReadLine();         // Here's where we start a second app...
}

The second application subscribes to the shared memory by constructing a Share
dMem object of the same name, with the existing argument true:

using (SharedMem sm = new SharedMem ("MyShare", true, 1000))
{
  IntPtr root = sm.Root;
  // I have the same shared memory!
  // ...
}

The net result is that each program has an IntPtr—a pointer to the same unman‐
aged memory. The two applications now need somehow to read and write to
memory via this common pointer. One approach is to write a class that encapsulates
all the shared data and then serialize (and deserialize) the data to the unmanaged
memory using an UnmanagedMemoryStream. This is inefficient, however, if there’s a
lot of data. Imagine if the shared memory class had a megabyte of data, and just
one integer needed to be updated. A better approach is to define the shared data
construct as a struct and then map it directly into shared memory. We discuss this
in the following section.

Mapping a Struct to Unmanaged Memory
You can directly map a struct with a StructLayout of Sequential or Explicit into
unmanaged memory. Consider the following struct:

[StructLayout (LayoutKind.Sequential)]
unsafe struct MySharedData
{
  public int Value;
  public char Letter;
  public fixed float Numbers [50];
}

The fixed directive allows us to define fixed-length value-type arrays inline, and it
is what takes us into the unsafe realm. Space in this struct is allocated inline for 50
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floating-point numbers. Unlike with standard C# arrays, Numbers is not a reference
to an array—it is the array. If we run the following:

static unsafe void Main() => Console.WriteLine (sizeof (MySharedData));

the result is 208: 50 four-byte floats, plus the four bytes for the Value integer, plus
two bytes for the Letter character. The total, 206, is rounded to 208 due to the
floats being aligned on four-byte boundaries (four bytes being the size of a float).

We can demonstrate MySharedData in an unsafe context, most simply, with stack-
allocated memory:

MySharedData d;
MySharedData* data = &d;       // Get the address of d

data->Value = 123;
data->Letter = 'X';
data->Numbers[10] = 1.45f;

or:

// Allocate the array on the stack:
MySharedData* data = stackalloc MySharedData[1];

data->Value = 123;
data->Letter = 'X';
data->Numbers[10] = 1.45f;

Of course, we’re not demonstrating anything that couldn’t otherwise be achieved
in a managed context. Suppose, however, that we want to store an instance of
MySharedData on the unmanaged heap, outside the realm of the CLR’s garbage
collector. This is where pointers become really useful:

MySharedData* data = (MySharedData*)
  Marshal.AllocHGlobal (sizeof (MySharedData)).ToPointer();

data->Value = 123;
data->Letter = 'X';
data->Numbers[10] = 1.45f;

Marshal.AllocHGlobal allocates memory on the unmanaged heap. Here’s how to
later free the same memory:

Marshal.FreeHGlobal (new IntPtr (data));

(The result of forgetting to free the memory is a good old-fashioned memory leak.)

From .NET 6, you can instead use the NativeMemory class
for allocating and freeing unmanaged memory. NativeMemory
uses a newer (and better) underlying API than AllocHGlobal
and also includes methods for performing aligned allocations.

In keeping with its name, here we use MySharedData in conjunction with the Share
dMem class we wrote in the preceding section. The following program allocates a
block of shared memory, and then maps the MySharedData struct into that memory:
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static unsafe void Main()
{
  using (SharedMem sm = new SharedMem ("MyShare", false, 
                          (uint) sizeof (MySharedData)))
  {
    void* root = sm.Root.ToPointer();
    MySharedData* data = (MySharedData*) root;

    data->Value = 123;
    data->Letter = 'X';
    data->Numbers[10] = 1.45f;
    Console.WriteLine ("Written to shared memory");

    Console.ReadLine();

    Console.WriteLine ("Value is " + data->Value);
    Console.WriteLine ("Letter is " + data->Letter);
    Console.WriteLine ("11th Number is " + data->Numbers[10]);
    Console.ReadLine();
  }
}

You can use the built-in MemoryMappedFile class instead of
SharedMem, as follows:

using (MemoryMappedFile mmFile =
       MemoryMappedFile.CreateNew ("MyShare", 1000))
using (MemoryMappedViewAccessor accessor =
       mmFile.CreateViewAccessor())
{
  byte* pointer = null;
  accessor.SafeMemoryMappedViewHandle.AcquirePointer
   (ref pointer);
  void* root = pointer;
  ...
}

Here’s a second program that attaches to the same shared memory, reading the
values written by the first program (it must be run while the first program is waiting
on the ReadLine statement because the shared memory object is disposed upon
leaving its using statement):

static unsafe void Main()
{
  using (SharedMem sm = new SharedMem ("MyShare", true, 
                          (uint) sizeof (MySharedData)))  
  {
    void* root = sm.Root.ToPointer();
    MySharedData* data = (MySharedData*) root;

    Console.WriteLine ("Value is " + data->Value);
    Console.WriteLine ("Letter is " + data->Letter);
    Console.WriteLine ("11th Number is " + data->Numbers[10]);

    // Our turn to update values in shared memory!
    data->Value++;
    data->Letter = '!';
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    data->Numbers[10] = 987.5f;
    Console.WriteLine ("Updated shared memory");
    Console.ReadLine();
  }
}

The output from each of these programs is as follows:

// First program:

Written to shared memory
Value is 124
Letter is !
11th Number is 987.5

// Second program:

Value is 123
Letter is X
11th Number is 1.45
Updated shared memory

Don’t be put off by the pointers: C++ programmers use them throughout whole
applications and are able to get everything working. At least most of the time! This
sort of usage is fairly simple by comparison.

As it happens, our example is unsafe—quite literally—for another reason. We’ve
not considered the thread-safety (or more precisely, process-safety) issues that arise
with two programs accessing the same memory at once. To use this in a production
application, we’d need to add the volatile keyword to the Value and Letter fields
in the MySharedData struct to prevent fields from being cached by the Just-in-Time
(JIT) compiler (or by the hardware in CPU registers). Furthermore, as our interac‐
tion with the fields grew beyond the trivial, we would most likely need to protect
their access via a cross-process Mutex, just as we would use lock statements to
protect access to fields in a multithreaded program. We discussed thread safety in
detail in Chapter 21.

fixed and fixed {...}
One limitation of mapping structs directly into memory is that the struct can
contain only unmanaged types. If you need to share string data, for instance, you
must use a fixed-character array instead. This means manual conversion to and
from the string type. Here’s how to do it:

[StructLayout (LayoutKind.Sequential)]
unsafe struct MySharedData
{
  ...
  // Allocate space for 200 chars (i.e., 400 bytes).
  const int MessageSize = 200;
  fixed char message [MessageSize];

  // One would most likely put this code into a helper class:
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  public string Message
  {
    get { fixed (char* cp = message) return new string (cp); }
    set
    {
      fixed (char* cp = message)
      {
        int i = 0;
        for (; i < value.Length && i < MessageSize - 1; i++)
          cp [i] = value [i];

        // Add the null terminator
        cp [i] = '\0';
      }
    }
  }
}

There’s no such thing as a reference to a fixed array; instead,
you get a pointer. When you index into a fixed array, you’re
actually performing pointer arithmetic!

With the first use of the fixed keyword, we allocate space, inline, for 200 characters
in the struct. The same keyword (somewhat confusingly) has a different meaning
when used later in the property definition. It instructs the CLR to pin an object
so that should it decide to perform a garbage collection inside the fixed block,
it will not move the underlying struct about on the memory heap (because its
contents are being iterated via direct memory pointers). Looking at our program,
you might wonder how MySharedData could ever shift in memory, given that it
resides not on the heap but in the unmanaged world, where the garbage collector
has no jurisdiction. The compiler doesn’t know this, however, and is concerned that
we might use MySharedData in a managed context, so it insists that we add the fixed
keyword to make our unsafe code safe in managed contexts. And the compiler does
have a point—here’s all it would take to put MySharedData on the heap:

object obj = new MySharedData();

This results in a boxed MySharedData—on the heap and eligible for transit during
garbage collection.

This example illustrates how a string can be represented in a struct mapped to
unmanaged memory. For more complex types, you also have the option of using
existing serialization code. The one proviso is that the serialized data must never
exceed, in length, its allocation of space in the struct; otherwise, the result is an
unintended union with subsequent fields.

COM Interoperability
The .NET runtime provides special support for COM, enabling COM objects to be
used from .NET, and vice versa. COM is available only on Windows.
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The Purpose of COM
COM is an acronym for Component Object Model, a binary standard for interfac‐
ing with libraries, released by Microsoft in 1993. The motivation for inventing
COM was to enable components to communicate with each other in a language-
independent and version-tolerant manner. Before COM, the approach in Windows
was to publish DLLs that declared structures and functions using the C program‐
ming language. Not only is this approach language specific, but it’s also brittle. The
specification of a type in such a library is inseparable from its implementation: even
updating a structure with a new field means breaking its specification.

The beauty of COM was to separate the specification of a type from its underlying
implementation through a construct known as a COM interface. COM also allowed
for the calling of methods on stateful objects—rather than being limited to simple
procedure calls.

In a way, the .NET programming model is an evolution
of the principles of COM programming: the .NET platform
also facilitates cross-language development and allows binary
components to evolve without breaking applications that
depend on them.

The Basics of the COM Type System
The COM type system revolves around interfaces. A COM interface is rather like
a .NET interface, but it’s more prevalent because a COM type exposes its functional‐
ity only through an interface. In the .NET world, for instance, we could declare a
type simply, as follows:

public class Foo
{
  public string Test() => "Hello, world";
}

Consumers of that type can use Foo directly. And if we later changed the imple‐
mentation of Test(), calling assemblies would not require recompilation. In this
respect, .NET separates interface from implementation—without requiring inter‐
faces. We could even add an overload without breaking callers:

  public string Test (string s) => $"Hello, world {s}";

In the COM world, Foo exposes its functionality through an interface to achieve this
same decoupling. So, in Foo’s type library, an interface such as this would exist:

public interface IFoo { string Test(); }

(We’ve illustrated this by showing a C# interface—not a COM interface. The princi‐
ple, however, is the same—although the plumbing is different.)

Callers would then interact with IFoo rather than Foo.

When it comes to adding the overloaded version of Test, life is more complicated
with COM than with .NET. First, we would avoid modifying the IFoo interface
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because this would break binary compatibility with the previous version (one of the
principles of COM is that interfaces, once published, are immutable). Second, COM
doesn’t allow method overloading. The solution is to instead have Foo implement a
second interface:

public interface IFoo2 { string Test (string s); }

(Again, we’ve transliterated this into a .NET interface for familiarity.)

Supporting multiple interfaces is of key importance in making COM libraries
versionable.

IUnknown and IDispatch
All COM interfaces are identified with a Globally Unique Identifier (GUID).

The root interface in COM is IUnknown—all COM objects must implement it. This
interface has three methods:

• AddRef•

• Release•

• QueryInterface•

AddRef and Release are for lifetime management given that COM uses reference
counting rather than automatic garbage collection (COM was designed to work
with unmanaged code, where automatic garbage collection isn’t feasible). The Query
Interface method returns an object reference that supports that interface, if it can
do so.

To enable dynamic programming (e.g., scripting and automation), a COM object
can also implement IDispatch. This enables dynamic languages to call COM
objects in a late-bound manner—rather like dynamic in C# (although only for
simple invocations).

Calling a COM Component from C#
The CLR’s built-in support for COM means that you don’t work directly with
IUnknown and IDispatch. Instead, you work with CLR objects, and the runtime
marshals your calls to the COM world via Runtime-Callable Wrappers (RCWs).
The runtime also handles lifetime management by calling AddRef and Release
(when the .NET object is finalized) and takes care of the primitive type conversions
between the two worlds. Type conversion ensures that each side sees, for example,
the integer and string types in their familiar forms.

Additionally, there needs to be some way to access RCWs in a statically typed
fashion. This is the job of COM interop types. COM interop types are automatically
generated proxy types that expose a .NET member for each COM member. The type
library importer tool (tlbimp.exe) generates COM interop types from the command
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line, based on a COM library that you choose, and compiles them into a COM
interop assembly.

If a COM component implements multiple interfaces, the
tlbimp.exe tool generates a single type that contains a union
of members from all interfaces.

You can create a COM interop assembly in Visual Studio by going to the Add
Reference dialog box and choosing a library from the COM tab. For example, if
you have Microsoft Excel installed, adding a reference to the Microsoft Excel Object
Library allows you to interoperate with Excel’s COM classes. Here’s the C# code to
create and show a workbook, and then populate a cell in that workbook:

using System;
using Excel = Microsoft.Office.Interop.Excel;

var excel = new Excel.Application();
excel.Visible = true;
excel.WindowState = Excel.XlWindowState.xlMaximized;
Excel.Workbook workBook = excel.Workbooks.Add();
((Excel.Range)excel.Cells[1, 1]).Font.FontStyle = "Bold";
((Excel.Range)excel.Cells[1, 1]).Value2 = "Hello World";
workBook.SaveAs (@"d:\temp.xlsx");

It is currently necessary to embed interop types in your appli‐
cation (otherwise, the runtime won’t locate them at runtime).
Either click the COM reference in Visual Studio’s Solution
Explorer and set the Embed Interop Types property to true in
the Properties window, or open your .csproj file and add the
following line (in boldface):

<ItemGroup>
  <COMReference Include="Microsoft.Office.Excel.dll">
    ...
    <EmbedInteropTypes>true</EmbedInteropTypes>
  </COMReference>
</ItemGroup>

The Excel.Application class is a COM interop type whose runtime type is an
RCW. When we access the Workbooks and Cells properties, we get back more
interop types.

Optional Parameters and Named Arguments
Because COM APIs don’t support function overloading, it’s very common to have
functions with numerous parameters, many of which are optional. For instance,
here’s how you might call an Excel workbook’s Save method:

var missing = System.Reflection.Missing.Value;

workBook.SaveAs (@"d:\temp.xlsx", missing, missing, missing, missing,
  missing, Excel.XlSaveAsAccessMode.xlNoChange, missing, missing,
  missing, missing, missing);

1004 | Chapter 24: Native and COM Interoperability



The good news is that the C#’s support for optional parameters is COM-aware, so
we can just do this:

workBook.SaveAs (@"d:\temp.xlsx");

(As we stated in Chapter 3, optional parameters are “expanded” by the compiler into
the full verbose form.)

Named arguments allow you to specify additional arguments, regardless of their
position:

workBook.SaveAs (@"d:\test.xlsx", Password:"foo");

Implicit ref Parameters
Some COM APIs (Microsoft Word, in particular) expose functions that declare
every parameter as pass-by-reference—whether or not the function modifies the
parameter value. This is because of the perceived performance gain from not copy‐
ing argument values (the real performance gain is negligible).

Historically, calling such methods from C# has been clumsy because you must
specify the ref keyword with every argument, and this prevents the use of optional
parameters. For instance, to open a Word document, we used to have to do this:

object filename = "foo.doc";
object notUsed1 = Missing.Value;
object notUsed2 = Missing.Value;
object notUsed3 = Missing.Value;
...
Open (ref filename, ref notUsed1, ref notUsed2, ref notUsed3, ...);

Thanks to implicit ref parameters, you can omit the ref modifier on COM function
calls, allowing the use of optional parameters:

word.Open ("foo.doc");

The caveat is that you will get neither a compile-time nor a runtime error if the
COM method you’re calling actually does mutate an argument value.

Indexers
The ability to omit the ref modifier has another benefit: it makes COM indexers
with ref parameters accessible via ordinary C# indexer syntax. This would other‐
wise be forbidden because ref/out parameters are not supported with C# indexers.

You can also call COM properties that accept arguments. In the following example,
Foo is a property that accepts an integer argument:

myComObject.Foo [123] = "Hello";

Writing such properties yourself in C# is still prohibited: a type can expose an
indexer only on itself (the “default” indexer). Therefore, if you wanted to write code
in C# that would make the preceding statement legal, Foo would need to return
another type that exposed a (default) indexer.

Calling a COM Component from C# | 1005

N
ative and

 C
O

M
Intero

p
erab

ility



Dynamic Binding
There are two ways that dynamic binding can help when calling COM components.

The first way is in allowing access to a COM component without a COM interop
type. To do this, call Type.GetTypeFromProgID with the COM component name to
obtain a COM instance, and then use dynamic binding to call members from then
on. Of course, there’s no IntelliSense, and compile-time checks are impossible:

Type excelAppType = Type.GetTypeFromProgID ("Excel.Application", true);
dynamic excel = Activator.CreateInstance (excelAppType);
excel.Visible = true;
dynamic wb = excel.Workbooks.Add();
excel.Cells [1, 1].Value2 = "foo";

(The same thing can be achieved, much more clumsily, with reflection instead of
dynamic binding.)

A variation of this theme is calling a COM component that
supports only IDispatch. Such components are quite rare,
however.

Dynamic binding can also be useful (to a lesser extent) in dealing with the COM
variant type. For reasons due more to poor design than necessity, COM API
functions are often peppered with this type, which is roughly equivalent to object
in .NET. If you enable “Embed Interop Types” in your project (more on this soon),
the runtime will map variant to dynamic, instead of mapping variant to object,
avoiding the need for casts. For instance, you could legally do

excel.Cells [1, 1].Font.FontStyle = "Bold";

instead of:

var range = (Excel.Range) excel.Cells [1, 1];
range.Font.FontStyle = "Bold";

The disadvantage of working in this way is that you lose autocompletion, so you
must know that a property called Font happens to exist. For this reason, it’s usually
easier to dynamically assign the result to its known interop type:

Excel.Range range = excel.Cells [1, 1];
range.Font.FontStyle = "Bold";

As you can see, this saves only five characters over the old-fashioned approach!

The mapping of variant to dynamic is the default, and is a function of enabling
Embed Interop Types on a reference.

Embedding Interop Types
We said previously that C# ordinarily calls COM components via interop types that
are generated by calling the tlbimp.exe tool (directly or via Visual Studio).
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Historically, your only option was to reference interop assemblies just as you would
with any other assembly. This could be troublesome because interop assemblies can
get quite large with complex COM components. A tiny add-in for Microsoft Word,
for instance, requires an interop assembly that is orders of magnitude larger than
itself.

Rather than referencing an interop assembly, you have the option of embedding the
portions that you use. The compiler analyzes the assembly to work out precisely the
types and members that your application requires, and embeds definitions for (just)
those types and members directly in your application. This avoids bloat as well as
the need to ship an additional file.

To enable this feature, either select the COM reference in Visual Studio’s Solution
Explorer and then set Embed Interop Types to true in the Properties window, or
edit your .csproj file as we described earlier (see “Calling a COM Component from
C#” on page 1003).

Type Equivalence
The CLR supports type equivalence for linked interop types. This means that if two
assemblies each link to an interop type, those types will be considered equivalent
if they wrap the same COM type. This holds true even if the interop assemblies to
which they linked were generated independently.

Type equivalence relies on the TypeIdentifierAttribute
attribute in the System.Runtime.InteropServices name‐
space. The compiler automatically applies this attribute when
you link to interop assemblies. COM types are then consid‐
ered equivalent if they have the same GUID.

Exposing C# Objects to COM
It’s also possible to write classes in C# that can be consumed in the COM world. The
CLR makes this possible through a proxy called a COM-Callable Wrapper (CCW).
A CCW marshals types between the two worlds (as with an RCW) and implements
IUnknown (and optionally IDispatch) as required by the COM protocol. A CCW is
lifetime-controlled from the COM side via reference counting (rather than through
the CLR’s garbage collector).

You can expose any public class to COM (as an “in-proc” server). To do so, first
create an interface, assign it a unique GUID (in Visual Studio, you can use Tools >
Create GUID), declare it visible to COM, and then set the interface type:

namespace MyCom
{
  [ComVisible(true)]
  [Guid ("226E5561-C68E-4B2B-BD28-25103ABCA3B1")]  // Change this GUID
  [InterfaceType (ComInterfaceType.InterfaceIsIUnknown)]
  public interface IServer
  {
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    int Fibonacci();
  }
}

Next, provide an implementation of your interface, assigning a unique GUID to that
implementation:

namespace MyCom
{
  [ComVisible(true)]
  [Guid ("09E01FCD-9970-4DB3-B537-0EC555967DD9")]  // Change this GUID
  public class Server
  {
    public ulong Fibonacci (ulong whichTerm)
    {
      if (whichTerm < 1) throw new ArgumentException ("...");
      ulong a = 0;
      ulong b = 1;
      for (ulong i = 0; i < whichTerm; i++)
      {
        ulong tmp = a;
        a = b;
        b = tmp + b;
      }
      return a;
    }
  }
}

Edit your .csproj file, adding the following line:

<PropertyGroup>
  <EnableComHosting>true</EnableComHosting>
</PropertyGroup>

Now, when you build your project, an additional file is generated, MyCom
.comhost.dll, which can be registered for COM interop. (Keep in mind that the
file will always be 32 bit or 64 bit depending on your project configuration: there’s
no such thing as “Any CPU” in this scenario.) From an elevated command prompt,
switch to the directory holding your DLL and run regsvr32 MyCom.comhost.dll.

You can then consume your COM component from most COM-capable languages.
For example, you can create this Visual Basic Script in a text editor and run it by
double-clicking the file in Windows Explorer, or by starting it from a command
prompt as you would a program:

REM Save file as ComClient.vbs
Dim obj
Set obj = CreateObject("MyCom.Server")

result = obj.Fibonacci(12)
Wscript.Echo result
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Note that .NET Framework cannot be loaded into the same process as .NET 5+
or .NET Core. Therefore, a .NET 5+ COM server cannot be loaded into a .NET
Framework COM client process, or vice versa.

Enabling Registry-Free COM
Traditionally, COM adds type information to the registry. Registry-free COM uses
a manifest file instead of the registry to control object activation. To enable this
feature, add the following line (in boldface) to your .csproj file:

<PropertyGroup>
  <TargetFramework>netcoreapp3.0</TargetFramework>
  <EnableComHosting>true</EnableComHosting>
  <EnableRegFreeCom>true</EnableRegFreeCom>
</PropertyGroup>

Your build will then generate MyCom.X.manifest.

There is no support in .NET 5+ for generating a COM type
library (*.tlb). You can manually write an IDL (Interface Def‐
inition Language) file or C++ header for the native declara‐
tions in your interface.
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25
Regular Expressions

The regular expressions language identifies character patterns. The .NET types sup‐
porting regular expressions are based on Perl 5 regular expressions and support
both search and search/replace functionality.

Regular expressions are used for tasks such as:

• Validating text input such as passwords and phone numbers•
• Parsing textual data into more structured forms (e.g., a NuGet version string)•
• Replacing patterns of text in a document (e.g., whole words only)•

This chapter is split into both conceptual sections teaching the basics of regular
expressions in .NET, and reference sections describing the regular expressions
language.

All regular expression types are defined in System.Text.RegularExpressions.

The samples in this chapter are all preloaded into LINQ‐
Pad, which also includes an interactive RegEx tool (press
Ctrl+Shift+F1). An online tool is available at http://regex
storm.net/tester.

Regular Expression Basics
One of the most common regular expression operators is a quantifier. ? is a
quantifier that matches the preceding item 0 or 1 time. In other words, ? means
optional. An item is either a single character or a complex structure of characters in
square brackets. For example, the regular expression "colou?r" matches color and
colour, but not colouur:

Console.WriteLine (Regex.Match ("color",   @"colou?r").Success);  // True
Console.WriteLine (Regex.Match ("colour",  @"colou?r").Success);  // True
Console.WriteLine (Regex.Match ("colouur", @"colou?r").Success);  // False
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Regex.Match searches within a larger string. The object that it returns has proper‐
ties for the Index and Length of the match as well as the actual Value matched:

Match m = Regex.Match ("any colour you like", @"colou?r");

Console.WriteLine (m.Success);     // True
Console.WriteLine (m.Index);       // 4
Console.WriteLine (m.Length);      // 6
Console.WriteLine (m.Value);       // colour
Console.WriteLine (m.ToString());  // colour

You can think of Regex.Match as a more powerful version of the string’s IndexOf
method. The difference is that it searches for a pattern rather than a literal string.

The IsMatch method is a shortcut for calling Match and then testing the Success
property.

The regular expressions engine works from left to right by default, so only the
leftmost match is returned. You can use the NextMatch method to return more
matches:

Match m1 = Regex.Match ("One color? There are two colours in my head!",
                        @"colou?rs?");
Match m2 = m1.NextMatch();
Console.WriteLine (m1);         // color
Console.WriteLine (m2);         // colours

The Matches method returns all matches in an array. We can rewrite the preceding
example, as follows:

foreach (Match m in Regex.Matches
          ("One color? There are two colours in my head!", @"colou?rs?"))
  Console.WriteLine (m);

Another common regular expressions operator is the alternator, expressed with a
vertical bar, |. An alternator expresses alternatives. The following matches “Jen”,
“Jenny”, and “Jennifer”:

Console.WriteLine (Regex.IsMatch ("Jenny", "Jen(ny|nifer)?"));  // True

The brackets around an alternator separate the alternatives from the rest of the
expression.

You can specify a timeout when matching regular expressions.
If a match operation takes longer than the specified TimeSpan,
a RegexMatchTimeoutException is thrown. This can be useful
if your program processes user-supplied regular expressions
because it prevents malformed regular expressions from infin‐
itely spinning.
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Compiled Regular Expressions
In some of the preceding examples, we called a static RegEx method repeatedly
with the same pattern. An alternative approach in these cases is to instantiate a
Regex object with the pattern and RegexOptions.Compiled and then call instance
methods:

Regex r = new Regex (@"sausages?", RegexOptions.Compiled);
Console.WriteLine (r.Match ("sausage"));   // sausage
Console.WriteLine (r.Match ("sausages"));  // sausages

RegexOptions.Compiled instructs the RegEx instance to use lightweight code gener‐
ation (DynamicMethod in Reflection.Emit) to dynamically build and compile code
tailored to that particular regular expression. This results in faster matching, at the
expense of an initial compilation cost.

You can also instantiate a Regex object without using RegexOptions.Compiled. A
Regex instance is immutable.

The regular expressions engine is fast. Even without compila‐
tion, a simple match typically takes less than a microsecond.

RegexOptions
The RegexOptions flags enum lets you tweak matching behavior. A common use for
RegexOptions is to perform a case-insensitive search:

Console.WriteLine (Regex.Match ("a", "A", RegexOptions.IgnoreCase)); // a

This applies the current culture’s rules for case equivalence. The CultureInvariant
flag lets you request the invariant culture instead:

Console.WriteLine (Regex.Match ("a", "A", RegexOptions.IgnoreCase
                                        | RegexOptions.CultureInvariant));

You can activate most of the RegexOptions flags within a regular expression itself,
using a single-letter code, as follows:

Console.WriteLine (Regex.Match ("a", @"(?i)A"));                     // a

You can turn options on and off throughout an expression:

Console.WriteLine (Regex.Match ("AAAa", @"(?i)a(?-i)a"));            // Aa

Another useful option is IgnorePatternWhitespace or (?x). This allows you to
insert whitespace to make a regular expression more readable—without the white‐
space being taken literally.

The NonBacktracking option (from .NET 7) instructs the regex engine to use a
forwards-only matching algorithm. This usually results in slower performance
and disables some advanced features such as lookahead or lookbehind. However,
it also prevents malformed or maliciously constructed expressions from taking
near-infinite time, mitigating a potential denial-of-service attack when processing
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user-supplied regular expressions (a ReDOS attack). Specifying a timeout is also
useful in this scenario.

Table 25-1 lists all RegExOptions values along with their single-letter codes.

Table 25-1. Regular expression options

Enum value Regular
expressions
code

Description

None   

IgnoreCase i Ignores case (by default, regular expressions are case
sensitive)

Multiline m Changes ^ and $ so that they match the start/end of a
line instead of start/end of the string

ExplicitCapture n Captures only explicitly named or explicitly numbered
groups (see “Groups” on page 1020)

Compiled  Forces compilation to IL (see “Compiled Regular
Expressions” on page 1013)

Singleline s Makes . match every character (instead of matching
every character except \n)

IgnorePatternWhitespace x Eliminates unescaped whitespace from the pattern

RightToLeft r Searches from right to left; can’t be specified midstream

ECMAScript  Forces ECMA compliance (by default, the
implementation is not ECMA compliant)

CultureInvariant  Turns off culture-specific behavior for string
comparisons

NonBacktracking  Disables backtracking to ensure predictable (albeit
slower) performance

Character Escapes
Regular expressions have the following metacharacters, which have a special rather
than literal meaning:

\ * + ? | { [ () ^ $ . #
To use a metacharacter literally, you must prefix, or escape, the character with a
backslash. In the following example, we escape the ? character to match the string
"what?":

Console.WriteLine (Regex.Match ("what?", @"what\?")); // what? (correct)
Console.WriteLine (Regex.Match ("what?", @"what?"));  // what  (incorrect)

If the character is inside a set (square brackets), this rule does
not apply, and the metacharacters are interpreted literally. We
discuss sets in the following section.

1014 | Chapter 25: Regular Expressions



The Regex’s Escape and Unescape methods convert a string containing regular
expression metacharacters by replacing them with escaped equivalents, and vice
versa:

Console.WriteLine (Regex.Escape   (@"?"));     // \?
Console.WriteLine (Regex.Unescape (@"\?"));    // ?>

All the regular expression strings in this chapter are expressed with the C# @ literal.
This is to bypass C#’s escape mechanism, which also uses the backslash. Without the
@, a literal backslash would require four backslashes:

Console.WriteLine (Regex.Match ("\\", "\\\\"));    // \

Unless you include the (?x) option, spaces are treated literally in regular
expressions:

Console.Write (Regex.IsMatch ("hello world", @"hello world"));  // True

Character Sets
Character sets act as wildcards for a particular set of characters.

Expression Meaning Inverse (“not”)

[abcdef] Matches a single character in the list. [^abcdef]

[a-f] Matches a single character in a range. [^a-f]

\d Matches anything in the Unicode digits category. In ECMAScript mode,
[0-9].

\D

\w Matches a word character (by default, varies according to
CultureInfo.CurrentCulture; for example, in English, same as
[a-zA-Z_0-9]).

\W

\s Matches a whitespace character; that is, anything for which
char.IsWhiteSpace returns true (including Unicode spaces). In
ECMAScript mode, [\n\r\t\f\v ].

\S

\p{category} Matches a character in a specified category. \P

. (Default mode) Matches any character except \n. \n

. (SingleLine mode) Matches any character. \n

To match exactly one of a set of characters, put the character set in square brackets:

Console.Write (Regex.Matches ("That is that.", "[Tt]hat").Count);   // 2

To match any character except those in a set, put the set in square brackets with a ^
symbol before the first character:

Console.Write (Regex.Match ("quiz qwerty", "q[^aeiou]").Index);    // 5

You can specify a range of characters by using a hyphen. The following regular
expression matches a chess move:

Console.Write (Regex.Match ("b1-c4", @"[a-h]\d-[a-h]\d").Success);  // True
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\d indicates a digit character, so \d will match any digit. \D matches any nondigit
character.

\w indicates a word character, which includes letters, numbers, and the underscore.
\W matches any nonword character. These work as expected for non-English letters,
too, such as Cyrillic.

. matches any character except \n (but allows \r).

\p matches a character in a specified category, such as {Lu} for uppercase letter
or {P} for punctuation (we list the categories in the reference section later in the
chapter):

Console.Write (Regex.IsMatch ("Yes, please", @"\p{P}"));   // True

We will find more uses for \d, \w, and . when we combine them with quantifiers.

Quantifiers
Quantifiers match an item a specified number of times.

Quantifier Meaning

* Zero or more matches

+ One or more matches

? Zero or one match

{n} Exactly n matches

{n,} At least n matches

{n,m} Between n and m matches

The * quantifier matches the preceding character or group zero or more times. The
following matches cv.docx, along with any numbered versions of the same file (e.g.,
cv2.docx, cv15.docx):

Console.Write (Regex.Match ("cv15.docx", @"cv\d*\.docx").Success);  // True

Notice that we must escape the period in the file extension using a backslash.

The following allows anything between cv and .docx and is equivalent to
dir cv*.docx:

Console.Write (Regex.Match ("cvjoint.docx", @"cv.*\.docx").Success); // True

The + quantifier matches the preceding character or group one or more times. For
example:

Console.Write (Regex.Matches ("slow! yeah slooow!", "slo+w").Count);  // 2
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The {} quantifier matches a specified number (or range) of repetitions. The follow‐
ing matches a blood pressure reading:

Regex bp = new Regex (@"\d{2,3}/\d{2,3}");
Console.WriteLine (bp.Match ("It used to be 160/110"));  // 160/110
Console.WriteLine (bp.Match ("Now it's only 115/75"));   // 115/75

Greedy Versus Lazy Quantifiers
By default, quantifiers are greedy, as opposed to lazy. A greedy quantifier repeats as
many times as it can before advancing. A lazy quantifier repeats as few times as it
can before advancing. You can make any quantifier lazy by suffixing it with the ?
symbol. To illustrate the difference, consider the following HTML fragment:

string html = "<i>By default</i> quantifiers are <i>greedy</i> creatures";

Suppose that we want to extract the two phrases in italics. If we execute the
following

foreach (Match m in Regex.Matches (html, @"<i>.*</i>"))
  Console.WriteLine (m);

the result is not two matches, but a single match:

<i>By default</i> quantifiers are <i>greedy</i>

The problem is that our * quantifier greedily repeats as many times as it can before
matching </i>. So, it passes right by the first </i>, stopping only at the final </i>
(the last point at which the rest of the expression can still match).

If we make the quantifier lazy, the * bails out at the first point at which the rest of
the expression can match:

foreach (Match m in Regex.Matches (html, @"<i>.*?</i>"))
  Console.WriteLine (m);

Here’s the result:

<i>By default</i>
<i>greedy</i>

Zero-Width Assertions
The regular expressions language lets you place conditions on what should occur
before or after a match, through lookbehind, lookahead, anchors, and word bound‐
aries. These are called zero-width assertions because they don’t increase the width
(or length) of the match itself.

Lookahead and Lookbehind
The (?=expr) construct checks whether the text that follows matches expr, without
including expr in the result. This is called positive lookahead. In the following
example, we look for a number followed by the word “miles”:
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Console.WriteLine (Regex.Match ("say 25 miles more", @"\d+\s(?=miles)"));

OUTPUT: 25

Notice that the word “miles” was not returned in the result, even though it was
required to satisfy the match.

After a successful lookahead, matching continues as though the sneak preview never
took place. So, if we append .* to our expression like this:

Console.WriteLine (Regex.Match ("say 25 miles more", @"\d+\s(?=miles).*"));

the result is 25 miles more.

Lookahead can be useful in enforcing rules for a strong password. Suppose that
a password must be at least six characters and contain at least one digit. With a
lookup, we could achieve this, as follows:

string password = "...";
bool ok = Regex.IsMatch (password, @"(?=.*\d).{6,}");

This first performs a lookahead to ensure that a digit occurs somewhere in the
string. If satisfied, it returns to its position before the sneak preview began and
matches six or more characters. (In “Cookbook Regular Expressions” on page 1023,
we include a more substantial password validation example.)

The opposite is the negative lookahead construct, (?!expr). This requires that the
match not be followed by expr. The following expression matches “good”—unless
“however” or “but” appears later in the string:

string regex = "(?i)good(?!.*(however|but))";
Console.WriteLine (Regex.IsMatch ("Good work! But...",  regex));  // False
Console.WriteLine (Regex.IsMatch ("Good work! Thanks!", regex));  // True

The (?<=expr) construct denotes positive lookbehind and requires that a match be
preceded by a specified expression. The opposite construct, (?<!expr), denotes neg‐
ative lookbehind and requires that a match not be preceded by a specified expression.
For example, the following matches “good”—unless “however” appears earlier in the
string:

string regex = "(?i)(?<!however.*)good";
Console.WriteLine (Regex.IsMatch ("However good, we...", regex)); // False
Console.WriteLine (Regex.IsMatch ("Very good, thanks!", regex));  // True

We could improve these examples by adding word boundary assertions, which we
introduce shortly.
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Anchors
The anchors ^ and $ match a particular position. By default:

^

Matches the start of the string

$

Matches the end of the string

^ has two context-dependent meanings: an anchor and a char‐
acter class negator.

$ has two context-dependent meanings: an anchor and a
replacement group denoter.

For example:

Console.WriteLine (Regex.Match ("Not now", "^[Nn]o"));   // No
Console.WriteLine (Regex.Match ("f = 0.2F", "[Ff]$"));   // F

When you specify RegexOptions.Multiline or include (?m) in the expression:

• ^ matches the start of the string or line (directly after a \n).•

• $ matches the end of the string or line (directly before a \n).•

There’s a catch to using $ in multiline mode: a new line in Windows is nearly
always denoted with \r\n rather than just \n. This means that for $ to be useful for
Windows files, you must usually match the \r, as well, with a positive lookahead:

(?=\r?$)

The positive lookahead ensures that \r doesn’t become part of the result. The
following matches lines that end in ".txt":

string fileNames = "a.txt" + "\r\n" + "b.docx" + "\r\n" + "c.txt";
string r = @".+\.txt(?=\r?$)";
foreach (Match m in Regex.Matches (fileNames, r, RegexOptions.Multiline))
  Console.Write (m + " ");

OUTPUT: a.txt c.txt

The following matches all empty lines in string s:

MatchCollection emptyLines = Regex.Matches (s, "^(?=\r?$)",
                                            RegexOptions.Multiline);

The following matches all lines that are either empty or contain only whitespace:

MatchCollection blankLines = Regex.Matches (s, "^[ \t]*(?=\r?$)",
                                            RegexOptions.Multiline);

Because an anchor matches a position rather than a character,
specifying an anchor on its own matches an empty string:

Console.WriteLine (Regex.Match ("x", "$").Length);   // 0
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Word Boundaries
The word boundary assertion \b matches where word characters (\w) adjoin either:

• Nonword characters (\W)•

• The beginning/end of the string (^ and $)•

\b is often used to match whole words:

foreach (Match m in Regex.Matches ("Wedding in Sarajevo", @"\b\w+\b"))
  Console.WriteLine (m);

Wedding
in
Sarajevo

The following statements highlight the effect of a word boundary:

int one = Regex.Matches ("Wedding in Sarajevo", @"\bin\b").Count; // 1
int two = Regex.Matches ("Wedding in Sarajevo", @"in").Count;     // 2

The next query uses positive lookahead to return words followed by “(sic)”:

string text = "Don't loose (sic) your cool";
Console.Write (Regex.Match (text, @"\b\w+\b\s(?=\(sic\))"));  // loose

Groups
Sometimes, it’s useful to separate a regular expression into a series of subexpres‐
sions, or groups. For instance, consider the following regular expression that repre‐
sents a US phone number such as 206-465-1918:

\d{3}-\d{3}-\d{4}

Suppose that we want to separate this into two groups: area code and local number.
We can achieve this by using parentheses to capture each group:

(\d{3})-(\d{3}-\d{4})

We then retrieve the groups programmatically:

Match m = Regex.Match ("206-465-1918", @"(\d{3})-(\d{3}-\d{4})");

Console.WriteLine (m.Groups[1]);   // 206
Console.WriteLine (m.Groups[2]);   // 465-1918

The zeroth group represents the entire match. In other words, it has the same value
as the match’s Value:

Console.WriteLine (m.Groups[0]);   // 206-465-1918
Console.WriteLine (m);             // 206-465-1918

Groups are part of the regular expressions language itself. This means that you can
refer to a group within a regular expression. The \n syntax lets you index the group
by group number n within the expression. For example, the expression (\w)ee\1
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matches deed and peep. In the following example, we find all words in a string
starting and ending in the same letter:

foreach (Match m in Regex.Matches ("pop pope peep", @"\b(\w)\w+\1\b"))
  Console.Write (m + " ");  // pop peep

The brackets around the \w instruct the regular expressions engine to store the
submatch in a group (in this case, a single letter) so that it can be used later. We
refer to that group later using \1, meaning the first group in the expression.

Named Groups
In a long or complex expression, it can be easier to work with groups by name
rather than index. Here’s a rewrite of the previous example, using a group that we
name 'letter':

string regEx =
  @"\b"             +  // word boundary
  @"(?'letter'\w)"  +  // match first letter, and name it 'letter'
  @"\w+"            +  // match middle letters
  @"\k'letter'"     +  // match last letter, denoted by 'letter'
  @"\b";               // word boundary

foreach (Match m in Regex.Matches ("bob pope peep", regEx))
  Console.Write (m + " ");  // bob peep

Here’s how to name a captured group:

(?'group-name'group-expr)  or  (?<group-name>group-expr)

And here’s how to refer to a group:

\k'group-name'  or  \k<group-name>

The following example matches a simple (non-nested) XML/HTML element by
looking for start and end nodes with a matching name:

string regFind =
  @"<(?'tag'\w+?).*>" +  // lazy-match first tag, and name it 'tag'
  @"(?'text'.*?)"     +  // lazy-match text content, name it 'text'
  @"</\k'tag'>";         // match last tag, denoted by 'tag'

Match m = Regex.Match ("<h1>hello</h1>", regFind);
Console.WriteLine (m.Groups ["tag"]);          // h1
Console.WriteLine (m.Groups ["text"]);         // hello

Allowing for all possible variations in XML structure, such as nested elements, is
more complex. The .NET regular expressions engine has a sophisticated extension
called “matched balanced constructs” that can assist with nested tags—information
on this is available on the internet and in Mastering Regular Expressions (O’Reilly)
by Jeffrey E. F. Friedl.
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Replacing and Splitting Text
The RegEx.Replace method works like string.Replace except that it uses a regular
expression.

The following replaces “cat” with “dog”. Unlike with string.Replace, “catapult”
won’t change into “dogapult”, because we match on word boundaries:

string find = @"\bcat\b";
string replace = "dog";
Console.WriteLine (Regex.Replace ("catapult the cat", find, replace));

OUTPUT: catapult the dog

The replacement string can reference the original match with the $0 substitution
construct. The following example wraps numbers within a string in angle brackets:

string text = "10 plus 20 makes 30";
Console.WriteLine (Regex.Replace (text, @"\d+", @"<$0>"));

OUTPUT: <10> plus <20> makes <30>

You can access any captured groups with $1, $2, $3, and so on, or ${name} for a
named group. To illustrate how this can be useful, consider the regular expression
in the previous section that matched a simple XML element. By rearranging the
groups, we can form a replacement expression that moves the element’s content into
an XML attribute:

string regFind =
  @"<(?'tag'\w+?).*>" +  // lazy-match first tag, and name it 'tag'
  @"(?'text'.*?)"     +  // lazy-match text content, name it 'text'
  @"</\k'tag'>";         // match last tag, denoted by 'tag'

string regReplace =
  @"<${tag}"         +  // <tag
  @"value="""        +  // value="
  @"${text}"         +  // text
  @"""/>";              // "/>

Console.Write (Regex.Replace ("<msg>hello</msg>", regFind, regReplace));

Here’s the result:

<msg value="hello"/>

MatchEvaluator Delegate
Replace has an overload that takes a MatchEvaluator delegate, which is invoked per
match. This allows you to delegate the content of the replacement string to C# code
when the regular expressions language isn’t expressive enough:

Console.WriteLine (Regex.Replace ("5 is less than 10", @"\d+",
                   m => (int.Parse (m.Value) * 10).ToString()) );

OUTPUT: 50 is less than 100
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In “Cookbook Regular Expressions” on page 1023, we show how to use a Match
Evaluator to escape Unicode characters appropriately for HTML.

Splitting Text
The static Regex.Split method is a more powerful version of the string.Split
method, with a regular expression denoting the separator pattern. In this example,
we split a string, where any digit counts as a separator:

foreach (string s in Regex.Split ("a5b7c", @"\d"))
  Console.Write (s + " ");     // a b c

The result, here, doesn’t include the separators themselves. You can include the sep‐
arators, however, by wrapping the expression in a positive lookahead. The following
splits a camel-case string into separate words:

foreach (string s in Regex.Split ("oneTwoThree", @"(?=[A-Z])"))
  Console.Write (s + " ");    // one Two Three

Cookbook Regular Expressions
Recipes

Matching US Social Security number/phone number
string ssNum = @"\d{3}-\d{2}-\d{4}";

Console.WriteLine (Regex.IsMatch ("123-45-6789", ssNum));      // True

string phone = @"(?x)
  ( \d{3}[-\s] | \(\d{3}\)\s? )
    \d{3}[-\s]?
    \d{4}";

Console.WriteLine (Regex.IsMatch ("123-456-7890",   phone));   // True
Console.WriteLine (Regex.IsMatch ("(123) 456-7890", phone));   // True

Extracting “name = value” pairs (one per line)
Note that this starts with the multiline directive (?m):

string r = @"(?m)^\s*(?'name'\w+)\s*=\s*(?'value'.*)\s*(?=\r?$)";

string text =
  @"id = 3
    secure = true
    timeout = 30";

foreach (Match m in Regex.Matches (text, r))
  Console.WriteLine (m.Groups["name"] + " is " + m.Groups["value"]);
id is 3 secure is true timeout is 30

Cookbook Regular Expressions | 1023

R
eg

ular
E

xp
ressio

ns



Strong password validation
The following checks whether a password has at least six characters and whether it
contains a digit, symbol, or punctuation mark:

string r = @"(?x)^(?=.* ( \d | \p{P} | \p{S} )).{6,}";

Console.WriteLine (Regex.IsMatch ("abc12", r));     // False
Console.WriteLine (Regex.IsMatch ("abcdef", r));    // False
Console.WriteLine (Regex.IsMatch ("ab88yz", r));    // True

Lines of at least 80 characters
string r = @"(?m)^.{80,}(?=\r?$)";

string fifty = new string ('x', 50);
string eighty = new string ('x', 80);

string text = eighty + "\r\n" + fifty + "\r\n" + eighty;

Console.WriteLine (Regex.Matches (text, r).Count);   // 2

Parsing dates/times (N/N/N H:M:S AM/PM)
This expression handles a variety of numeric date formats—and works whether the
year comes first or last. The (?x) directive improves readability by allowing white‐
space; the (?i) switches off case sensitivity (for the optional AM/PM designator).
You can then access each component of the match through the Groups collection:

string r = @"(?x)(?i)
 (\d{1,4}) [./-]
 (\d{1,2}) [./-]
 (\d{1,4}) [\sT]
 (\d+):(\d+):(\d+) \s? (A\.?M\.?|P\.?M\.?)?";

string text = "01/02/2008 5:20:50 PM";

foreach (Group g in Regex.Match (text, r).Groups)
  Console.WriteLine (g.Value + " ");
01/02/2008 5:20:50 PM 01 02 2008 5 20 50 PM

(Of course, this doesn’t verify that the date/time is correct.)

Matching Roman numerals
string r =
  @"(?i)\bm*"         +
  @"(d?c{0,3}|c[dm])" +
  @"(l?x{0,3}|x[lc])" +
  @"(v?i{0,3}|i[vx])" +
  @"\b";

Console.WriteLine (Regex.IsMatch ("MCMLXXXIV", r));   // True
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Removing repeated words
Here, we capture a named group called dupe:

string r = @"(?'dupe'\w+)\W\k'dupe'";

string text = "In the the beginning...";
Console.WriteLine (Regex.Replace (text, r, "${dupe}"));

In the beginning

Word count
string r = @"\b(\w|[-'])+\b";

string text = "It's all mumbo-jumbo to me";
Console.WriteLine (Regex.Matches (text, r).Count);   // 5

Matching a GUID
string r =
  @"(?i)\b"           +
  @"[0-9a-fA-F]{8}\-" +
  @"[0-9a-fA-F]{4}\-" +
  @"[0-9a-fA-F]{4}\-" +
  @"[0-9a-fA-F]{4}\-" +
  @"[0-9a-fA-F]{12}"  +
  @"\b";

string text = "Its key is {3F2504E0-4F89-11D3-9A0C-0305E82C3301}.";
Console.WriteLine (Regex.Match (text, r).Index);                    // 12

Parsing an XML/HTML tag
Regex is useful for parsing HTML fragments—particularly when the document
might be imperfectly formed:

string r =
  @"<(?'tag'\w+?).*>"  +  // lazy-match first tag, and name it 'tag'
  @"(?'text'.*?)"      +  // lazy-match text content, name it 'textd'
  @"</\k'tag'>";          // match last tag, denoted by 'tag'

string text = "<h1>hello</h1>";

Match m = Regex.Match (text, r);

Console.WriteLine (m.Groups ["tag"]);       // h1
Console.WriteLine (m.Groups ["text"]);      // hello

Splitting a camel-cased word
This requires a positive lookahead to include the uppercase separators:

string r = @"(?=[A-Z])";
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foreach (string s in Regex.Split ("oneTwoThree", r))
  Console.Write (s + " ");    // one Two Three

Obtaining a legal filename
string input = "My \"good\" <recipes>.txt";

char[] invalidChars = System.IO.Path.GetInvalidFileNameChars();
string invalidString = Regex.Escape (new string (invalidChars));

string valid = Regex.Replace (input, "[" + invalidString + "]", "");
Console.WriteLine (valid);

My good recipes.txt

Escaping Unicode characters for HTML
string htmlFragment = "© 2007";

string result = Regex.Replace (htmlFragment, @"[\u0080-\uFFFF]",
                m => @"&#" + ((int)m.Value[0]).ToString() + ";");

Console.WriteLine (result);        // &#169; 2007

Unescaping characters in an HTTP query string
string sample = "C%23 rocks";

string result = Regex.Replace (
    sample,
    @"%[0-9a-f][0-9a-f]", 
    m => ((char) Convert.ToByte (m.Value.Substring (1), 16)).ToString(),
    RegexOptions.IgnoreCase
);

Console.WriteLine (result);   // C# rocks

Parsing Google search terms from a web stats log
You should use this in conjunction with the previous example to unescape charac‐
ters in the query string:

string sample = 
  "http://google.com/search?hl=en&q=greedy+quantifiers+regex&btnG=Search";

Match m = Regex.Match (sample, @"(?<=google\..+search\?.*q=).+?(?=(&|$))");

string[] keywords = m.Value.Split (
  new[] { '+' }, StringSplitOptions.RemoveEmptyEntries);

foreach (string keyword in keywords)
  Console.Write (keyword + " ");       // greedy quantifiers regex
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Regular Expressions Language Reference
Tables 25-2 through 25-12 summarize the regular expressions grammar and syntax
supported in the .NET implementation.

Table 25-2. Character escapes

Escape code sequence Meaning Hexadecimal equivalent

\a Bell \u0007

\b Backspace \u0008

\t Tab \u0009

\r Carriage return \u000A

\v Vertical tab \u000B

\f Form feed \u000C

\n Newline \u000D

\e Escape \u001B

\nnn ASCII character nnn as octal (e.g., \n052)  

\xnn ASCII character nn as hex (e.g., \x3F)  

\cl ASCII control character l (e.g., \cG for Ctrl-G)  

\unnnn Unicode character nnnn as hex (e.g., \u07DE)  

\symbol A nonescaped symbol  

Special case: within a regular expression, \b means word boundary, except in a [ ]
set, in which \b means the backspace character.

Table 25-3. Character sets

Expression Meaning Inverse (“not”)

[abcdef] Matches a single character in the list [^abcdef]

[a-f] Matches a single character in a range [^a-f]

\d Matches a decimal digit
Same as [0-9]

\D

\w Matches a word character (by default, varies according to
CultureInfo.CurrentCulture; for example, in English, same
as [a-zA-Z_0-9])

\W

\s Matches a whitespace character
Same as [\n\r\t\f\v ]

\S

\p{category} Matches a character in a specified category (see Table 25-4) \P

. (Default mode) Matches any character except \n \n

. (SingleLine mode) Matches any character \n
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Table 25-4. Character categories

Quantifier Meaning

\p{L} Letters

\p{Lu} Uppercase letters

\p{Ll} Lowercase letters

\p{N} Numbers

\p{P} Punctuation

\p{M} Diacritic marks

\p{S} Symbols

\p{Z} Separators

\p{C} Control characters

Table 25-5. Quantifiers

Quantifier Meaning

* Zero or more matches

+ One or more matches

? Zero or one match

{n} Exactly n matches

{n,} At least n matches

{n,m} Between n and m matches

The ? suffix can be applied to any of the quantifiers to make them lazy rather than
greedy.

Table 25-6. Substitutions

Expression Meaning

$0 Substitutes the matched text

$group-number Substitutes an indexed group-number within the matched text

${group-name} Substitutes a text group-name within the matched text

Substitutions are specified only within a replacement pattern.

Table 25-7. Zero-width assertions

Expression Meaning

^ Start of string (or line in multiline mode)

$ End of string (or line in multiline mode)

\A Start of string (ignores multiline mode)
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Expression Meaning

\z End of string (ignores multiline mode)

\Z End of line or string

\G Where search started

\b On a word boundary

\B Not on a word boundary

(?=expr) Continue matching only if expression expr matches on right (positive lookahead)

(?!expr) Continue matching only if expression expr doesn’t match on right (negative lookahead)

(?<=expr) Continue matching only if expression expr matches on left (positive lookbehind)

(?<!expr) Continue matching only if expression expr doesn’t match on left (negative lookbehind)

(?>expr) Subexpression expr is matched once and not backtracked

Table 25-8. Grouping constructs

Syntax Meaning

(expr) Capture matched expression expr into indexed group

(?number) Capture matched substring into a specified group number

(?'name') Capture matched substring into group name

(?'name1-name2') Undefine name2 and store interval and current group into name1; if name2 is
undefined, matching backtracks

(?:expr) Noncapturing group

Table 25-9. Back references

Parameter syntax Meaning

\index Reference a previously captured group by index

\k<name> Reference a previously captured group by name

Table 25-10. Alternation

Expression syntax Meaning

| Logical or

(?(expr)yes|no) Matches yes if expression matches; otherwise, matches no (no is optional)

(?(name)yes|no) Matches yes if named group has a match; otherwise, matches no (no is optional)

Table 25-11. Miscellaneous constructs

Expression syntax Meaning

(?#comment) Inline comment

#comment Comment to end of line (works only in IgnorePatternWhitespace mode)
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Table 25-12. Regular expression options

Option Meaning

(?i) Case-insensitive match (“ignore” case)

(?m) Multiline mode; changes ^ and $ so that they match beginning and end of any line

(?n) Captures only explicitly named or numbered groups

(?c) Compiles to Intermediate Language

(?s) Single-line mode; changes meaning of “.” so that it matches every character

(?x) Eliminates unescaped whitespace from the pattern

(?r) Searches from right to left; can’t be specified midstream
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964-965
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application layer, 741
application manifest, 735, 767
application servers, 901
Application.DispatcherUnhandledExcep‐

tion, 641, 675
Application.ThreadException, 641
ApplicationData directory, 731
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implications of passing by reference,
72
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pass-by-value versus pass-by-

reference, 70
passing to a Dynamic Method, 836
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construction and indexing, 379-381
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copying, 384
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searching, 382
sorting, 383

array initialization expressions, 62, 65
array pooling, 599
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Array...
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Array.Sort, 384
ArrayList, 386-388

arrays, 61-67
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bounds checking, 66
covariance, 168
default element initialization, 62
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jagged, 65
multidimensional, 64
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simplified initialization expressions,

65
type names, 809
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as operator, 129
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AsEnumerable operator, 453, 511
AsParallel operator, 935-938

.ASP.NET Core, 286
AsQueryable operator, 467, 511
assemblies, 33, 765-804

application manifest, 767
applying attributes to, 244
Assembly class, 768
assembly manifest, 766
AssemblyName class, 772
Authenticode signing, 773-776
components, 765-769
defined, 4
emitting assemblies and types,

841-849
fully qualified names, 771
informational/file versions, 773
loading/resolving/isolating, 783-804
modules, 768
names, 771-773
reflecting, 827
resources, 776-783
satellite assemblies, 781-782
specifying attributes, 767
strong names and assembly signing,

770
assembly load context (ALC), 785-804

Assembly.Load and contextual ALCs,
792-795

AssemblyDependencyResolver, 796
current ALC, 792
default ALC, 790
default probing, 791
EnterContextualReflection, 794-795
legacy loading methods, 798-799
LoadFile and Load(byte[]), 798
LoadFrom method, 798
LoadFromAssemblyName, 787
loading assemblies, 786
loading/resolving unmanaged libra‐

ries, 795
resolving assemblies, 787-790
unloading, 797
writing a plug-in system, 799-804

assembly resolution, 783, 787-790
Assembly...

Assembly class, 768
Assembly.GetType, 806
Assembly.Load, 783, 792-795
AssemblyBuilder, 841
AssemblyDependencyResolver, 796
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AssemblyFileVersion, 773
AssemblyInformationalVersion, 773
AssemblyLoadContext, 784
AssemblyName, 772
AssemblyQualifiedName, 808
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as multiplication operator, 32, 35, 50
in regular expressions, 1016

asynchronous call graph, 657
asynchronous functions, 661-680

asynchronous call graph execution,
670

asynchronous lambda expressions, 672
asynchronous methods in WinRT, 675
asynchronous streams, 672-674
asynchrony and synchronization con‐

texts, 675
avoiding excessive bouncing, 680
awaiting, 661-667
defined, 662
optimizations, 677-679
parallelism, 671
precautions when using Value‐

Task<T>, 679
returning Task<TResult>, 668
synchronous completion, 677-680
ValueTask<T> and, 679
writing, 667-671

asynchronous lambda expressions, 672
asynchronous patterns, 681-689

Asynchronous Programming Model
(APM), 689

BackgroundWorker class, 691
cancellation, 681-683
Event-Based Asynchronous Pattern,

690
obsolete patterns, 689-691
progress reporting, 683-684
task combinators, 685-689
task-based patterns, 685

asynchronous programming
continuations and, 658
principles, 657

Asynchronous Programming Model
(APM), 689

asynchronous streams, 672-674
IAsyncEnumerable<T> in ASP.Net

Core, 674
querying IAsyncEnumerable<T>, 674

asynchrony, 656-661
asynchronous functions in C#,

661-680
asynchronous lambda expressions, 672
asynchronous patterns, 681-689
asynchronous programming princi‐

ples, 657
coarse-grained concurrency versus,

666
language support and, 659-661
principles of, 656-661
synchronous versus asynchronous

operations, 656
AsyncLocal<T>, 925
atomicity, locking and, 894
attributes, 243-247

applying to assemblies and backing
fields, 244

applying to lambda expressions (C#
10), 245

attaching custom attributes to
dynamic construct, 849

attribute classes, 243
AttributeUsage, 830
basics, 829
caller info attributes, 246
defining your own, 831
named/positional parameters, 244
namespaces and, 545
reading, 559
reflection, 828-833
retrieving at runtime, 832
specifying multiple attributes, 245
writing, 562

AttributeUsage attribute, 830
authentication

client-side classes, 751-753
CredentialCache and, 752
via headers with HttpClient, 753

Authenticode, 773-776
assembly signing, 773-776
code-signing certificate, 775
signing with, 774
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signing with signtool.exe, 775
time stamping, 776

automatic garbage collection, 587-588
automatic properties, 115
autonomous tasks, 651
AutoResetEvent, 912-915
Avalonia, 7
Average operator, 515
AVL tree, 409
await expressions, 661-667

awaiting in a UI, 664-666
capturing local state, 663
locking and, 906

AWS (Amazon Web Services), 884

B
b (word boundary assertion), 1020
background garbage collection, 597
background threads, 642
BackgroundWorker class, 691
backing fields, 244
backing store streams, 700
backslash (\)

in regular expressions, 1014
preceding escape sequences, 57

banker's rounding, 331
Barrier class, 919-920
base class library (BCL), 5
base constructors, 848
base keyword, 134
base types and interfaces, 809
base-class constraint, 164
BaseType property, 809
Basic Multilingual Plane (BMP), 303
BCL (base class library), 5
BigInteger struct, 336
binary adapters, 715
binary operators, 79
BinaryReader, 761
BinaryWriter, 761
binding

dynamic binding, 248-256
static versus dynamic, 249

BindingFlags enum, 822
bit-mapped attributes, 829
BitArray class, 392
BitConverter, 333
BitOperations, 340

bitwise operators, 52
blocking

spinning versus, 635
threads, 634

BlockingCollection<T>, 969-972
using tasks, 971-972
writing a producer/consumer queue,

970-972
BMP (Basic Multilingual Plane), 303
bool (Boolean) type and operators, 37,

55-57
conditional operators, 56
equality and comparison operators, 55

bounds checking, 66
boxing

copying semantics, 140
defined, 139
interfaces and, 151
nullable values, 211

braces ({})
enclosing expressions in interpolated

strings, 296
enclosing statement blocks, 32, 84
in if statements, 87
in regular expressions, 1017

branching, 838
break statement, 93
broadcaster type, 181
BrotliStream, 718
BufferedStream class, 708
builder class, 408
built-in types, 37
byte arrays, 303
byte type, 53

C
C# (generally)

brief history of features introduced
from C# 2.0 through C# 9.0, 8-30

language basics, 31-102
memory management, 3, 4

(see also garbage collection[GC])
niche runtimes, 8
object orientation, 1
platform support, 3
simple program, 31-34
syntax, 34-36
type safety, 2
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C# 8
array ranges and indices, 63
asynchronous streams, 672-674
default interface members, 151
new features, 19-23
null-coalescing assignment operators,

83
nullable reference types, 215-217
property patterns, 241
static local methods, 107
switch expressions, 90
using declarations, 200
using indices and ranges with index‐

ers, 119
C# 9

callbacks with function pointers, 991
function pointers, 991
init-only properties, 818
init-only setters, 116
new features, 16-19
pattern combinators, 240
records (see records)
relational patterns, 239
target-typed new expressions, 77
top-level statements, 41, 107

C# 10
applying attributes to lambda expres‐

sions, 245
CallerArgumentExpression, 247
file-scoped namespaces, 96
global using directive, 96
new features, 13-16

C# 11
checked operators, 258
list patterns, 243
new features, 10-13
raw string literals, 59-60
required members for constructors,

136
UTF-8 string literals, 61

C# 12
aliasing any type, 100
collection expressions, 62, 205, 976
default lambda parameters, 190
new features, 8-10

CA (Certificate Authority), 774
caching, 604
calculated fields, 233-235
calculated properties, 115

call graph, 657, 670
call sites, 862
call-site caching, 862
caller info attributes, 246
CallerArgumentExpression, 247
calling conventions, 990, 992
calling site, 113
CallSite<>, 862
canceling a PLINQ query, 941
cancellation tokens, 904, 941
Capitalizer (plug-in), 800
captured variables, 434, 639
caret (^)

bitwise exclusive OR operator, 52
in regular expressions, 1019, 1019

cartesian product, 488
Cast operator, 509
casting, 128-130

as operator, 129
downcasting, 128
introducing a pattern variable, 130
is operator and, 130
upcasting, 128

catch clause, 197-198, 208
CCW (COM-Callable Wrapper), 1007
centralized exception handling, 641
Certificate Authority (CA), 774
chaining

encryption streams, 882
extension methods, 218

ChangeType method, 331
char type, 58, 291
character sets, 1015
characters, accessing within strings, 294
checked operators, 51, 258
child tasks, 956, 960
chunk partitioning, 944
circular dependencies, 853
class constraint, 164
classes, 103-126

abstract, 132
anonymous types, 220
constants, 104-106
constructors and inheritance, 135-137
deconstructors, 110-111
fields, 103
finalizers, 124
inheritance (see inheritance)
instance constructors, 108
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methods, 106-108
nameof operator, 126
object initializers, 111
partial types/methods, 124
primary constructors and subclassing,

137
properties, 114-118
sealing functions and classes, 134
static classes, 124
static constructors, 122
this reference, 113
writing a class versus an interface, 153

client-side classes
authentication, 751-753
HttpClient, 746-755
proxies, 751

Clone method, 378, 384
cloning, 528
Close method, 583
closed generic types, 851
closures, 190
CLR (Common Language Runtime), 4

C# members versus CLR members,
816

calling conventions, 990
deadlocks and, 896
indexer implementation, 119
property implementation, 117
type equivalence, 1007

coarse-grained concurrency, 666
code point, 301
collection expressions, 62, 205, 976
Collection<T>, 401-403
CollectionBase, 403
collections, 365-417

Array class, 377-385
customizable collections and proxies,

401-406
enumeration, 366-373
frozen collections, 410
ICollection and IList interfaces,

373-376
IEqualityComparer and EqualityCom‐

parer, 412-414
immutable collections, 406-410
IStructuralEquatable and IStructural‐

Comparable, 417
lists, queues, stacks, and sets, 385-394

plugging in equality and order,
411-417

StringComparer, 416
collision, 878
colon (:), in named arguments, 74
COM (Component Object Model),

1001-1009
calling a COM component from C#,

1003-1007
dynamic binding, 1006
embedding interop types, 1006
enabling registry-free COM, 1009
exposing C# objects to, 1007-1009
implicit ref parameters, 1005
indexers, 1005
IUnknown and IDispatch, 1003
optional parameters and named argu‐

ments, 1004
purpose of, 1002
type equivalence, 1007
type system basics, 1002

COM interop types, 1003
COM-Callable Wrapper (CCW), 1007
comma (,), 64
comments, 36
Common Language Runtime (see CLR)
CommonApplicationData, 731
Compare method, 297
CompareOrdinal method, 297
CompareTo, 297, 478
CompareTo method, 61
comparison operators, 55, 258, 355
comparisons

ordinal versus culture comparison,
297

string equality comparisons, 61, 297
string order comparison, 299
string types, 297-300

compilation, 33
complement operator (~), 52
Complex struct, 338
Component Object Model (see COM)
composite format string, 296
composite formatting, 321
Compressed file attribute, 724
compression streams, 718-721

compressing in memory, 719
Concat operator, 296, 507
concatenation, 60
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concurrency and asynchrony, 631-691
common concurrency scenarios, 631
principles of asynchrony, 656-661
tasks, 648-656
threading, 632-647

concurrent collections, 966-969
ConcurrentBag<T>, 968
IProducerConsumerCollection<T>,

967
concurrent garbage collection, 597
concurrent operations, canceling, 681-683
ConcurrentBag<T>, 968
ConcurrentQueue<T>, 593
conditional (ternary) operator, 57
conditional and operator (&&), 56, 608
Conditional attribute, 271, 609-610
conditional compilation, 607-610

Conditional attribute, 609-610
static variable flags versus, 608

conditional continuations, 960
conditional or operator (||), 56, 608
ConfigureAwait, 680
Console class, 321, 358
constant pattern, 239
constants, 104-106
ConstrainedCopy method, 385
constraints, 163-165
constructors, 38

deconstructors and, 110-111
emitting, 848
field initialization order, 137
implicit calling of the parameterless

base-class constructor, 135
implicit parameterless, 109
inheritance and, 135-137
instance constructor and field initiali‐

zation order, 109
instance constructors, 108
nonpublic constructors, 109
overloading, 108
primary, 235-237
required members (C# 11), 136
static, 122

Contains method, 519
contextual keywords, 35
continuations

asynchronous programming and, 658
child tasks and, 960
conditional, 960

event wait handles and, 917
exceptions and, 959
multiple antecedents with, 962
multiple continuations on a single

antecedent, 962
task parallelism, 958-962
Task<TResult> and, 958
tasks and, 652-653

continue statement, 93
ContinueWith method, 958-962
contravariance, 170, 180
conversions, 42

enums, 155, 341-342
generic types, 166
implicit/explicit, 42
implicit/explicit nullable conversions,

210
LINQ methods, 509-511
numeric types, 42, 335
operator overloading and, 258

Convert class, 330-332
banker's rounding, 331
base-64 conversions, 332
dynamic conversions, 331
parsing numbers in base 2, 8, and 16,

331
rounding real to integral conversions,

331
ConvertTime method, 314
cookies, 754
Coordinated Universal Time (UTC), 306,

313
copy constructor, 231
Copy method, 384
CopyTo method, 384, 976
core dump, 628
correlated subquery, 482
Count operator, 514
CountdownEvent, 916
covariance, 167-170, 180
covariant return types, 131
CreateRandom method, 260
CreateViewAccessor method, 738
CredentialCache, 752
CredentialCache.DefaultNetworkCreden‐

tials, 751, 753
cross join, 488
cross-process EventWaitHandle, 916
cryptography and encryption, 875-888
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hashing, 877-879
options in .NET, 875
public-key encryption/signing,

884-888
symmetric encryption, 879-884
Windows Data Protection, 876

CryptoStream, 880
.csproj file, 273
culture sensitive string comparison, 297
CultureInfo, 300, 320
CultureInfo.CurrentCulture, 319
CultureInfo.CurrentUICulture, 781
cultures and subcultures, 782
custom attributes, 829
custom binding, 249
custom conversion, 166
custom types, 37-42

constructors and instantiation, 38
equality and, 350-355
instance versus static members, 38
members of a type, 38
public keyword, 39
symmetry of predefined/custom types,

38
customizable collections and proxies,

401-406
Collection<T> and CollectionBase,

401-403
KeyedCollection<TKey,TItem> and

DictionaryBase, 403-405
ReadOnlyCollection<T>, 406

D
data members, 38
data parallelism, 932
data transfer object (DTO), 484
dates and times, 304-317

dates and time zones, 312-317
DateTime and DateTimeOffset,

306-311
parsing with regular expressions, 1024
TimeSpan, 304

DateTime, 306-311
constructing, 307
DateTimeOffset versus, 306
daylight saving time and, 316
format strings, 327-329
formatting/parsing datetimes, 310

null values, 311
parsing/misparsing, 328
returning current date/time with, 309
time zones and, 312
working with dates and times, 310

DateTime.MinValue, 311
DateTimeFormatInfo, 320
DateTimeOffset, 306-311, 345

constructing, 308
DateTime versus, 306
format strings, 327-329
formatting/parsing datetimes, 311
null values, 311
returning current date/time with, 309
time zones and, 313
working with dates and times, 310

DateTimeStyles, 329
daylight saving time, 316
DbContext, 455-461

change tracking, 461
configuring the connection, 455
configuring the model, 456
creating the database, 458
disposing, 460
object tracking, 459
using, 459

Debug and Trace classes, 611-614
Fail and Assert methods, 611
flushing and closing listeners, 613
TraceListener, 612

Debugger class, 614
attaching and breaking, 614
attributes, 614

DebuggerHidden attribute, 614
DebuggerStepThrough attribute, 614
decimal conversions, 50
declaration statements, 84
declarative parallelism, 933
Deconstruct method, 110, 241
deconstructing assignment, 111
deconstructors, 110-111
decorator sequence, 435
decrement operator (--), 51
deep cloning, 528
default keyword, 69, 163
default lambda parameters (C# 12), 190
default scheduler, 962
DefaultIfEmpty operator, 514
deferred execution
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captured variables, 434
chaining decorators, 436
EF Core queries, 464
how queries are executed, 437
LINQ queries, 432-438
mechanism of operation, 435
reevaluation, 433
subqueries and, 441

deferred loading, 552
#define directive, 607
DefineMethodOverride, 846
definite assignment policy, 68
DeflateStream, 718-720
delegate type, 173
Delegate.CreateDelegate, 811
delegates, 173-181

callbacks with, 993
calling dynamically instantiated dele‐

gates, 822
compatibility, 179-181
dynamically instantiating, 811
Func and Action delegates, 178
generic delegate type parameter var‐

iance, 181
generic delegate types, 177
instance/static method targets, 175
interfaces versus, 178
multicast, 176
parameter compatibility, 180
return type compatibility, 180
type compatibility, 179
writing plug-in methods with, 174

DelegatingHandler, 750
DescendantNodes method, 531
Descendants method, 531
diagnostics, 607-629

conditional compilation, 607-610
cross-platform tools, 625
Debug and Trace classes, 611-614
debugger integration, 614
performance counters, 620-624
processes and process threads, 615
StackTrace and StackFrame, 616-618
Stopwatch class, 624
Windows event logs, 618-620

dictionaries, 394-400
Dictionary<TKey,TValue> and Hasht‐

able, 397-398
IDictionary, 396

IDictionary<TKey,TValue>, 395
ListDictionary and HybridDictionary,

399
OrderedDictionary, 398
sorted, 399

dictionary attack, 878
Dictionary<TKey,TValue>, 397-398
DictionaryBase, 405
digital signing, 887
Directory class, 727
DirectoryInfo class, 728
disassembler, 855-859
discard symbol (_), 72
discards, 72
disposal

anonymous, 585-587
calling Dispose from a finalizer, 590
clearing fields, 584
defined, 581
encryption objects, 883
IDisposable, Dispose, and Close,

581-587
standard disposal semantics, 582
wait handles, 913
when to dispose, 583

Dispose method, 581-587, 590
Distinct operator, 479
division, 51
DLL (Dynamic Link Library)

callbacks from unmanaged code, 991
calling into native DLLs, 985
mapping structs to unmanaged mem‐

ory, 997-1001
simulating C unions, 994
type and parameter marshaling,

986-990
.dll files, 33
DLR (Dynamic Language Runtime), 249,

861
DNS (Domain Name Service), 758
Dns class, 758
do-while loops, 91
document object model (see DOM)
documentation comments (///), 272
dollar sign ($)

in regular expressions, 1019
preceding interpolated strings, 60, 296

DOM (document object model)
basics, 521
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expression DOM, 468
Domain Name Service (DNS), 758
dotnet tool, 33
dotnet-counters tool, 625
dotnet-dump tool, 628
dotnet-trace tool, 627
double type, 54
double-checked locking, 921
downcasting, 128
DownloadDataTaskAsync, 665
DPAPI (Windows Data Protection API),

876
DriveInfo class, 731
DTO (data transfer object), 484
dump, 628
dynamic binding, 248-256

conversions, 252
custom binding, 249
dynamic calls without dynamic receiv‐

ers, 253
dynamic expressions, 253
language binding, 250
on COM types, 1006
runtime representation of dynamic,

251
RuntimeBinderException, 251
static binding versus, 249
static types in dynamic expressions,

254
uncallable functions, 255
var versus dynamic types, 252

dynamic calls, 253
dynamic code generation, 834-840

branching, 838
exception handling, 840
generating IL with DynamicMethod,

834-835
generating local variables, 837
instantiating objects and calling

instance methods, 838
passing arguments to a Dynamic

Method, 836
dynamic construct, 849
dynamic conversions, 331
dynamic expressions, 253
Dynamic Language Runtime (DLR), 249,

861
dynamic languages, 872-873
Dynamic Link Library (DLL) (see DLL)

dynamic objects, 869-871
dynamic programming, 861-873

Dynamic Language Runtime (DLR),
861

dynamic member overload resolution,
863-868

implementing dynamic objects,
869-871

interoperating with dynamic lan‐
guages, 872-873

dynamic receivers, dynamic calls without,
253

dynamic type, 252
DynamicMethod

generating IL with, 834-835
passing arguments to, 836

DynamicObject, 869-871
DynamicVisit method, 864

E
EAP (Event-Based Asynchronous Pat‐

tern), 690
EF Core, 454-466

adding and removing entities from
navigation collections, 463

change tracking, 461
DbContext, 455-461
deferred execution, 464
entity classes, 454
GroupBy in, 506
loading navigation properties, 463
navigation properties, 462-464
object tracking, 459
SelectMany in, 489
SQL LIKE comparisons, 477
string comparisons in, 478
subqueries and joins in, 482
WHERE x IN (…,…,…), 478

8- and 16-bit integral types, 53
Element method, 530
element operators, 427, 512-514
element typing, 425
ElementAt operator, 513
elements, 419
#elif directive, 608
#elif statement, 608
else clause, 86
#else directive, 608
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#else statement, 608
"Elvis" (null-conditional) operator (see

null-conditional operator)
email

receiving POP3 mail with TCP,
763-764

sending mail with SmtpClient, 758
embarrassingly parallel problems, 934
Empty operator, 520
empty strings, 293
Encoding object, 302
Encoding.GetEncoding, 302
Encrypted file attribute, 724
encryption (see cryptography and encryp‐

tion)
#endif directive, 607
EndsWith method, 294
EnterAsync extension method, 906
EnterContextualReflection, 794-795
Enum...

Enum.GetNames, 343
Enum.GetValues, 343
Enum.Parse, 342
Enum.ToObject, 342

Enumerable...
Enumerable.AsEnumerable operator,

453
Enumerable.ElementAt, 513
Enumerable.Except, 508
Enumerable.Join, 499
Enumerable.Where, 476

enumeration, 203, 366-373
Array class, 381
collection initializers and collection

expressions, 205
collections, 366-373
IEnumerable and IEnumerator, 366
IEnumerable<T> and IEnumera‐

tor<T>, 367-369
implementing the enumeration inter‐

faces, 369-373
enumerators, 203, 980-982
enums, 154-157, 340-343

conversions, 155, 341-342
defined, 154
enum to integral conversions, 341
enumerating enum values, 343
Flags attribute, 155
format strings, 330

integral to enum conversions, 342
operators that work with, 156
semantics of, 343
string conversions, 342
type-safety issues, 156

Environment.SpecialFolder, 730
equal sign (=), as assignment operator, 35,

79
equality comparison, 297, 344-355

changing the meaning of equality, 350
equality and custom types, 350-355
implementing IEquatable<T>, 354
overloading == and !=, 353
overriding equality semantics, 351
overriding Equals, 353
overriding GetHashCode, 352
pluggable equality operators, 355
records and, 237
speeding up with structs, 351
standard equality protocols, 346-350
value equality versus referential equal‐

ity, 345
equality operator (==), 35, 346

Boolean values and, 55
Equals method versus, 349
NaN value and, 54
operator lifting and, 212
overloading, 258, 353
records and, 237
string equality comparison, 61, 297

EqualityComparer, 412-414
EqualityComparer<T>, 348
EqualityComparer<T>.Default, 413
Equals method

equality operator (==) versus, 349
IComparable versus, 356

#error preprocessor directive, 270
escape sequences, 57, 1014
evaluation stack, 835
event accessors, 182
event wait handles, 911-919

AutoResetEvent, 912-915
continuations and, 917
CountdownEvent, 916
cross-process, 916
disposal, 913
ManualResetEvent, 915
signaling with, 911-919
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WaitAny, WaitAll, and SignalAndWait,
918

Event-Based Asynchronous Pattern
(EAP), 690

EventLog class, 618-620
events

accessors, 187
mechanism of operation, 182
modifiers, 188
standard event pattern, 183-186
weak references and, 604-606

Except operator, 508
exception filter, 198
exception handling

centralized, 641
dynamic code generation, 840
threading and, 640

exception posting, 675
exceptions, 200-201

(see also try statements and excep‐
tions)

autonomous tasks and, 651
continuations and, 959
tasks and, 650
throwing, 200-201

exclusive locking, 890-898
choosing the synchronization object,

892
deadlocks, 896
lock statement, 891
locking and atomicity, 894
lockTaken overloads, 892
Monitor.Enter and Monitor.Exit, 891
Mutex, 897
nested locking, 895
performance, 897
TryEnter method, 892
when to lock, 893

.exe files, 33
ExpandoObject, 871
explicit conversions, 42
explicit loading, 464
expression DOM, 468
expression statements, 85
expression trees, 468-470

compiling, 467
delegates versus, 466-468
lambda expressions and, 188

expression-bodied members (=), 257

expression-bodied members (=>), 108,
115, 124

expression-bodied methods, 106
expression-bodied properties, 115
expressions, 78-80

assignment expressions, 79
primary expressions, 78
switch expressions, 90
void expressions, 78

extended partial methods, 125
Extensible Application Markup Language

(XAML) files, 333, 780
extension methods, 217-220, 423

ambiguity and resolution, 219
chaining, 218
demoting, 220
disambiguating two methods with

same signature, 220
EnterAsync, 906
instance methods versus, 219
namespaces, 219
precedence among, 219

extern aliases, 100

F
Fail method, 611
fat arrow notation (=>), 108, 115
fields, 103

clearing in disposal, 584
constructor and field initialization

order, 109
constructors and field initialization

order, 137
declaring multiple fields together, 104
emitting, 846-847
initialization, 104
properties versus, 114
readonly modifier, 104
static constructors and field initializa‐

tion order, 123
file access modifier, 145
file and directory operations, 723-733

catching filesystem events, 732
Directory class, 727
File class, 723-727
FileInfo and DirectoryInfo, 728
Path class, 729-730
querying volume information, 731
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special folders, 730
File class

compression and encryption
attributes, 724

shortcut methods, 701
Unix file security, 727
Windows file security, 726

file compression, 720
file-scoped namespaces, 96
FileInfo class, 728
FileMode, 702
filenames, specifying, 701
FileSecurity class, 726
FileStream, 700-704

advanced features, 703
constructing, 700
specifying a FileMode, 702
specifying a filename, 701

FileSystemWatcher class, 732
filtering, 475-479

< and > string comparisons in EF
Core, 478

Distinct operator, 479
SQL LIKE comparisons in EF Core,

477
Take and Skip, 478
TakeWhile and SkipWhile, 479
Where, 476-479
WHERE x IN (…,…,…) in EF Core,

478
finalizer (~), 124

calling Dispose from, 590
GC and, 589-593
GC.ReRegisterForFinalize, 593
resurrection, 592-593

finally blocks, 198, 208
fine-grained concurrency, 657
First operator, 512
FirstNode function, 529
FirstOrDefault operator, 513
fixed keyword, 1000
fixed statement, 264
fixed-size buffers, 265
Flags attribute, 155
Flatten method, 965
floating-point types, 48

conversions, 50
special float and double values, 53

fluent syntax, 421-427

chaining query operators, 421-424
composing lambda expressions,

424-426
importance of extension methods, 423
joining in, 495
mixed-syntax queries, 431
natural ordering, 426
query syntax versus, 431

for loops, 91
foreach loops, 92
foreground threads, 642
form data, uploading, 754
format item, 296
formatting and parsing, 317-329

BitConverter, 333
composite formatting, 321
Convert class, 330-332
custom numeric format strings, 324
Date/Time format strings, 327-329
DateTimeFormatInfo, 320
DateTimeStyles, 329
enum format strings, 330
enums, 340-343
equality comparison, 344-355
format providers, 318-323
format providers and CultureInfo, 320
format string, 296
globalization, 334
Guid struct, 344
IFormatProvider and ICustomFormat‐

ter, 322
NumberFormatInfo, 320
NumberStyles, 325
numeric format strings, 323
parsing with format providers, 321
standard format strings and parsing

flags, 323-330
ToString and Parse methods, 318
type converters, 333
working with numbers, 335-339
XmlConvert, 332

FormatTransitionTime, 316
forward slash (/)

as division operator, 50
trailing in URIs, 746

forward slash, double (//), 31, 36
forward-only enumerators, 980-982
frameworks, 5

(see also runtimes)
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friend assemblies, 146
frozen collections, 410
fully qualified names, 771
Func delegate, 178, 425
function pointers, 268, 991
functional construction, 526
functional programming, 407

G
garbage collection (GC), 587-588

array pooling, 599
automatic, 587-588
background collection, 597
defined, 581
finalizers, 589-593
forcing, 598
generational collection, 594
Large Object Heap, 596
managed memory leaks, 600-603
memory consumption and, 588
memory pressure, 599
notifications, 597
optimization, 594-598
process of, 593-600
resurrection, 592-593
roots, 588
tuning at runtime, 598
weak references, 603-606
workstation versus server collection,

596
GC...

GC.AddMemoryPressure, 599
GC.Collect, 598
GC.EndNoGCRegion, 599
GC.RegisterForFullGCNotification,

598
GC.RemoveMemoryPressure, 599
GC.ReRegisterForFinalize, 593
GC.SuppressFinalize, 591
GC.TryStartNoGCRegion, 599
GC.WaitForFullGCApproach, 598
GC.WaitForFullGCComplete, 598
GCNotificationStatus, 598
GCSettings.LatencyMode, 598

generational garbage collection, 594
generic interface, 824
generic math, 262-263
generic methods, 823

defining, 849
emitting, 849-851
retrieving/invoking, 820

generic types
anonymously calling members of,

866-868
C++ templates versus, 171
defining, 851
delegate types, 177, 181
emitting, 849-851
obtaining member metadata, 818
reflection, 812
type names, 808

generics, 159-171
C# generics versus C++ templates, 171
constraints, 163-165
contravariance, 170
covariance, 167-170
declaring type parameters, 162
default generic value, 163
generic methods, 161
generic types, 159
purpose of, 160
self-referencing generic declarations,

165
static data, 166
subclassing generic types, 165
type parameters and conversion, 166
typeof operator, 162
unbound generic type, 162

get accessor, 116
Get...

GetAsync method, 747
GetBytes method, 303
GetData method, 924
GetEncodings method, 302
GetEnumerator method, 204, 370
GetHashCode, 352
GetInterfaceMap method, 827
GetMembers method, 813-815
GetString method, 303
GetType method, 140
GetUnicodeCategory method, 293
GetValue method, 380

global keyword, 101
global using directive (C# 10), 96
globalization, 334

checklist, 334
defined, 334
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testing against different cultures, 335
goto statement, 93
greedy quantifiers, 1017
GroupBy operator, 503-506
grouping (LINQ), 503-506
GroupJoin operator (LINQ), 496-500

enumerable implementations, 499
flat outer joins, 497
joining with lookups, 498

groups
named groups, 1021
regular expressions, 1020-1021

Guid struct, 344
Guid.NewGuid, 344
gzip file compression, 720
GZipStream, 718

H
Half struct, 337
Handle method, 965
hash (#), 270, 607
hash partitioning, 943
hashcode, 352, 877
hashing, 877-879

hash algorithms in .NET, 878
passwords, 878

hashing algorithm, 877
HashSet<T>, 392
Hashtable class, 397-398
hashtables, 352
headers, 753
heap, 67
HideBySig, 846
hiding inherited members, 133
HTTP (Hypertext Transfer Protocol)

cookies, 754
headers, 753
query strings, 753
uploading form data, 754
writing an HTTP server, 755-758

HttpClient, 746-755
authentication via headers with, 753
chaining handlers with Delegating‐

Handler, 750
cookies, 754
custom headers, 753
GetAsync and response messages, 747
HttpMessageHandler, 749

proxies with, 751
SendAsync and request messages, 748
unit testing and mocking, 749
uploading data and HttpContent, 748

HttpClientHandler, 747, 751, 754
HttpContent, 748
HttpListener, 755-758
HttpMessageHandler, 749
HttpRequestMessage, 748
HttpResponseMessage, 748
HybridDictionary, 399
Hypertext Transfer Protocol (see HTTP)
hyphen (-), 1015

I
IANA (Internet Assigned Numbers

Authority) Character Set, 302
IAsyncAction, 684
IAsyncDisposable, 673
IAsyncEnumerable<T>, 673

in ASP.Net Core, 674
querying, 674

IAsyncOperation<TResult>, 684
IAsyncOperationWithProgress<TResult>,

684
IAsyncResult, 689
ICollection, 373-376
ICollection<T>, 373-376
IComparable interface, 356, 502

Equals versus, 356
implementing, 357

IComparer, 355
IConvertible, 331
ICustomFormatter, 322
IDbConnection, 583
identifiers, 34-35
IDictionary, 396
IDictionary<TKey,TValue>, 395
IDispatch interface, 1006
IDisposable, 581-587

anonymous disposal and, 585-587
IEnumerable<T> and, 368

IDynamicMetaObjectProvider (IDMOP),
249, 869

IEnumerable, 366, 369-373
IEnumerable<char>, 294
IEnumerable<T>, 207, 367-369

IDisposable and, 368
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implementing the enumeration inter‐
faces, 369-373

LINQ conversion methods and,
509-511

IEnumerator, 366
IEnumerator<T>, 207, 367-369
IEqualityComparer, 355, 412-414
IEquatable<T>, 349, 354
#if directive, 607
if statement, 86
IFormatProvider, 322
IFormattable, 319
IgnorePatternWhitespace (?x), 1013
IL (intermediate language)

CLR and, 4
dynamic code generation, 834-840
evaluation stack, 835
exception handling, 840
generating with DynamicMethod,

834-835
instantiating objects and calling

instance methods, 838
parsing, 855-859
writing a disassembler, 855-859

ildasm tool, 4
IList, 373-376
IList<T>, 373, 375
immutable collections, 406-410

builders, 408
creating, 408
manipulating, 408
performance, 409

immutable objects, 903
ImmutableArray<T>, 409
ImmutableList<T>, 409
imperative parallelism, 933
implicit conversions, 42, 49
implicit global using directives, 97
implicit ref parameters, 1005
implicit typing, 77
in parameter, 72
increment operator (++), 51
indexed filtering, 477
indexers, 118-119

CLR indexer implementation, 119
implementing, 118
using indices and ranges with, 119

IndexOfAny method, 294
indices

arrays and, 63
bounds checking, 66

inequality operator (!=), 55, 212, 346, 353
inheritance, 126-138

abstract classes/abstract members, 132
base keyword, 134
casting and reference conversions,

128-130
constructors and, 135-137
hiding inherited members, 133
overloading and resolution, 137
polymorphism, 127
sealing functions and classes, 134
virtual function members, 131

init-only properties (C# 9), 818
init-only setters, 116
initialization

fields, 104
instance constructor and field initiali‐

zation order, 109
lazy (see lazy initialization)
object initializers, 111
property initializer, 116
static constructor and field initializa‐

tion order, 123
Initialization Vector (IV), 880
INotifyPropertyChanged interface, 461
INotifyPropertyChanging interface, 461
instance constructors, 108

constructor and field initialization
order, 109

implicit parameterless, 109
nonpublic constructors, 109
overloading, 108

instance fields, ThreadLocal<T> and, 924
instance methods

delegates and, 175
extension methods versus, 219
generating, 845

instance, static members versus, 38
instantiating a type, 38, 810-812
instruction atomicity, 895
int type, 36
integral types

8- and 16-bit integral types, 53
conversions, 49
enum conversions, 341
native-sized integers, 266-268
specialized operations on, 51
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integral-type literals, 48
interface, 147-154

alternatives to reimplementation, 150
boxing and, 151
default implementation, 151
defined, 1
delegates versus, 178
explicit implementation, 148
extending, 148
reimplementing in a subclass, 149-151
static interface members, 152-153
virtual implementation, 149
when to use nongeneric interfaces, 369
writing a class versus an interface, 153

interface constraint, 164
intermediate language (see IL)
internal access modifier, 145
internationalization, 334
Internet Assigned Numbers Authority

(IANA) Character Set, 302
interoperability, 985-1009

mapping structs to unmanaged mem‐
ory, 997-1001

shared memory, 995-997
simulating C unions, 994

interpolated string, 60
interpolation, 60
interpreted queries, 448-454

AsEnumerable operator, 453
combining local queries with, 452
execution, 451
mechanism of operation, 450

interprocess communication (IPC), 704
Intersect operator, 508
into keyword, 443
INumber<TSelf> interface, 262
IOrderedEnumerable, 502
IOrderedQueryable, 502
IPAddress class, 743
IPC (interprocess communication), 704
IPEndPoint class, 744
IProducerConsumerCollection<T>, 967
IProgress<T>, 683
IPv4/IPv6 addresses, 743
IQueryable<T>, 448-452
IReadOnlyCollection<T>, 376
IReadOnlyList<T>, 376
is operator, 130
IStructuralComparable, 417

IStructuralEquatable, 417
iteration statements, 91-92

for loops, 91
foreach loops, 92
while and do-while loops, 91

iteration variables, 193
iterators, 206-207, 370

composing sequences, 208
semantics, 207-208
try/catch/finally blocks, 208
yield break statement, 207

IUnknown interface, 1007
IV (Initialization Vector), 880

J
jagged arrays, 65
JIT (Just-in-Time) compilation, 4
Join method (strings), 296
Join method (threading), 634
Join operator (LINQ), 492-500

basics, 493
joining in fluent syntax, 495
joining on multiple keys, 495

joining, 492-500
SelectMany, 489
strings, 296

JSON, 568-575
JsonDocument, 572-575
Utf8JsonReader, 568-570

JsonCommentHandling, 570
JsonDocument, 572-575

LINQ and, 574
making updates with a JSON writer,

575
reading JSON arrays, 573
reading JSON objects, 574
reading simple values, 573

JsonNode, 575-580
constructing a JsonNode DOM pro‐

grammatically, 580
fluent traversal and LINQ, 578
making updates with, 579
reading JSON arrays, 577
reading JSON objects, 577
reading simple values, 576

JsonReaderOptions, 570
JsonWriterOptions, 571
jump statements, 93-94

1048 | Index



break statement, 93
continue statement, 93
goto statement, 93
return statement, 94
throw statement, 94

Just-in-Time (JIT) compilation, 4

K
key management, 884
keywords, 34-35

L
lambda expressions, 188-194

anonymous methods versus, 194
applying attributes to (C# 10), 245
asynchronous, 672
captured variables and, 639
capturing iteration variables, 193
capturing outer variables, 190-194
composing, 424-426
default lambda parameters (C# 12),

190
element typing and, 425
explicitly specifying parameter/return

types, 189
Func signatures and, 425
local methods versus, 194
static lambdas (C# 9), 192
subqueries, 438-442

lambda operator (=>), 188
language binding, 250
Language-Integrated Query (LINQ) (see

LINQ entries)
Large Object Heap (LOH), 596
Last operator, 512
Last-In First-Out (LIFO), 391
LastIndexOf method, 294
LastNode function, 529
late binding, 819
lazy evaluation, 233-235
lazy execution (see deferred execution)
lazy initialization, 920-923

Lazy<T> class, 921
LazyInitializer class, 922

lazy quantifiers, 1017
Lazy<T> class, 921
LazyInitializer class, 922

left-associative operators, 79
let keyword, 447
LIFO (Last-In First-Out), 391
LIKE operator, 477
LinkedList<T>, 388
LINQ operators, 471-520

aggregation methods, 514-518
conversion methods, 509-511
element operators, 512-514
filtering, 475-479
generation methods, 520
grouping, 503-506
joining, 492-500
ordering, 500-503
overview, 472-475
projecting, 480-492
quantifiers, 475
sequence to element or value, 474
sequence to sequence, 473-474
set operators, 507
void to sequence, 475
Zip operator, 500

LINQ queries, 419-470
anonymous types, 446
basics, 419-421
composition strategies, 442-445
deferred execution, 432-438
fluent syntax, 421-427
interpreted queries, 448-454
into keyword, 443
JsonDocument and, 574
let keyword, 447
object initializers, 445
progressive query building, 442-443
projecting into an X-DOM, 549-552
projection strategies, 445-447
query expressions, 427-432
subqueries, 438-442
wrapping queries, 444

LINQ to XML, 521-552
annotations, 548
architectural overview, 521
documents and declarations, 539-541
LINQ to XML DOM, 522
names and namespaces, 543-548
X-DOM (see XML DOM)
XML declarations, 541

LINQ, JsonDocument and, 574
LINQ-to-objects queries, 420
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list patterns, 243
list-like collections, 385-394

BitArray, 392
HashSet<T> and SortedSet<T>, 392
LinkedList<T>, 388
List<T> and ArrayList, 386-388
Queue<T> and Queue, 390
Stack<T> and Stack, 391

List<T> class, 375, 386-388
ListDictionary, 399
Listeners, 612-614
literals, 35
Load...

Load(byte[]) method, 798
LoadFile method, 798
LoadFrom method, 798
LoadFromAssemblyName method,

787
local methods, 106

lambda expressions versus, 194
static local methods, 107
top-level statements and, 107

local queries, 452
local sequences, 419
local variables

dynamic code generation, 837
scope of, 85
var keyword, 77

LocalApplicationData, 731
localization, 334
lock statement, 94, 891
locking

exclusive (see exclusive locking)
immutable objects, 903
locking around thread-safe objects,

900
nonexclusive (see nonexclusive lock‐

ing)
read-only thread safety, 901
static members, 900
thread safety and, 638, 898-903
thread safety and .NET Core types,

899-901
thread safety in application servers,

901
lockTaken overloads, 892
logical negation operator (!), 55, 608
LOH (Large Object Heap), 596
LongCount operator, 514

loop iteration index, 950

M
Main method, 33, 40
man-in-the-middle attack, 885
managed memory leaks, 600-603
ManualResetEvent, 915
ManualResetEventSlim, 915
MARS (MultipleActiveResultSets), 466
MatchEvaluator delegate, 1022
Math class, 336
MAUI, 7, 289
Max operator, 515
member overload resolution, 863-868
member types, 815
MemberInfo subclass, 815
memory barrier, 894
memory leaks

diagnosing, 602
managed memory leaks, 600-603
timers and, 601

memory management, 4
mapping structs to unmanaged mem‐

ory, 997-1001
shared memory, 995-997

memory, stack-allocated/unmanaged, 982
memory-mapped files, 736-739

cross-platform interprocess shared
memory, 737

random file I/O and, 736
shared memory (Windows), 737
working with view accessors, 738

Memory<T>, 978-980
MemoryStream, 704, 881
metacharacters, 1014
method group, 174
method overloading, 137
method parameters, 820-821

CallerArgumentExpression and, 247
MethodAttributes.HideBySig, 846
methods, 106-108

emitting, 844-846
expression-bodied, 106
generic, 161
local methods, 106
overloading, 107
overriding, 845
purpose of, 31

1050 | Index



Microsoft Azure, 884
Microsoft Dataflow, 931
Min operator, 515
minus sign (-)

negative infinity (-∞), 53
negative zero (-0), 53
removing delegate instances, 176
subtraction operator, 50

mocking handler, 749
module initializers, 123
modules, assembly, 768, 828
Monitor.Enter, 891
Monitor.Exit, 891
MoveNext method, 207
multicast delegates, 176
multidimensional arrays, 64
multiline comments (/* */), 36, 272
multiple dispatch, 866
MultipleActiveResultSets (MARS), 466
multithreaded program, 632
multithreaded timers, 928-929
multithreading (see parallel program‐

ming)
Mutex, 897

N
naked type constraint, 165
name hiding, 98
name scoping, 97
named arguments, 74
named groups, 1021
named pipes, 705-707
nameof operator, 126
namespace alias qualification (::), 101
namespaces, 32, 95-102

advanced features, 100-102
alias qualifiers, 101
aliasing types and, 99
attributes, 545
defining, 39
extension methods and, 219
extern aliases, 100
file-scoped, 96
name hiding, 98
name scoping, 97
nested using directives withing, 99
prefixes, 544
repeated, 98

rules within, 97-99
using directive and, 96
using static directive and, 97
X-DOM, 545-547
XML, 543-548
XmlReader and, 560
XmlWriter and, 563

native-sized integers, 266-268
runtime handling when target‐

ing .NET 6 or below, 267
runtime handling when target‐

ing .NET 7+, 267
navigation properties, 462-464

adding and removing entities from
navigation collections, 463

lazy loading, 464
loading, 463

negative lookahead, 1018
negative lookbehind, 1018
nested locking, 895
nested types, 157-159

obtaining, 807
type names, 808

.NET
fundamentals, 291-363
overview, 277-289
runtime targets and TFMs, 279
standard disposal semantics, 582

.NET Core
CLR and BCL, 281-285
collections (see collections)

.NET Framework
about, 7
application layers, 286-289
compilation, 33

.NET Micro Framework, 8

.NET Standard, 279-280
C# language versions and, 281
.NET Framework and .NET 8 compat‐

ibility, 280
.NET Standard 2.0, 280
.NET Standard 2.1, 280
older .NET Standards, 280
reference assemblies, 281

networking, 741-764
addresses and ports, 743
architecture, 741
concurrency with TCP, 762
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receiving POP3 mail with TCP,
763-764

sending mail with SmtpClient, 758
URIs, 744-746
using DNS, 758
using TCP, 759-763
writing an HTTP server, 755-758

new keyword, 133
niche runtimes, 8
Nodes function, 529
nondestructive mutation, 231
nonexclusive locking, 904-911

lock recursion, 911
reader/writer locks, 907-911
semaphore, 904-906
upgradeable locks, 909-911

nongeneric interfaces, 369
nonpublic constructors, 109
nonpublic members, 822
null operators, 82-84, 213
null reference, 45
null strings, 293
null value, literal for, 45
null-coalescing assignment operators, 83
null-coalescing operator (??), 83, 213
null-conditional operator (?.), 83, 185, 213
null-forgiving operator (!), 216
#nullable enable directive, 217
nullable annotation context, 217
nullable reference types, 215-217

null-forgiving operator, 216
separating annotation and warning

contexts, 217
treating nullable warnings as errors,

217
nullable types, 45
nullable value types, 210-215

alternatives to, 214
bool? with & and | operators, 213
boxing/unboxing nullable values, 211
implicit/explicit nullable conversions,

210
null operators and, 213
Nullable<T> struct, 210
operator lifting, 211
scenarios for, 214

Nullable<T> struct, 210
NullReferenceException, 202, 215
NumberFormatInfo, 320

NumberStyles, 321, 325
numeric format strings, 323
numeric literals, 48

numeric suffixes, 49
type inference, 48

numeric suffixes, 49
numeric types, 47-55, 335-339

8- and 16-bit integral types, 53
arithmetic operators, 50
BigInteger struct, 336
char type conversions, 58
Complex struct, 338
conversions, 49, 335
double versus decimal, 54
increment and decrement operators,

51
Math class, 336
numeric literals, 48
Random class, 338
real number rounding errors, 54
special float and double values, 53
specialized operations on integral

types, 51

O
object initializers, 111

LINQ queries and, 445
optional parameters versus, 112

object instantiation, 137
object tracking, 459
object type, 138-142

boxing and unboxing, 139
GetType method and typeof operator,

140
object member listing, 141
static/runtime type checking, 140
ToString method, 141

Object...
Object.Equals method, 347-348
object.Equals static method, 348, 353
object.Equals virtual method, 347
object.ReferenceEquals method, 348
object.System.Object class, 138

objects
heap and, 67
implementing dynamic objects,

869-871
OfType operator, 509
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OperationCanceledException, 957
OperationCompleted method, 677
OperationStarted method, 677
operator lifting

equality operators (== and !=), 212
mixing nullable and non-nullable

operators, 212
nullable value types, 211
relational operators, 212

operator overloading, 256-259
checked operators, 258
custom implicit/explicit conversions,

258
operator functions, 257
overloading equality/comparison

operators, 258
true/false operators, 259

operator, defined, 35
optional parameters, 74

named arguments and, 1004
object initializers versus, 112

order comparison, 297, 355-357
<and>, 357
IComparable interface, 356
implementing IComparable interfaces,

357
OrderBy operator, 501
OrderByDescending operator, 502
OrderedDictionary, 398
ordering

comparers and collations, 502
IOrderedEnumerable and IOrdered‐

Queryable, 502
LINQ operators and, 500-503
OrderBy and OrderByDescending

arguments, 501
PLINQ and, 937

ordinal case-sensitive comparison, 298
ordinal string comparison, 297
OS security, 733-736

administrative elevation and virtuali‐
zation, 735

running in a standard user account,
734

out parameter
passing, 820
type names, 809

out parameter modifier, 71
out variables, 72

outer joins
GroupJoin, 497
SelectMany, 491

outer variables, 190-194
overflow, 51
overflow check operators

for constant expressions, 52
integral types and, 51

overloading
equality operator (==), 258, 353
instance constructors, 108
lockTaken overloads, 892
operator (see operator overloading)
overloading methods, 107
resolution and, 137, 863-868

override modifier, 131, 133
oversubscription, 647

P
Parallel class, 948-954

Parallel.For and Parallel.ForEach,
949-954

Parallel.Invoke, 948
Parallel Framework (PFX), 931-934

benefits of, 932-934
components, 933-934
concepts, 932
when to use, 934

Parallel LINQ (see PLINQ)
parallel programming, 931-972

AggregateException and, 964-965
BlockingCollection<T>, 969-972
concurrent collections, 966-969
Parallel class, 948-954
PFX benefits, 932-934
PLINQ (see PLINQ)
task parallelism, 954-964

Parallel.For, 949-954
optimization with local values,

953-954
ParallelLoopState, 951

Parallel.ForEach, 949-954
indexed, 950
optimization with local values,

953-954
outer versus inner loops, 950
ParallelLoopState, 951

Parallel.Invoke, 948
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ParallelLoopState, 951
parameter lists, 229, 230
parameter marshaling, 986-990
parameterless constructor, 135
parameterless constructor constraint, 165
parameters, 69-78

implications of passing arguments by
reference, 72

in modifier, 72
named arguments and, 74
optional parameters, 74
out modifier, 71
out variables and discards, 72
params modifier, 73
passing arguments by value, 70
ref modifier, 70

params modifier, 73
parentheses (), 35, 78
Parse method, 305, 318
partial methods, 124, 125
partial types, 124
passing by reference

implications of, 72
ref modifier, 70

passwords
hashing, 878
validation, 1024

Path class, 729-730
pattern combinators, 240
pattern variable, 130
patterns, 238-243

constant pattern, 239
pattern combinators (C# 9), 240
positional patterns, 244
property patterns, 241
relational patterns (C# 9), 239
tuple and positional patterns, 240
var pattern, 240

PE (portable executable) assembly, 765
performance counters, 620-624

creating counters and writing perfor‐
mance data, 623

enumerating the available counters,
621

reading data from, 622
period (.), 35, 78
PFX (see Parallel Framework)
PipeStream class, 704-708

anonymous pipes, 707-708

named pipes, 705-707
PLINQ (Parallel LINQ), 935-947

canceling a query, 941
custom aggregation optimization,

945-947
functional purity, 940
functionality, 933
input-side optimization, 943-944
limitations, 938
optimizing, 942-947
ordering, 937
output-side optimization, 942
parallel execution ballistics, 937
parallel spellchecker example, 938-940
setting the degree of parallelism, 941
when to use, 940

plug-in methods, writing with delegates,
174

Plugin.Common, 800
Plugin.Host, 800-803
plus sign (+)

addition operator, 50
combining delegate instances, 176
in nested type names, 808
in regular expressions, 1016
string concatenation operator, 60

pointer-to-member operator (-), 263, 265
pointers, 263-269

basics, 263
fixed statement and, 264
fixed-size buffers and, 265
function pointers (C# 9), 268
native-sized integers and, 267
stackalloc keyword and, 265
type names, 809
void pointer (void*), 266

polymorphic operators, 261-262
polymorphism, 127
POP3 mail, 763-764
portable executable (PE) assembly, 765
ports, TCP/UDP protocols, 744
positional patterns, 240, 244
positive infinity (+∞), 53
positive lookahead, 1017
positive lookbehind, 1018
post-phase action, 920
#pragma warning directive, 272
precedence, operator, 79
predefined types, 37, 46, 69
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(see also specific types)
predicate, 424
preempted thread, 633
prefixes

namespaces and, 544
X-DOM, 547

preprocessor directives, 270-272
Conditional attribute, 271
pragma warning, 272

primary constructors, 137, 235-237
primary expressions, 78
primitive types, 46
Priority property, 642
private access modifier, 145
private key, 884
private protected access modifier, 145
Process, 360-362, 615

examining running processes, 615
examining threads in a process, 615
redirecting output and error streams,

361
Process class, 643
Process.Threads property, 615
producer/consumer collection, 967
producer/consumer queue, 970-972
Progress<T>, 683
projecting

into an X-DOM, 549-552
LINQ operators, 480-492
Select method, 480-484
SelectMany, 485-492

properties
automatic, 115
calculated properties, 115
CLR property implementation, 117
emitting, 846-847
expression-bodied, 115
get and set accessors, 116
property initializers, 116
read-only, 115

property initializer, 116
property patterns, 241
property validation, 232
protected access modifier, 145
protected internal access modifier, 145
proxy servers, 751
pseudocustom attributes, 830
public access modifier, 145
public key, 884

public keyword, 39
public-key encryption/signing, 884-888

digital signing, 887
RSA class, 886

punctuators, 35

Q
quantifiers, 427, 519

greedy versus lazy, 1017
LINQ, 475, 519
regular expressions, 1011, 1016

query continuation, 443
query expressions

about, 427-430
building, 466-470
delegates versus expression trees,

466-468
expression DOM, 468
expression trees, 468-470
mixed-syntax queries, 431
query syntax versus fluent syntax, 431
query syntax versus SQL syntax, 430
range variables, 430
X-DOM, 528-533

query operators
chaining, 421-424
LINQ, 419

query strings, 753
question mark (?)

in nullable types, 210
in regular expressions, 1011, 1017

Queue, 390
Queue<T>, 390
quote, single (')

enclosing char literals, 57
following generic type names, 808

R
rainbow tables, 878
Random class, 338
Range operator, 520
range partitioning, 943-944, 954
range variables, 430
ranges

arrays and, 64
using indices and ranges with index‐

ers, 119
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raw string literals (C# 11), 59-60
RCWs (Runtime-Callable Wrappers),

1003
Reactive Extensions, 931
read locks, 907-911
read-only properties, 115
read-only structs, 143
ReaderWriterLockSlim, 907-911
readonly modifier, 104, 144
ReadOnlyCollection<T>, 406
ReadOnlySpan<char>, 980-982
real literals, 48
record structs, 230
records, 227-238

background, 227
calculated fields and lazy evaluation,

233-235
defining a record, 227-230
equality comparison and, 237
mutability with record structs, 230
nondestructive mutation, 231
parameter lists, 229
primary constructors, 235-237
property validation, 232

rectangular arrays, 64
recursive locking, 911
reentrancy, 665
ref locals, 75
ref parameter

implicit, 1005
passing, 820
type names, 809

ref parameter modifier, 70
ref returns, 76
ref structs, 144
refactoring, 32
reference assemblies, 281
reference conversions, 128-130, 170
reference types, 43, 44
ReferenceEqualityComparer.Instance, 414
referential equality, 345, 346
reflection, 805-859

anonymously calling members of
generic interface, 824

awkward emission targets, 851-854
base types and interfaces, 809
dynamic code generation, 834-840
emitting assemblies and types,

841-843

emitting constructors, 848
emitting fields and properties, 846-847
emitting generic methods and types,

849-851
emitting type members, 844-849
obtaining a type, 806-807
parsing IL, 855-859
reflecting and activating types,

806-812
reflecting and invoking members of a

type, 813-827
reflecting assemblies, 827
type names, 808
working with attributes, 828-833

Reflection.Emit object model, 842
Regex...

Regex object, 1013
Regex.Match, 1012
RegEx.Replace, 1022
Regex.Split, 1023
RegexMatchTimeoutException, 1012
RegexOptions, 1013
RegexOptions.Compiled, 1013
RegexOptions.Multiline, 1019

RegisterWaitForSingleObject, 917
regular expressions (Regex), 1011-1028

basics, 1011-1016
character escapes, 1014
character sets, 1015
compiled regular expressions, 1013
cookbook regular expressions,

1023-1026
groups, 1020-1021
language reference, 1027-1028
MatchEvaluator delegate, 1022
named groups, 1021
quantifiers, 1016
RegexOptions, 1013
replacing and splitting text, 1022
zero-width assertions, 1017-1020

reimplementing interfaces, 149-151
relational operators, 212
relational patterns, 239
remainder operator (%), 50
Repeat operator, 520
Replace method, 295
required members, 136
reserved keywords, 34
Resize method, 385
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ResourceManager class, 779-780
.resources files, 778-783
resources, in assemblies, 776-783

creating a pack URI resource in Visual
Studio, 780

directly embedding, 777
.resources files, 778-780
.resx files, 779

resurrection, 592-593
.resx files, 779
return statement, 94
return types, 32, 106

covariant return types (C# 9), 131
explicitly specifying lambda parameter

and return types, 189
rich-client applications

application layers, 286
threading in, 643-645

right-associative operators, 80
Rijndael class, 879, 883
roots, garbage collection and, 588
Round method, 336
rounding errors, 54
rounding, real to integral conversions, 331
RSA encryption algorithm, 886
runtime type checking, 140
Runtime-Callable Wrappers (RCWs),

1003
RuntimeBinderException, 251, 252
runtimes

defined, 5
niche, 8
runtime targets and TFMs, 279

S
satellite assemblies, 781-782

building, 781
cultures and subcultures, 782
testing, 782
Visual Studio designer support, 782

sbyte (numeric type), 53
sealed modifier, 134, 151
searching

within an array, 382
within spans, 977
within strings, 294

security (see cryptography and encryp‐
tion)

seed factory function, 946
seed value, 946
Select method, 480-484

indexed projection, 481
projecting into concrete types, 484
select subqueries and object hierar‐

chies, 481
subqueries and joins in EF Core, 482

selection statements, 86
changing the flow of execution with

braces, 87
else clause and, 86
if statement, 86
switch expressions, 90
switch statements, 88-89
switching on types, 89

SelectMany, 485-492
in EF Core, 489
joining with, 489
multiple range variables, 487
outer joins with, 491
thinking in query syntax, 488

self-referencing type constraints, 261
semaphore, 904-906

asynchronous semaphores and locks,
906

writing an EnterAsync extension
method, 906

semicolon (;), 31, 35
SendAsync method, 748
SequenceEqual method, 519
sequences, 419
serialization, defined, 266
set accessor, 116
set operators (LINQ), 507

Concat and Union, 507
Intersect and Except, 508

SetData method, 924
SetValue method, 380, 537
shallow copy, 227
shared memory, 995-997
shared state, 632
shared writable state, 638
shift left operator (<<), 52
shift right operator (>>), 52
SignalAndWait method, 918
signaling

constructs/performance, 915
event wait handles for, 911-919
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threading, 643
two-way, 914

signature, 106
signing, digital, 887
signtool.exe, 775
single dispatch, 866
Single operator, 513
single-line comments, 36
single-threaded program, 632
single-threaded timers, 929
Skip operator, 478
[SkipLocalsInit] attribute, 269
SkipWhile operator, 479
slicing

defined, 973
list patterns and, 243
spans and, 974-978

SmtpClient, 758
SortedDictionary<TKey,TValue>, 399
SortedSet<T>, 392
Span<T> struct, 973-983
spans

CopyTo and TryCopyTo, 976
forward-only enumerators, 980-982
searching in, 977
slicing and, 974-978
stack-allocated/unmanaged memory,

982
working with text, 977

spinning, blocking versus, 635
Split method, 295
splitting strings, 295
SQL Server, 8
square brackets ([])

array declaration, 40, 61, 65
in collection expressions, 62
in list patterns, 243
in regular expressions, 1014

stack, 67
Stack (data structure), 391
stack-allocated memory, 982
Stack<T>, 391
stackalloc keyword, 265
StackFrame class, 616-618
StackTrace class, 616-618
StartsWith method, 294
state, 873
statement block, 32, 84, 189
statements, 31, 84-94

declaration statements, 84
expression statements, 85
iteration statements, 91-92
jump statements, 93-94
selection statements, 86
switch statements, 88-89

static abstract members, 153, 826-827
static binding, 249
static classes, 124, 217-220
static constructors, 122
static interface members, 152-153

static nonvirtual members, 152
static virtual/abstract members, 153,

826-827
static keyword, 192
static lambda expressions, 192
static local methods, 107
static members

instance versus, 38
locking, 900

static methods, 175, 217-220
static polymorphism, 260-263

generic math, 262-263
polymorphic operators, 261-262
static virtual/abstract members and,

153
static readonly field, 105
static type checking, 140
static types, 254
static typing, 2
static variable flags, 608
static virtual members, 153, 826-827
Stop method, 583
Stopwatch class, 624
stream adapters, 709-717

binary adapters, 715
closing and disposing, 716, 717
text adapters, 710-715

Stream...
Stream class, 694
StreamReader, 712, 761
StreamWriter, 712, 761

streams and I/O, 693-739
backing store streams, 700
BufferedStream, 708
closing and flushing, 699
compression streams, 718-721
file and directory operations, 723-733
FileStream, 700-704
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memory-mapped files, 736-739
MemoryStream, 704
OS security, 733-736
PipeStream class, 704-708
reading and writing, 697
seeking, 698
stream adapters, 709-717
stream architecture, 693-695
.tar files, 722
thread safety, 699
timeouts, 699
using streams, 695-709
ZIP files, 721

string type, 36, 57-61, 293-304
accessing characters within, 294
comparing, 61, 297-300
constructing strings, 293
enum conversions, 342
manipulating, 295
null/empty, 293
ordinal versus culture comparison,

297
searching within strings, 294
spans and, 977
splitting/joining, 295
string equality comparisons, 298
string order comparison, 299
String.format and composite format

strings, 296
StringBuilder class, 300
text encodings and Unicode, 301-304
UTF-8 string literals, 61
writing a declaration to, 542

String...
string.Format, 296, 321
string.IsNullOrEmpty, 294
StringBuilder class, 300
StringComparer, 416
StringComparison enum, 298
StringInfo class, 304
StringReader, 715
StringSplitOptions enum, 296
StringWriter, 715

strongly named assemblies, 770
struct constraint, 164
structs, 142-145

construction semantics, 142
mapping to unmanaged memory,

997-1001

mapping to unmanaged method,
988-990

mutability with record structs, 230
read-only structs/functions, 143
ref structs, 144
speeding up equality comparison with,

351
structural comparison, 417
structural equality, 345
structured parallelism, 932
subclass

inheritance with primary constructors,
137

reimplementing an interface in,
149-151

subclassing generic types, 165
subcultures, 782
subqueries, 438-442

deferred execution and, 441
select subqueries and object hierar‐

chies, 481
subqueries and joins in EF Core, 482

subscribers, 181
Substring method, 295
Sum operator, 515
surrogate pairs, 303
switch expressions, 90
switch statements, 88-89
symmetric encryption, 879-884

chaining encryption streams, 882
disposing encryption objects, 883
encrypting in memory, 881
key management, 884

synchronization context scheduler, 962
synchronization object, 892
SynchronizationContext class, 645
synchronous call graph, 659
synchronous completion, 677-679
syntax, C#, 34-36

comments, 36
identifiers and keywords, 34-35
literals, punctuators, and operators, 35

System...
System.AppContext, 362
System.ArgumentException, 202
System.ArgumentNullException, 202
System.ArgumentOutOfRangeExcep‐

tion, 202
System.Attribute, 244, 829, 831
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System.Buffers, 599
System.Buffers.MemoryPool<T>, 979
System.Buffers.Text, 978
System.Char, 291
System.Collections.Concurrent, 593,

966
System.Collections.Frozen, 410
System.Collections.Generic, 205
System.Collections.Generic.IEnumer‐

able<T>, 204
System.Collections.Generic.IEnumer‐

ator<T>, 203
System.Collections.IEnumerable, 204,

205
System.Collections.IEnumerator, 204
System.Collections.Immutable, 407
System.ComponentModel, 645, 691
System.Core.dll, 862
System.Data, 584
System.Data.IDataRecord, 870
System.Data.SqlTypes.SqlBoolean, 259
System.Delegate, 176
System.Diagnostics, 360-362, 614, 643
System.Diagnostics.Performance‐

Counter, 620
System.Drawing, 584
System.Dynamic, 861
System.Enum, 340
System.Environment class, 359
System.EventArgs, 183
System.EventHandler<>, 184
System.Exception, 197, 201
System.GC.Collect, 594
System.Globalization, 304, 308
System.Globalization.CultureInfo, 783
System.IDisposable, 199
System.InvalidOperationException,

202
System.IO, 584, 723
System.IO.Compression, 718, 721
System.Linq.Enumerable class, 821
System.Management, 724
System.MulticastDelegate, 176
System.Net, 665, 743
System.Net.Mail, 758
System.NotImplementedException,

202
System.NotSupportedException, 202
System.Nullable<T>, 210

System.Numerics.BitOperations, 340
System.Object, 138, 352
System.ObjectDisposedException, 202
System.Reflection, 768
System.Reflection.Emit, 805, 834, 842
System.Runtime, 625
System.Runtime.CompilerServices,

861
System.Runtime.InteropServices, 1007
System.Runtime.Loader, 784
System.Security.AccessControl, 734
System.Security.Cryptography, 339
System.Security.Cryptogra‐

phy.X509Certificates, 876, 888
System.Security.Cryptography.Xml,

876
System.String, 293, 356
System.Text, 302
System.Text.Json.JsonDocument, 572
System.Text.Json.Utf8JsonReader,

568-570
System.Text.Json.Utf8JsonWriter, 571
System.Text.RegularExpressions, 1011
System.Threading, 602
System.Threading.Channels.Channel,

931
System.Threading.Tasks, 648
System.Threading.Timer, 928
System.Timers, 601, 928
System.Timers.Timer, 598
System.Tuple, 226
System.Type, 140, 806
System.Uri class, 241
System.WeakReference class, 603
System.Windows.Forms.Timer, 927
System.Windows.Threading.Dispatch‐

erTimer, 927
System.Xml.Linq, 536
System.Xml.Serialization, 244

T
Take operator, 478
TakeWhile operator, 479
TAP (Task-Based Asynchronous Pattern),

685
.tar files, 722
Target Framework Moniker (TFM), 279
target typing, 77, 205
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task combinators, 685-689
custom combinators, 687
WhenAll, 686
WhenAny, 685

task parallelism, 954-964
canceling tasks, 957
child tasks, 956
continuations, 958-962
creating and starting tasks, 955
defined, 932
specifying a state object, 955
task schedulers, 962
TaskCreationOptions, 955
TaskFactory, 963
waiting on multiple tasks, 956

task schedulers, 962
Task-Based Asynchronous Pattern (TAP),

685
Task...

Task class, 648
Task.Delay, 656
Task.Factory, 963
Task.Factory.StartNew, 654, 955
Task.Run, 648, 658, 955
Task.WaitAll, 956
Task.WaitAny, 956
Task.WhenAll, 686
Task.WhenAny, 685
Task<T>, 679
Task<TResult>, 650, 668, 958
TaskCanceledException, 957
TaskCompletionSource, 653-656, 660,

668, 670
TaskCreationOptions, 955
TaskCreationOptions.LongRunning,

650, 654
TaskFactory object, 963
TaskScheduler.UnobservedTaskExcep‐

tion, 651
tasks, 648-656

asynchronous programming and, 658
continuations, 652-653
exceptions, 650
exceptions and autonomous tasks, 651
long-running, 649
returning values, 650
starting a task, 648-650
TaskCompletionSource, 653-656
Wait method, 649

TCP (Transmission and Control Proto‐
col)
basics, 759-763
concurrency with, 762
receiving POP3 mail with, 763-764

TcpClient, 760-763
TcpListener, 760-763
ternary (conditional) operator, 57
text

MatchEvaluator delegate, 1022
replacing and splitting with regular

expressions, 1022
spans and, 977

text adapters, 710-715
character encodings, 713
StreamReader and StreamWriter, 712
StringReader and StringWriter, 715

text encoding, 301-304
encoding to byte arrays, 303
file and stream I/O, 303
obtaining an Encoding object, 302
UTF-16 and surrogate pairs, 303

text handling, 291-304
char type, 291
text encodings and Unicode, 301-304

ThenBy operator, 501
ThenByDescending operator, 502
thin-client applications, 286
this keyword, 108
this reference, 113
thread execution barrier, 919
thread pool, 646

entering, 646
hygiene in, 647

thread safety, 699
thread-local storage, 923-926

AsyncLocal<T>, 925
GetData and SetData, 924
ThreadLocal<T>, 923
ThreadStatic attribute, 923

thread-safe code, 638
thread-safe objects, 900
thread-unsafe operations, 940
Thread...

Thread object, 632
Thread.Sleep, 634
ThreadLocal<T>, 923, 939
ThreadPool.RegisterWaitForSingleOb‐

ject, 917
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ThreadStart delegate, 632
ThreadStatic attribute, 923

threading, 632-647, 889-930
advanced topics, 889-930
Barrier class, 919-920
blocking, 634
blocking versus spinning, 635
creating a thread, 632-634
exception handling, 640
exclusive locking, 890-898
foreground versus background

threads, 642
I/O bound versus compute-bound

operations, 635
in rich-client applications, 643-645
join and sleep, 634
lambda expressions and captured vari‐

ables, 639
lazy initialization, 920-923
limitations of, 648
local versus shared state, 636-638
locking and thread safety, 638,

898-903
multiple UI threads, 645
nonexclusive locking, 904-911
passing data to a thread, 639-640
Priority property, 642
signaling, 643
signaling with event wait handles,

911-919
synchronization contexts, 645
synchronization overview, 890
thread pool, 646
thread-local storage, 923-926
timers, 926-930

threads
defined, 632
examining threads in a process, 615

throw expressions, 200
throw statement, 94
throwing exceptions, 200-201

rethrowing exceptions, 201
throw expressions, 200

time zones, 312-317
DateTime and, 312
DateTimeOffset and, 313
Daylight Saving Time and DateTime,

317
TimeZoneInfo, 313-316

time-stamping server, 776
timeouts, 699
timers, 926-930

memory leaks and, 601
multithreaded, 928-929
single-threaded, 929

TimeSpan, 304
TimeZone.CurrentTimeZone method,

313
TimeZoneInfo, 313-316
To...

ToArray operator, 511
ToDictionary operator, 511
ToHashSet operator, 511
ToList operator, 511
ToLocalTime, 312
ToLongDateString method, 311
ToLookup operator, 511
ToLower, 291, 295
ToShortDateString method, 311
ToString method, 141, 300, 310, 318,

525
ToUniversalTime, 312, 317
ToUpper, 291, 295

top-level statements
elements of, 41
local methods and, 107

Trace class (see Debug and Trace classes)
TraceFilter, 613
TraceListener, 612
traces, 627
Transmission and Control Protcol (see

TCP)
transport layer, 741
try statements and exceptions, 195-203

alternatives to exceptions, 203
catch clause, 197-198
common exception types, 202
finally block, 199
key properties of System.Exception,

201
throwing exceptions, 200-201
try/catch/finally blocks, 208
TryXXX method pattern, 203
using declarations, 200
using statement, 199

TryCopyTo method, 976
TryEnter method, 892
TryParse, 305, 318
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TryXXX method pattern, 203
tuple literal, 222
tuple patterns, 240
tuple types, 222
TupleElementNamesAttribute, 224
tuples, 222-226

aliasing (C# 12), 225
deconstructing, 225
equality comparison, 226
naming tuple elements, 223
System.Tuple classes, 226
type erasure, 224
ValueTuple.Create, 223

type arguments, 159
type checking, 140
type converters, 333
type equivalence, 1007
type library importer, 1003
type marshaling, 986-988

calling conventions, 990
in and out marshaling, 990
marshaling classes and structs,

988-990
marshaling common types, 986-990

type members, emitting, 844-849
type parameters

covariance, 169
declaring, 162
generic types and, 159

type safety, 2
enums and, 156

type system, C#
access modifiers, 145-147
anonymous types, 220
basics, 36-47
Boolean type and operators, 55-57
C# members versus CLR members,

816
converting types, 42
creating types, 103-171
custom type examples, 37-42
dynamically invoking a member, 819
emitting assemblies and types,

841-843
enums, 154-157
extension methods, 217-220
generics, 159-171
inheritance (see inheritance)
instantiating a type, 810-812

interfaces, 147-154
nested types, 157-159
numeric types, 47-55
object type, 138-142
predefined type examples, 36
strings and characters, 57-61
structs, 142-145
value types versus reference types,

43-46
type unification, 138, 340
Type...

TypeAttributes, 841
TypeBuilder, 841-843, 846
TypeIdentifierAttribute, 1007
TypeInfo class, 807, 813

typeof operator, 140, 162
types

aliasing any type (C# 12), 100
aliasing within namespaces, 99
base types and interfaces, 809
partial types/methods, 124
reflecting and activating, 806-812
reflecting and invoking members of,

813-827

U
UAC (User Account Control), 733
UI (user interface)

awaiting in, 664-666
multiple UI threads, 645

unbound generic type, 162
unboxing, 139

is operator and, 130
nullable values, 211

#undef directive, 608
Unicode, 301-304

UTF-16 and surrogate pairs, 303
XmlWriter and, 541

UnicodeCategory enum, 293
union, 994
Union operator, 507
Unity, 8
Universal Windows Platform (UWP) (see

UWP)
Unix

file security, 727
gzip file compression, 720

Unix gzip file compression, 720
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Unix, OS security, 733
unmanaged code

callbacks from, 991
callbacks with delegates, 993
callbacks with function pointers (C#

9), 991
unmanaged constraint, 164
unmanaged heap, 998
unmanaged memory, 982, 997-1001
[UnmanagedCallersOnly] attribute, 992
UnmanagedType, 986
unnamed methods, 672
unsafe code, 263-269, 264
unseeded aggregations, 517
upcasting, 128
upgradeable locks, 909
UploadValues method, 754
Uri class, 744-746
URIs, 744-746
User Account Control (UAC), 733
user interface (UI)

awaiting in, 664-666
multiple UI threads, 645

UseShellExecute, 362
ushort (numeric type), 47
using declarations, 200
using directive, 96, 99, 225
using statement, 94
using static directive, 97
UTC (Coordinated Universal Time), 306,

313
UTF-8 string literals, 61
Utf8JsonReader, 568-570
Utf8JsonWriter, 571
utility classes, 358-363

AppContext, 362
Console, 358
Environment, 359
Process, 360-362

UWP (Universal Windows Platform), 288
about, 8

V
value equality, 345
value types, 43
ValueTask<T>, 679
ValueTuple.Create, 223, 225
ValueTuple<string,int>, 224

var keyword, 77
var pattern, 240
var type, dynamic type versus, 252
variables, 36, 67-69

(see also parameters)
default values, 69
definite assignment and, 68
heap, 67
purpose of, 36
ref locals, 75
ref returns, 76
stack and, 67
var keyword, 77

verbatim string literals, 58
vertical bar (|)

bitwise OR operator, 52, 155
bool? with | operator, 213
in regular expressions, 1012

view accessors, 738
virtual function members, 131
virtualization, 735
Visitor pattern, 863-865
void expressions, 78
void pointer (void*), 266
volume information, querying, 731

W
wait handles (see event wait handles)
Wait method, 649
WaitAll method, 918
WaitAny method, 918
#warning preprocessor directive, 270
weak references

caching and, 604
events and, 604-606
GC and, 603-606

Where clause, 476-479
Enumerable.Where implementation,

476
indexed filtering, 477

WHERE x IN (…,…,…), 478
while loops, 91
wildcards (character sets), 1015
Windows

application manifest, 767
file security, 726
memory-mapped files and shared

memory, 737
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OS security, 733
Windows Data Protection API (DPAPI),

876
Windows Desktop application layer, 7,

287
Windows event logs, 618-620

monitoring, 619
reading, 619
writing to, 618

Windows Forms, 287
Windows Management Instrumentation

(WMI) API, 724
Windows Presentation Foundation

(WPF), 287
Windows Runtime (WinRT)

asynchronous methods in, 675
WinUI 3, 7
WithDegreeOfParallelism, 941
WithMergeOptions, 937
WMI (Windows Management Instru‐

mentation) API, 724
word boundary assertions, 1020
WPF (Windows Presentation Founda‐

tion), 287
write locks, 907-911

X
x++ (incrementing), 638
X-DOM (see XML DOM)
XAML (Extensible Application Markup

Language) files, 333, 780
XAttribute, 524
XContainer, 524
XDeclaration object, 539
XDocument, 524, 539-543
XElement, 522-526

using XmlReader with, 566
using XmlWriter with, 567

XML declarations, 541
XML documentation, 272-275

standard tags, 273-275
type or member cross-references, 275
user-defined tags, 275

XML DOM (X-DOM), 522
attribute navigation, 533
automatic deep cloning, 528
automatic XText concatenation, 539
child node navigation, 529

content specification, 527
default namespaces, 546
functional construction, 526
getting values, 537
instantiating, 526-528
loading and parsing, 524
mixing XmlReader/XmlWriter with,

566
namespace specification, 545
navigating and querying, 528-533
overview, 522-526
parent navigation, 532
peer node navigation, 533
prefixes, 547
projecting into, 549-552
removing a sequence of nodes or

attributes, 536
retrieving a single element, 531
retrieving descendants, 531
retrieving elements, 530
saving and serializing, 525
setting values, 537
simple value updates, 534
updating, 534-537
updating child nodes and attributes,

535
updating through the parent, 535
values and mixed content nodes, 538
working with values, 537-539

XmlConvert, 332
XmlReader, 553-561

mixing with an X-DOM, 566
namespaces and prefixes, 560
patterns for using, 563-568
reading attributes, 559
reading elements, 555-559
reading nodes, 554
using with XElement, 566
working with hierarchical data,

563-566
XmlWriter, 561

mixing with an X-DOM, 566
patterns for using, 563-568
using with XElement, 567
working with hierarchical data,

563-566
writing a declaration to a string, 542

XNode, 524
XObject, 522, 548
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XStreamingElement, 552
XText, 539

Y
yield break statement, 207

Z
zero-width assertions, 1017-1020

anchors, 1019
defined, 1017
lookahead and lookbehind, 1017
word boundaries, 1020

ZIP files, 721
Zip operator, 500
ZipArchive class, 721
ZipFile class, 721
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